
WebAssembly Specification
Release 3.0 + stack-switching (Draft 2024-07-23)

WebAssembly Community Group
Andreas Rossberg (editor)

Jul 23, 2024

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Overview . 3

2 Structure 5
2.1 Conventions . 5
2.2 Values . 7
2.3 Types . 9
2.4 Instructions . 14
2.5 Modules . 22

3 Validation 27
3.1 Conventions . 27
3.2 Types . 32
3.3 Matching . 39
3.4 Instructions . 45
3.5 Modules . 72

4 Execution 83
4.1 Conventions . 83
4.2 Runtime Structure . 85
4.3 Numerics . 94
4.4 Types . 117
4.5 Values . 118
4.6 Instructions . 121
4.7 Modules . 176

5 Binary Format 187
5.1 Conventions . 187
5.2 Values . 189
5.3 Types . 190
5.4 Instructions . 193
5.5 Modules . 206

6 Text Format 213
6.1 Conventions . 213
6.2 Lexical Format . 215
6.3 Values . 217
6.4 Types . 219
6.5 Instructions . 222
6.6 Modules . 236

i

7 Appendix 245
7.1 Embedding . 245
7.2 Implementation Limitations . 253
7.3 Type Soundness . 256
7.4 Type System Properties . 271
7.5 Validation Algorithm . 273
7.6 Custom Sections . 281
7.7 Change History . 283
7.8 Index of Types . 287
7.9 Index of Instructions . 287
7.10 Index of Semantic Rules . 298

Index 303

ii

CHAPTER 1

Introduction

1.1 Introduction

WebAssembly (abbreviated Wasm2) is a safe, portable, low-level code format designed for efficient execution and
compact representation. Its main goal is to enable high performance applications on the Web, but it does not make
any Web-specific assumptions or provide Web-specific features, so it can be employed in other environments as
well.

WebAssembly is an open standard developed by a W3C Community Group1.

This document describes version 3.0 + stack-switching (Draft 2024-07-23) of the core WebAssembly standard. It
is intended that it will be superseded by new incremental releases with additional features in the future.

1.1.1 Design Goals

The design goals of WebAssembly are the following:

• Fast, safe, and portable semantics:

– Fast: executes with near native code performance, taking advantage of capabilities common to all
contemporary hardware.

– Safe: code is validated and executes in a memory-safe3, sandboxed environment preventing data cor-
ruption or security breaches.

– Well-defined: fully and precisely defines valid programs and their behavior in a way that is easy to
reason about informally and formally.

– Hardware-independent: can be compiled on all modern architectures, desktop or mobile devices and
embedded systems alike.

– Language-independent: does not privilege any particular language, programming model, or object
model.

– Platform-independent: can be embedded in browsers, run as a stand-alone VM, or integrated in other
environments.

2 A contraction of “WebAssembly”, not an acronym, hence not using all-caps.
1 https://www.w3.org/community/webassembly/
3 No program can break WebAssembly’s memory model. Of course, it cannot guarantee that an unsafe language compiling to WebAssembly

does not corrupt its own memory layout, e.g. inside WebAssembly’s linear memory.

1

https://www.w3.org/community/webassembly/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

– Open: programs can interoperate with their environment in a simple and universal manner.

• Efficient and portable representation:

– Compact: has a binary format that is fast to transmit by being smaller than typical text or native code
formats.

– Modular: programs can be split up in smaller parts that can be transmitted, cached, and consumed
separately.

– Efficient: can be decoded, validated, and compiled in a fast single pass, equally with either just-in-time
(JIT) or ahead-of-time (AOT) compilation.

– Streamable: allows decoding, validation, and compilation to begin as soon as possible, before all data
has been seen.

– Parallelizable: allows decoding, validation, and compilation to be split into many independent parallel
tasks.

– Portable: makes no architectural assumptions that are not broadly supported across modern hardware.

WebAssembly code is also intended to be easy to inspect and debug, especially in environments like web browsers,
but such features are beyond the scope of this specification.

1.1.2 Scope

At its core, WebAssembly is a virtual instruction set architecture (virtual ISA). As such, it has many use cases
and can be embedded in many different environments. To encompass their variety and enable maximum reuse, the
WebAssembly specification is split and layered into several documents.

This document is concerned with the core ISA layer of WebAssembly. It defines the instruction set, binary en-
coding, validation, and execution semantics, as well as a textual representation. It does not, however, define how
WebAssembly programs can interact with a specific environment they execute in, nor how they are invoked from
such an environment.

Instead, this specification is complemented by additional documents defining interfaces to specific embedding
environments such as the Web. These will each define a WebAssembly application programming interface (API)
suitable for a given environment.

1.1.3 Security Considerations

WebAssembly provides no ambient access to the computing environment in which code is executed. Any inter-
action with the environment, such as I/O, access to resources, or operating system calls, can only be performed
by invoking functions provided by the embedder and imported into a WebAssembly module. An embedder can
establish security policies suitable for a respective environment by controlling or limiting which functional capa-
bilities it makes available for import. Such considerations are an embedder’s responsibility and the subject of API
definitions for a specific environment.

Because WebAssembly is designed to be translated into machine code running directly on the host’s hardware, it
is potentially vulnerable to side channel attacks on the hardware level. In environments where this is a concern, an
embedder may have to put suitable mitigations into place to isolate WebAssembly computations.

2 Chapter 1. Introduction

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

1.1.4 Dependencies

WebAssembly depends on two existing standards:

• IEEE 7544, for the representation of floating-point data and the semantics of respective numeric operations.

• Unicode5, for the representation of import/export names and the text format.

However, to make this specification self-contained, relevant aspects of the aforementioned standards are defined
and formalized as part of this specification, such as the binary representation and rounding of floating-point values,
and the value range and UTF-8 encoding of Unicode characters.

Note: The aforementioned standards are the authoritative source of all respective definitions. Formalizations
given in this specification are intended to match these definitions. Any discrepancy in the syntax or semantics
described is to be considered an error.

1.2 Overview

1.2.1 Concepts

WebAssembly encodes a low-level, assembly-like programming language. This language is structured around the
following concepts.

Values
WebAssembly provides only four basic number types. These are integers and IEEE 7546 numbers, each in
32 and 64 bit width. 32 bit integers also serve as Booleans and as memory addresses. The usual operations
on these types are available, including the full matrix of conversions between them. There is no distinction
between signed and unsigned integer types. Instead, integers are interpreted by respective operations as
either unsigned or signed in two’s complement representation.

In addition to these basic number types, there is a single 128 bit wide vector type representing different types
of packed data. The supported representations are 4 32-bit, or 2 64-bit IEEE 7547 numbers, or different
widths of packed integer values, specifically 2 64-bit integers, 4 32-bit integers, 8 16-bit integers, or 16 8-bit
integers.

Finally, values can consist of opaque references that represent pointers towards different sorts of entities.
Unlike with other types, their size or representation is not observable.

Instructions
The computational model of WebAssembly is based on a stack machine. Code consists of sequences of
instructions that are executed in order. Instructions manipulate values on an implicit operand stack8 and
fall into two main categories. Simple instructions perform basic operations on data. They pop arguments
from the operand stack and push results back to it. Control instructions alter control flow. Control flow
is structured, meaning it is expressed with well-nested constructs such as blocks, loops, and conditionals.
Branches can only target such constructs.

Traps
Under some conditions, certain instructions may produce a trap, which immediately aborts execution. Traps
cannot be handled by WebAssembly code, but are reported to the outside environment, where they typically
can be caught.

Functions
Code is organized into separate functions. Each function takes a sequence of values as parameters and returns

4 https://ieeexplore.ieee.org/document/8766229
5 https://www.unicode.org/versions/latest/
6 https://ieeexplore.ieee.org/document/8766229
7 https://ieeexplore.ieee.org/document/8766229
8 In practice, implementations need not maintain an actual operand stack. Instead, the stack can be viewed as a set of anonymous registers

that are implicitly referenced by instructions. The type system ensures that the stack height, and thus any referenced register, is always known
statically.

1.2. Overview 3

https://ieeexplore.ieee.org/document/8766229
https://www.unicode.org/versions/latest/
https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

a sequence of values as results. Functions can call each other, including recursively, resulting in an implicit
call stack that cannot be accessed directly. Functions may also declare mutable local variables that are usable
as virtual registers.

Tables
A table is an array of opaque values of a particular reference type. It allows programs to select such values
indirectly through a dynamic index operand. Thereby, for example, a program can call functions indirectly
through a dynamic index into a table. This allows emulating function pointers by way of table indices.

Linear Memory
A linear memory is a contiguous, mutable array of raw bytes. Such a memory is created with an initial size
but can be grown dynamically. A program can load and store values from/to a linear memory at any byte
address (including unaligned). Integer loads and stores can specify a storage size which is smaller than the
size of the respective value type. A trap occurs if an access is not within the bounds of the current memory
size.

Modules
A WebAssembly binary takes the form of a module that contains definitions for functions, tables, and linear
memories, as well as mutable or immutable global variables. Definitions can also be imported, specifying a
module/name pair and a suitable type. Each definition can optionally be exported under one or more names.
In addition to definitions, modules can define initialization data for their memories or tables that takes the
form of segments copied to given offsets. They can also define a start function that is automatically executed.

Embedder
A WebAssembly implementation will typically be embedded into a host environment. This environment
defines how loading of modules is initiated, how imports are provided (including host-side definitions), and
how exports can be accessed. However, the details of any particular embedding are beyond the scope of this
specification, and will instead be provided by complementary, environment-specific API definitions.

1.2.2 Semantic Phases

Conceptually, the semantics of WebAssembly is divided into three phases. For each part of the language, the
specification specifies each of them.

Decoding
WebAssembly modules are distributed in a binary format. Decoding processes that format and converts it
into an internal representation of a module. In this specification, this representation is modelled by abstract
syntax, but a real implementation could compile directly to machine code instead.

Validation
A decoded module has to be valid. Validation checks a number of well-formedness conditions to guaran-
tee that the module is meaningful and safe. In particular, it performs type checking of functions and the
instruction sequences in their bodies, ensuring for example that the operand stack is used consistently.

Execution
Finally, a valid module can be executed. Execution can be further divided into two phases:

Instantiation. A module instance is the dynamic representation of a module, complete with its own state
and execution stack. Instantiation executes the module body itself, given definitions for all its imports. It
initializes globals, memories and tables and invokes the module’s start function if defined. It returns the
instances of the module’s exports.

Invocation. Once instantiated, further WebAssembly computations can be initiated by invoking an exported
function on a module instance. Given the required arguments, that executes the respective function and
returns its results.

Instantiation and invocation are operations within the embedding environment.

4 Chapter 1. Introduction

CHAPTER 2

Structure

2.1 Conventions

WebAssembly is a programming language that has multiple concrete representations (its binary format and the text
format). Both map to a common structure. For conciseness, this structure is described in the form of an abstract
syntax. All parts of this specification are defined in terms of this abstract syntax.

2.1.1 Grammar Notation

The following conventions are adopted in defining grammar rules for abstract syntax.

• Terminal symbols (atoms) are written in sans-serif font or in symbolic form: i32, end,→, [,].

• Nonterminal symbols are written in italic font: valtype, instr .

• 𝐴𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝐴.

• 𝐴* is a possibly empty sequence of iterations of 𝐴. (This is a shorthand for 𝐴𝑛 used where 𝑛 is not relevant.)

• 𝐴+ is a non-empty sequence of iterations of 𝐴. (This is a shorthand for 𝐴𝑛 where 𝑛 ≥ 1.)

• 𝐴? is an optional occurrence of 𝐴. (This is a shorthand for 𝐴𝑛 where 𝑛 ≤ 1.)

• Productions are written sym ::= 𝐴1 | . . . | 𝐴𝑛.

• Large productions may be split into multiple definitions, indicated by ending the first one with explicit el-
lipses, sym ::= 𝐴1 | . . ., and starting continuations with ellipses, sym ::= . . . | 𝐴2.

• Some productions are augmented with side conditions in parentheses, “(if condition)”, that provide a short-
hand for a combinatorial expansion of the production into many separate cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production, then all those
occurrences must have the same instantiation. (This is a shorthand for a side condition requiring multiple
different variables to be equal.)

5

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.1.2 Auxiliary Notation

When dealing with syntactic constructs the following notation is also used:

• 𝜖 denotes the empty sequence.

• |𝑠| denotes the length of a sequence 𝑠.

• 𝑠[𝑖] denotes the 𝑖-th element of a sequence 𝑠, starting from 0.

• 𝑠[𝑖 : 𝑛] denotes the sub-sequence 𝑠[𝑖] . . . 𝑠[𝑖+ 𝑛− 1] of a sequence 𝑠.

• 𝑠 with [𝑖] = 𝐴 denotes the same sequence as 𝑠, except that the 𝑖-th element is replaced with 𝐴.

• 𝑠 with [𝑖 : 𝑛] = 𝐴𝑛 denotes the same sequence as 𝑠, except that the sub-sequence 𝑠[𝑖 : 𝑛] is replaced with
𝐴𝑛.

• concat(𝑠*) denotes the flat sequence formed by concatenating all sequences 𝑠𝑖 in 𝑠*.

Moreover, the following conventions are employed:

• The notation 𝑥𝑛, where 𝑥 is a non-terminal symbol, is treated as a meta variable ranging over respective
sequences of 𝑥 (similarly for 𝑥*, 𝑥+, 𝑥?).

• When given a sequence 𝑥𝑛, then the occurrences of 𝑥 in a sequence written (𝐴1 𝑥 𝐴2)
𝑛 are assumed to be in

point-wise correspondence with 𝑥𝑛 (similarly for 𝑥*, 𝑥+, 𝑥?). This implicitly expresses a form of mapping
syntactic constructions over a sequence.

Productions of the following form are interpreted as records that map a fixed set of fields field𝑖 to “values” 𝐴𝑖,
respectively:

r ::= {field1 𝐴1, field2 𝐴2, . . . }

The following notation is adopted for manipulating such records:

• 𝑟.field denotes the contents of the field component of 𝑟.

• 𝑟 with field = 𝐴 denotes the same record as 𝑟, except that the contents of the field component is replaced
with 𝐴.

• 𝑟1⊕𝑟2 denotes the composition of two records with the same fields of sequences by appending each sequence
point-wise:

{field1 𝐴*
1, field2 𝐴

*
2, . . . } ⊕ {field1 𝐵*

1 , field2 𝐵
*
2 , . . . } = {field1 𝐴*

1 𝐵
*
1 , field2 𝐴

*
2 𝐵

*
2 , . . . }

•
⨁︀

𝑟* denotes the composition of a sequence of records, respectively; if the sequence is empty, then all fields
of the resulting record are empty.

The update notation for sequences and records generalizes recursively to nested components accessed by “paths”
pth ::= ([. . .] | .field)+:

• 𝑠 with [𝑖] pth = 𝐴 is short for 𝑠 with [𝑖] = (𝑠[𝑖] with pth = 𝐴),

• 𝑟 with field pth = 𝐴 is short for 𝑟 with field = (𝑟.field with pth = 𝐴),

where 𝑟 with .field = 𝐴 is shortened to 𝑟 with field = 𝐴.

2.1.3 Vectors

Vectors are bounded sequences of the form 𝐴𝑛 (or 𝐴*), where the 𝐴 can either be values or complex constructions.
A vector can have at most 232 − 1 elements.

vec(𝐴) ::= 𝐴𝑛 (if 𝑛 < 232)

6 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.2 Values

WebAssembly programs operate on primitive numeric values. Moreover, in the definition of programs, immutable
sequences of values occur to represent more complex data, such as text strings or other vectors.

2.2.1 Bytes

The simplest form of value are raw uninterpreted bytes. In the abstract syntax they are represented as hexadecimal
literals.

byte ::= 0x00 | . . . | 0xFF

Conventions

• The meta variable 𝑏 ranges over bytes.

• Bytes are sometimes interpreted as natural numbers 𝑛 < 256.

2.2.2 Integers

Different classes of integers with different value ranges are distinguished by their bit width 𝑁 and by whether they
are unsigned or signed.

u𝑁 ::= 0 | 1 | . . . | 2𝑁−1
s𝑁 ::= −2𝑁−1 | . . . | −1 | 0 | 1 | . . . | 2𝑁−1−1
i𝑁 ::= u𝑁

The class i𝑁 defines uninterpreted integers, whose signedness interpretation can vary depending on context. In
the abstract syntax, they are represented as unsigned values. However, some operations convert them to signed
based on a two’s complement interpretation.

Note: The main integer types occurring in this specification are u32 , u64 , s32 , s64 , i8 , i16 , i32 , i64 . However,
other sizes occur as auxiliary constructions, e.g., in the definition of floating-point numbers.

Conventions

• The meta variables 𝑚,𝑛, 𝑖 range over integers.

• Numbers may be denoted by simple arithmetics, as in the grammar above. In order to distinguish arithmetics
like 2𝑁 from sequences like (1)𝑁 , the latter is distinguished with parentheses.

2.2.3 Floating-Point

Floating-point data represents 32 or 64 bit values that correspond to the respective binary formats of the IEEE
7549 standard (Section 3.3).

Every value has a sign and a magnitude. Magnitudes can either be expressed as normal numbers of the form
𝑚0.𝑚1𝑚2 . . .𝑚𝑀 ·2𝑒, where 𝑒 is the exponent and 𝑚 is the significand whose most significant bit 𝑚0 is 1, or as a
subnormal number where the exponent is fixed to the smallest possible value and 𝑚0 is 0; among the subnormals
are positive and negative zero values. Since the significands are binary values, normals are represented in the form
(1 +𝑚 · 2−𝑀) · 2𝑒, where 𝑀 is the bit width of 𝑚; similarly for subnormals.

9 https://ieeexplore.ieee.org/document/8766229

2.2. Values 7

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Possible magnitudes also include the special values ∞ (infinity) and nan (NaN, not a number). NaN values have a
payload that describes the mantissa bits in the underlying binary representation. No distinction is made between
signalling and quiet NaNs.

f𝑁 ::= +f Nmag | −f Nmag
f Nmag ::= (1 + u𝑀 · 2−𝑀) · 2𝑒 (if −2𝐸−1 + 2 ≤ 𝑒 ≤ 2𝐸−1 − 1)

| (0 + u𝑀 · 2−𝑀) · 2𝑒 (if 𝑒 = −2𝐸−1 + 2)
| ∞
| nan(𝑛) (if 1 ≤ 𝑛 < 2𝑀)

where 𝑀 = signif(𝑁) and 𝐸 = expon(𝑁) with

signif(32) = 23 expon(32) = 8
signif(64) = 52 expon(64) = 11

A canonical NaN is a floating-point value ±nan(canon𝑁) where canon𝑁 is a payload whose most significant bit
is 1 while all others are 0:

canon𝑁 = 2signif(𝑁)−1

An arithmetic NaN is a floating-point value ±nan(𝑛) with 𝑛 ≥ canon𝑁 , such that the most significant bit is 1
while all others are arbitrary.

Note: In the abstract syntax, subnormals are distinguished by the leading 0 of the significand. The exponent
of subnormals has the same value as the smallest possible exponent of a normal number. Only in the binary
representation the exponent of a subnormal is encoded differently than the exponent of any normal number.

The notion of canonical NaN defined here is unrelated to the notion of canonical NaN that the IEEE 75410 standard
(Section 3.5.2) defines for decimal interchange formats.

Conventions

• The meta variable 𝑧 ranges over floating-point values where clear from context.

2.2.4 Vectors

Numeric vectors are 128-bit values that are processed by vector instructions (also known as SIMD instructions,
single instruction multiple data). They are represented in the abstract syntax using i128 . The interpretation of
lane types (integer or floating-point numbers) and lane sizes are determined by the specific instruction operating
on them.

2.2.5 Names

Names are sequences of characters, which are scalar values as defined by Unicode11 (Section 2.4).

name ::= char* (if |utf8(char*)| < 232)
char ::= U+00 | . . . | U+D7FF | U+E000 | . . . | U+10FFFF

Due to the limitations of the binary format, the length of a name is bounded by the length of its UTF-8 encoding.
10 https://ieeexplore.ieee.org/document/8766229
11 https://www.unicode.org/versions/latest/

8 Chapter 2. Structure

https://ieeexplore.ieee.org/document/8766229
https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Convention

• Characters (Unicode scalar values) are sometimes used interchangeably with natural numbers 𝑛 < 1114112.

2.3 Types

Various entities in WebAssembly are classified by types. Types are checked during validation, instantiation, and
possibly execution.

2.3.1 Number Types

Number types classify numeric values.

numtype ::= i32 | i64 | f32 | f64

The types i32 and i64 classify 32 and 64 bit integers, respectively. Integers are not inherently signed or unsigned,
their interpretation is determined by individual operations.

The types f32 and f64 classify 32 and 64 bit floating-point data, respectively. They correspond to the respective
binary floating-point representations, also known as single and double precision, as defined by the IEEE 75412

standard (Section 3.3).

Number types are transparent, meaning that their bit patterns can be observed. Values of number type can be stored
in memories.

Conventions

• The notation |𝑡| denotes the bit width of a number type 𝑡. That is, |i32| = |f32| = 32 and |i64| = |f64| = 64.

2.3.2 Vector Types

Vector types classify vectors of numeric values processed by vector instructions (also known as SIMD instructions,
single instruction multiple data).

vectype ::= v128

The type v128 corresponds to a 128 bit vector of packed integer or floating-point data. The packed data can be
interpreted as signed or unsigned integers, single or double precision floating-point values, or a single 128 bit type.
The interpretation is determined by individual operations.

Vector types, like number types are transparent, meaning that their bit patterns can be observed. Values of vector
type can be stored in memories.

Conventions

• The notation |𝑡| for bit width extends to vector types as well, that is, |v128| = 128.
12 https://ieeexplore.ieee.org/document/8766229

2.3. Types 9

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.3.3 Heap Types

Heap types classify objects in the runtime store. There are three disjoint hierarchies of heap types:

• function types classify functions,

• aggregate types classify dynamically allocated managed data, such as structures, arrays, or unboxed scalars,

• external types classify external references possibly owned by the embedder.

The values from the latter two hierarchies are interconvertible by ways of the extern.convert_any and
any.convert_extern instructions. That is, both type hierarchies are inhabited by an isomorphic set of values, but
may have different, incompatible representations in practice.

absheaptype ::= func | nofunc
| exn | noexn
| extern | noextern
| any | eq | i31 | struct | array | none

heaptype ::= absheaptype | typeidx

A heap type is either abstract or concrete.

The abstract type func denotes the common supertype of all function types, regardless of their concrete definition.
Dually, the type nofunc denotes the common subtype of all function types, regardless of their concrete definition.
This type has no values.

The abstract type exn denotes the type of all exception references. Dually, the type noexn denotes the common
subtype of all forms of exception references. This type has no values.

The abstract type extern denotes the common supertype of all external references received through the embedder.
This type has no concrete subtypes. Dually, the type noextern denotes the common subtype of all forms of external
references. This type has no values.

The abstract type any denotes the common supertype of all aggregate types, as well as possibly abstract values
produced by internalizing an external reference of type extern. Dually, the type none denotes the common subtype
of all forms of aggregate types. This type has no values.

The abstract type eq is a subtype of any that includes all types for which references can be compared, i.e., aggregate
values and i31.

The abstract types struct and array denote the common supertypes of all structure and array aggregates, respec-
tively.

The abstract type i31 denotes unboxed scalars, that is, integers injected into references. Their observable value
range is limited to 31 bits.

Note: An i31 is not actually allocated in the store, but represented in a way that allows them to be mixed with actual
references into the store without ambiguity. Engines need to perform some form of pointer tagging to achieve this,
which is why 1 bit is reserved.

Although the types none, nofunc, noexn, and noextern are not inhabited by any values, they can be used to form
the types of all null references in their respective hierarchy. For example, (ref null nofunc) is the generic type of a
null reference compatible with all function reference types.

A concrete heap type consists of a type index and classifies an object of the respective type defined in a module.

The syntax of heap types is extended with additional forms for the purpose of specifying validation and execution.

10 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.3.4 Reference Types

Reference types classify values that are first-class references to objects in the runtime store.

reftype ::= ref null? heaptype

A reference type is characterised by the heap type it points to.

In addition, a reference type of the form ref null ht is nullable, meaning that it can either be a proper reference to
ht or null. Other references are non-null.

Reference types are opaque, meaning that neither their size nor their bit pattern can be observed. Values of reference
type can be stored in tables.

Conventions

• The reference type anyref is an abbreviation for ref null any.

• The reference type eqref is an abbreviation for ref null eq.

• The reference type i31ref is an abbreviation for ref null i31.

• The reference type structref is an abbreviation for ref null struct.

• The reference type arrayref is an abbreviation for ref null array.

• The reference type funcref is an abbreviation for ref null func.

• The reference type exnref is an abbreviation for ref null exn.

• The reference type externref is an abbreviation for ref null extern.

• The reference type nullref is an abbreviation for ref null none.

• The reference type nullfuncref is an abbreviation for ref null nofunc.

• The reference type nullexnref is an abbreviation for ref null noexn.

• The reference type nullexternref is an abbreviation for ref null noextern.

2.3.5 Value Types

Value types classify the individual values that WebAssembly code can compute with and the values that a variable
accepts. They are either number types, vector types, or reference types.

valtype ::= numtype | vectype | reftype

The syntax of value types is extended with additional forms for the purpose of specifying validation.

Conventions

• The meta variable 𝑡 ranges over value types or subclasses thereof where clear from context.

2.3. Types 11

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.3.6 Result Types

Result types classify the result of executing instructions or functions, which is a sequence of values, written with
brackets.

resulttype ::= [vec(valtype)]

2.3.7 Function Types

Function types classify the signature of functions, mapping a vector of parameters to a vector of results. They are
also used to classify the inputs and outputs of instructions.

functype ::= resulttype → resulttype

2.3.8 Aggregate Types

Aggregate types describe compound objects consisting of multiple values. These are either structures or arrays,
which both consist of a list of possibly mutable and possibly packed fields. Structures are heterogeneous, but
require static indexing, while arrays need to be homogeneous, but allow dynamic indexing.

structtype ::= fieldtype*

arraytype ::= fieldtype
fieldtype ::= mut storagetype
storagetype ::= valtype | packedtype
packedtype ::= i8 | i16

Conventions

• The notation |𝑡| for bit width extends to packed types as well, that is, |i8| = 8 and |i16| = 16.

2.3.9 Composite Types

Composite types are all types composed from simpler types, including function types and aggregate types.

comptype ::= func functype | struct structtype | array arraytype

2.3.10 Recursive Types

Recursive types denote a group of mutually recursive composite types, each of which can optionally declare a list
of type indices of supertypes that it matches. Each type can also be declared final, preventing further subtyping.

rectype ::= rec subtype*

subtype ::= sub final? typeidx* comptype

In a module, each member of a recursive type is assigned a separate type index.

The syntax of sub types is generalized for the purpose of specifying validation and execution.

12 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.3.11 Limits

Limits classify the size range of resizeable storage associated with memory types and table types.

limits ::= {min u32 ,max u32 ?}

If no maximum is given, the respective storage can grow to any size.

2.3.12 Memory Types

Memory types classify linear memories and their size range.

memtype ::= limits

The limits constrain the minimum and optionally the maximum size of a memory. The limits are given in units of
page size.

2.3.13 Table Types

Table types classify tables over elements of reference type within a size range.

tabletype ::= limits reftype

Like memories, tables are constrained by limits for their minimum and optionally maximum size. The limits are
given in numbers of entries.

2.3.14 Global Types

Global types classify global variables, which hold a value and can either be mutable or immutable.

globaltype ::= mut valtype
mut ::= const | var

2.3.15 Tag Types

Tag types classify the signature of tags with a function type.

tagtype ::= functype

Currently tags are only used for categorizing exceptions. The parameters of functype define the list of values
associated with the exception thrown with this tag. Furthermore, it is an invariant of the semantics that every
functype in a valid tag type for an exception has an empty result type.

Note: Future versions of WebAssembly may have additional uses for tags, and may allow non-empty result types
in the function types of tags.

2.3. Types 13

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.3.16 External Types

External types classify imports and external values with their respective types.

externtype ::= func deftype | table tabletype | mem memtype | global globaltype | tag tagtype

Conventions

The following auxiliary notation is defined for sequences of external types. It filters out entries of a specific kind
in an order-preserving fashion:

• funcs(externtype*) = [deftype | (func deftype) ∈ externtype*]

• tables(externtype*) = [tabletype | (table tabletype) ∈ externtype*]

• mems(externtype*) = [memtype | (mem memtype) ∈ externtype*]

• globals(externtype*) = [globaltype | (global globaltype) ∈ externtype*]

• tags(externtype*) = [tagtype | (tag tagtype) ∈ externtype*]

2.4 Instructions

WebAssembly code consists of sequences of instructions. Its computational model is based on a stack machine
in that instructions manipulate values on an implicit operand stack, consuming (popping) argument values and
producing or returning (pushing) result values.

In addition to dynamic operands from the stack, some instructions also have static immediate arguments, typically
indices or type annotations, which are part of the instruction itself.

Some instructions are structured in that they bracket nested sequences of instructions.

The following sections group instructions into a number of different categories.

2.4.1 Numeric Instructions

Numeric instructions provide basic operations over numeric values of specific type. These operations closely match
respective operations available in hardware.

nn,mm ::= 32 | 64
sx ::= u | s
instr ::= inn.const unn | fnn.const f nn

| inn.iunop | fnn.funop
| inn.ibinop | fnn.fbinop
| inn.itestop
| inn.irelop | fnn.frelop
| inn.extend8_s | inn.extend16_s | i64.extend32_s
| i32.wrap_i64 | i64.extend_i32_sx | inn.trunc_fmm_sx
| inn.trunc_sat_fmm_sx
| f32.demote_f64 | f64.promote_f32 | fnn.convert_imm_sx
| inn.reinterpret_fnn | fnn.reinterpret_inn
| . . .

iunop ::= clz | ctz | popcnt
ibinop ::= add | sub | mul | div_sx | rem_sx

| and | or | xor | shl | shr_sx | rotl | rotr
funop ::= abs | neg | sqrt | ceil | floor | trunc | nearest
fbinop ::= add | sub | mul | div | min | max | copysign
itestop ::= eqz
irelop ::= eq | ne | lt_sx | gt_sx | le_sx | ge_sx
frelop ::= eq | ne | lt | gt | le | ge

14 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Numeric instructions are divided by number type. For each type, several subcategories can be distinguished:

• Constants: return a static constant.

• Unary Operations: consume one operand and produce one result of the respective type.

• Binary Operations: consume two operands and produce one result of the respective type.

• Tests: consume one operand of the respective type and produce a Boolean integer result.

• Comparisons: consume two operands of the respective type and produce a Boolean integer result.

• Conversions: consume a value of one type and produce a result of another (the source type of the conversion
is the one after the “_”).

Some integer instructions come in two flavors, where a signedness annotation sx distinguishes whether the operands
are to be interpreted as unsigned or signed integers. For the other integer instructions, the use of two’s complement
for the signed interpretation means that they behave the same regardless of signedness.

Conventions

Occasionally, it is convenient to group operators together according to the following grammar shorthands:

unop ::= iunop | funop | extend𝑁_s
binop ::= ibinop | fbinop
testop ::= itestop
relop ::= irelop | frelop
cvtop ::= wrap | extend | trunc | trunc_sat | convert | demote | promote | reinterpret

2.4.2 Vector Instructions

Vector instructions (also known as SIMD instructions, single instruction multiple data) provide basic operations
over values of vector type.

ishape ::= i8x16 | i16x8 | i32x4 | i64x2
fshape ::= f32x4 | f64x2
shape ::= ishape | fshape
half ::= low | high
laneidx ::= u8

2.4. Instructions 15

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

instr ::= . . .
| v128.const i128
| v128.vvunop
| v128.vvbinop
| v128.vvternop
| v128.vvtestop
| i8x16.shuffle laneidx 16

| i8x16.swizzle
| shape.splat
| i8x16.extract_lane_sx laneidx | i16x8.extract_lane_sx laneidx
| i32x4.extract_lane laneidx | i64x2.extract_lane laneidx
| fshape.extract_lane laneidx
| shape.replace_lane laneidx
| i8x16.virelop | i16x8.virelop | i32x4.virelop
| i64x2.eq | i64x2.ne | i64x2.lt_s | i64x2.gt_s | i64x2.le_s | i64x2.ge_s
| fshape.vfrelop
| ishape.viunop | i8x16.popcnt
| i16x8.q15mulr_sat_s
| i32x4.dot_i16x8_s
| fshape.vfunop
| ishape.vitestop
| ishape.bitmask
| i8x16.narrow_i16x8_sx | i16x8.narrow_i32x4_sx
| i16x8.extend_half _i8x16_sx | i32x4.extend_half _i16x8_sx
| i64x2.extend_half _i32x4_sx
| ishape.vishiftop
| ishape.vibinop
| i8x16.viminmaxop | i16x8.viminmaxop | i32x4.viminmaxop
| i8x16.visatbinop | i16x8.visatbinop
| i16x8.mul | i32x4.mul | i64x2.mul
| i8x16.avgr_u | i16x8.avgr_u
| i16x8.extmul_half _i8x16_sx | i32x4.extmul_half _i16x8_sx | i64x2.extmul_half _i32x4_sx
| i16x8.extadd_pairwise_i8x16_sx | i32x4.extadd_pairwise_i16x8_sx
| fshape.vfbinop
| i32x4.trunc_sat_f32x4_sx | i32x4.trunc_sat_f64x2_sx_zero
| f32x4.convert_i32x4_sx | f32x4.demote_f64x2_zero
| f64x2.convert_low_i32x4_sx | f64x2.promote_low_f32x4
| . . .

vvunop ::= not
vvbinop ::= and | andnot | or | xor
vvternop ::= bitselect
vvtestop ::= any_true
vitestop ::= all_true
virelop ::= eq | ne | lt_sx | gt_sx | le_sx | ge_sx
vfrelop ::= eq | ne | lt | gt | le | ge
viunop ::= abs | neg
vibinop ::= add | sub
viminmaxop ::= min_sx | max_sx
visatbinop ::= add_sat_sx | sub_sat_sx
vishiftop ::= shl | shr_sx
vfunop ::= abs | neg | sqrt | ceil | floor | trunc | nearest
vfbinop ::= add | sub | mul | div | min | max | pmin | pmax

Vector instructions have a naming convention involving a prefix that determines how their operands will be inter-
preted. This prefix describes the shape of the operand, written 𝑡x𝑁 , and consisting of a packed numeric type 𝑡 and
the number of lanes 𝑁 of that type. Operations are performed point-wise on the values of each lane.

Note: For example, the shape i32x4 interprets the operand as four i32 values, packed into an i128 . The bit width

16 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

of the numeric type 𝑡 times 𝑁 always is 128.

Instructions prefixed with v128 do not involve a specific interpretation, and treat the v128 as an i128 value or a
vector of 128 individual bits.

Vector instructions can be grouped into several subcategories:

• Constants: return a static constant.

• Unary Operations: consume one v128 operand and produce one v128 result.

• Binary Operations: consume two v128 operands and produce one v128 result.

• Ternary Operations: consume three v128 operands and produce one v128 result.

• Tests: consume one v128 operand and produce a Boolean integer result.

• Shifts: consume a v128 operand and a i32 operand, producing one v128 result.

• Splats: consume a value of numeric type and produce a v128 result of a specified shape.

• Extract lanes: consume a v128 operand and return the numeric value in a given lane.

• Replace lanes: consume a v128 operand and a numeric value for a given lane, and produce a v128 result.

Some vector instructions have a signedness annotation sx which distinguishes whether the elements in the operands
are to be interpreted as unsigned or signed integers. For the other vector instructions, the use of two’s complement
for the signed interpretation means that they behave the same regardless of signedness.

Conventions

Occasionally, it is convenient to group operators together according to the following grammar shorthands:

vunop ::= viunop | vfunop | popcnt
vbinop ::= vibinop | vfbinop

| viminmaxop | visatbinop
| mul | avgr_u | q15mulr_sat_s

vtestop ::= vitestop
vrelop ::= virelop | vfrelop
vcvtop ::= extend | trunc_sat | convert | demote | promote

2.4.3 Reference Instructions

Instructions in this group are concerned with accessing references.

instr ::= . . .
| ref.null heaptype
| ref.func funcidx
| ref.is_null
| ref.as_non_null
| ref.eq
| ref.test reftype
| ref.cast reftype

The ref.null and ref.func instructions produce a null value or a reference to a given function, respectively.

The instruction ref.is_null checks for null, while ref.as_non_null converts a nullable to a non-null one, and traps
if it encounters null.

The ref.eq compares two references.

The instructions ref.test and ref.cast test the dynamic type of a reference operand. The former merely returns the
result of the test, while the latter performs a downcast and traps if the operand’s type does not match.

2.4. Instructions 17

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Note: The br_on_cast and br_on_cast_fail instructions provides versions of the latter that branch depending on
the success of the downcast instead of trapping.

2.4.4 Aggregate Instructions

Instructions in this group are concerned with creating and accessing references to aggregate types.

instr ::= . . .
| struct.new typeidx
| struct.new_default typeidx
| struct.get typeidx fieldidx
| struct.get_sx typeidx fieldidx
| struct.set typeidx fieldidx
| array.new typeidx
| array.new_fixed typeidx u32
| array.new_default typeidx
| array.new_data typeidx dataidx
| array.new_elem typeidx elemidx
| array.get typeidx
| array.get_sx typeidx
| array.set typeidx
| array.len
| array.fill typeidx
| array.copy typeidx typeidx
| array.init_data typeidx dataidx
| array.init_elem typeidx elemidx
| ref.i31
| i31.get_sx
| any.convert_extern
| extern.convert_any

The instructions struct.new and struct.new_default allocate a new structure, initializing them either with operands
or with default values. The remaining instructions on structs access individual fields, allowing for different sign
extension modes in the case of packed storage types.

Similarly, arrays can be allocated either with an explicit initialization operand or a default value. Furthermore,
array.new_fixed allocates an array with statically fixed size, and array.new_data and array.new_elem allocate
an array and initialize it from a data or element segment, respectively. array.get, array.get_s, array.get_u, and
array.set access individual slots, again allowing for different sign extension modes in the case of a packed storage
type. array.len produces the length of an array. array.fill fills a specified slice of an array with a given value and
array.copy, array.init_data, and array.init_elem copy elements to a specified slice of an array from a given array,
data segment, or element segment, respectively.

The instructions ref.i31 and i31.get_sx convert between type i31 and an unboxed scalar.

The instructions any.convert_extern and extern.convert_any allow lossless conversion between references repre-
sented as type (ref null extern).

18 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.4.5 Parametric Instructions

Instructions in this group can operate on operands of any value type.

instr ::= . . .
| drop
| select (valtype*)?

The drop instruction simply throws away a single operand.

The select instruction selects one of its first two operands based on whether its third operand is zero or not. It may
include a value type determining the type of these operands. If missing, the operands must be of numeric type.

Note: In future versions of WebAssembly, the type annotation on select may allow for more than a single value
being selected at the same time.

2.4.6 Variable Instructions

Variable instructions are concerned with access to local or global variables.

instr ::= . . .
| local.get localidx
| local.set localidx
| local.tee localidx
| global.get globalidx
| global.set globalidx

These instructions get or set the values of variables, respectively. The local.tee instruction is like local.set but also
returns its argument.

2.4.7 Table Instructions

Instructions in this group are concerned with tables table.

instr ::= . . .
| table.get tableidx
| table.set tableidx
| table.size tableidx
| table.grow tableidx
| table.fill tableidx
| table.copy tableidx tableidx
| table.init tableidx elemidx
| elem.drop elemidx

The table.get and table.set instructions load or store an element in a table, respectively.

The table.size instruction returns the current size of a table. The table.grow instruction grows table by a given
delta and returns the previous size, or −1 if enough space cannot be allocated. It also takes an initialization value
for the newly allocated entries.

The table.fill instruction sets all entries in a range to a given value.

The table.copy instruction copies elements from a source table region to a possibly overlapping destination region;
the first index denotes the destination. The table.init instruction copies elements from a passive element segment
into a table. The elem.drop instruction prevents further use of a passive element segment. This instruction is
intended to be used as an optimization hint. After an element segment is dropped its elements can no longer be
retrieved, so the memory used by this segment may be freed.

An additional instruction that accesses a table is the control instruction call_indirect.

2.4. Instructions 19

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.4.8 Memory Instructions

Instructions in this group are concerned with linear memory.

memarg ::= {offset u32 , align u32}
ww ::= 8 | 16 | 32 | 64
instr ::= . . .

| inn.load memidx memarg | fnn.load memidx memarg
| v128.load memidx memarg
| inn.store memidx memarg | fnn.store memidx memarg
| v128.store memidx memarg
| inn.load8_sx memidx memarg | inn.load16_sx memidx memarg | i64.load32_sx memidx memarg
| v128.load8x8_sx memidx memarg | v128.load16x4_sx memidx memarg | v128.load32x2_sx memidx memarg
| v128.load32_zero memidx memarg | v128.load64_zero memidx memarg
| v128.loadww_splat memidx memarg
| v128.loadww_lane memidx memarg laneidx | inn.store8 memidx memarg | inn.store16 memidx memarg | i64.store32 memidx memarg
| v128.storeww_lane memidx memarg laneidx
| memory.size memidx
| memory.grow memidx
| memory.fill memidx
| memory.copy memidx memidx
| memory.init memidx dataidx
| data.drop dataidx

Memory is accessed with load and store instructions for the different number types and vector types <syntax-
vectype>. They all take a memory index and a memory immediate memarg that contains an address offset and the
expected alignment (expressed as the exponent of a power of 2).

Integer loads and stores can optionally specify a storage size that is smaller than the bit width of the respective
value type. In the case of loads, a sign extension mode sx is then required to select appropriate behavior.

Vector loads can specify a shape that is half the bit width of v128. Each lane is half its usual size, and the sign
extension mode sx then specifies how the smaller lane is extended to the larger lane. Alternatively, vector loads
can perform a splat, such that only a single lane of the specified storage size is loaded, and the result is duplicated
to all lanes.

The static address offset is added to the dynamic address operand, yielding a 33 bit effective address that is the
zero-based index at which the memory is accessed. All values are read and written in little endian13 byte order. A
trap results if any of the accessed memory bytes lies outside the address range implied by the memory’s current
size.

Note: Future versions of WebAssembly might provide memory instructions with 64 bit address ranges.

The memory.size instruction returns the current size of a memory. The memory.grow instruction grows a memory
by a given delta and returns the previous size, or −1 if enough memory cannot be allocated. Both instructions
operate in units of page size. The memory.fill instruction sets all values in a region of a memory to a given byte.
Thememory.copy instruction copies data from a source memory region to a possibly overlapping destination region
in another or the same memory; the first index denotes the destination. The memory.init instruction copies data
from a passive data segment into a memory. The data.drop instruction prevents further use of a passive data
segment. This instruction is intended to be used as an optimization hint. After a data segment is dropped its data
can no longer be retrieved, so the memory used by this segment may be freed.

13 https://en.wikipedia.org/wiki/Endianness#Little-endian

20 Chapter 2. Structure

https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.4.9 Control Instructions

Instructions in this group affect the flow of control.

blocktype ::= typeidx | valtype?
instr ::= . . .

| nop
| unreachable
| block blocktype instr* end
| loop blocktype instr* end
| if blocktype instr* else instr* end
| br labelidx
| br_if labelidx
| br_table vec(labelidx) labelidx
| br_on_null labelidx
| br_on_non_null labelidx
| br_on_cast labelidx reftype reftype
| br_on_cast_fail labelidx reftype reftype
| return
| call funcidx
| call_ref typeidx
| call_indirect tableidx typeidx
| return_call funcidx
| return_call_ref funcidx
| return_call_indirect tableidx typeidx
| throw tagidx
| throw_ref
| try_table blocktype catch* instr* end

catch ::= catch tagidx labelidx
| catch_ref tagidx labelidx
| catch_all labelidx
| catch_all_ref labelidx

The nop instruction does nothing.

The unreachable instruction causes an unconditional trap.

The block, loop, if, and try_table instructions are structured instructions. They bracket nested sequences of in-
structions, called blocks, separated by the else pseudo-instruction, and terminated with an end pseudo-instruction.
As the grammar prescribes, they must be well-nested.

The instructions throw, throw_ref, and try_table are concerned with exceptions. The try_table instruction installs
an exception handler that handles exceptions as specified by its catch clauses.. The throw and throw_ref instruc-
tions raise and reraise an exception, respectively, and transfers control to the innermost enclosing exception handler
that has a matching catch clause.

A structured instruction can consume input and produce output on the operand stack according to its annotated
block type. It is given either as a type index that refers to a suitable function type reinterpreted as an instruction
type, or as an optional value type inline, which is a shorthand for the instruction type [] → [valtype?].

Each structured control instruction introduces an implicit label. Labels are targets for branch instructions that
reference them with label indices. Unlike with other index spaces, indexing of labels is relative by nesting depth,
that is, label 0 refers to the innermost structured control instruction enclosing the referring branch instruction, while
increasing indices refer to those farther out. Consequently, labels can only be referenced from within the associated
structured control instruction. This also implies that branches can only be directed outwards, “breaking” from the
block of the control construct they target. The exact effect depends on that control construct. In case of block or
if it is a forward jump, resuming execution after the matching end. In case of loop it is a backward jump to the
beginning of the loop.

Note: This enforces structured control flow. Intuitively, a branch targeting a block or if behaves like a break

2.4. Instructions 21

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

statement in most C-like languages, while a branch targeting a loop behaves like a continue statement.

Branch instructions come in several flavors: br performs an unconditional branch, br_if performs a conditional
branch, and br_table performs an indirect branch through an operand indexing into the label vector that is an im-
mediate to the instruction, or to a default target if the operand is out of bounds. The br_on_null and br_on_non_null
instructions check whether a reference operand is null and branch if that is the case or not the case, respectively.
Similarly, br_on_cast and br_on_cast_fail attempt a downcast on a reference operand and branch if that succeeds,
or fails, respectively.

The return instruction is a shortcut for an unconditional branch to the outermost block, which implicitly is the body
of the current function. Taking a branch unwinds the operand stack up to the height where the targeted structured
control instruction was entered. However, branches may additionally consume operands themselves, which they
push back on the operand stack after unwinding. Forward branches require operands according to the output of
the targeted block’s type, i.e., represent the values produced by the terminated block. Backward branches require
operands according to the input of the targeted block’s type, i.e., represent the values consumed by the restarted
block.

The call instruction invokes another function, consuming the necessary arguments from the stack and returning
the result values of the call. The call_ref instruction invokes a function indirectly through a function reference
operand. The call_indirect instruction calls a function indirectly through an operand indexing into a table that is
denoted by a table index and must contain function references. Since it may contain functions of heterogeneous
type, the callee is dynamically checked against the function type indexed by the instruction’s second immediate,
and the call is aborted with a trap if it does not match.

The return_call, return_call_ref, and return_call_indirect instructions are tail-call variants of the previous ones.
That is, they first return from the current function before actually performing the respective call. It is guaranteed
that no sequence of nested calls using only these instructions can cause resource exhaustion due to hitting an
implementation’s limit on the number of active calls.

2.4.10 Expressions

Function bodies, initialization values for globals, elements and offsets of element segments, and offsets of data
segments are given as expressions, which are sequences of instructions terminated by an end marker.

expr ::= instr* end

In some places, validation restricts expressions to be constant, which limits the set of allowable instructions.

2.5 Modules

WebAssembly programs are organized into modules, which are the unit of deployment, loading, and compilation.
A module collects definitions for types, functions, tables, memories, tags, and globals. In addition, it can declare
imports and exports and provide initialization in the form of data and element segments, or a start function.

module ::= { types vec(rectype),
funcs vec(func),
tables vec(table),
mems vec(mem),
globals vec(global),
tags vec(tag),
elems vec(elem),
datas vec(data),
start start?,
imports vec(import),
exports vec(export) }

Each of the vectors – and thus the entire module – may be empty.

22 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.5.1 Indices

Definitions are referenced with zero-based indices. Each class of definition has its own index space, as distinguished
by the following classes.

typeidx ::= u32
funcidx ::= u32
tableidx ::= u32
memidx ::= u32
globalidx ::= u32
tagidx ::= u32
elemidx ::= u32
dataidx ::= u32
localidx ::= u32
labelidx ::= u32
fieldidx ::= u32

The index space for functions, tables, memories, globals, and tags includes respective imports declared in the same
module. The indices of these imports precede the indices of other definitions in the same index space.

Element indices reference element segments and data indices reference data segments.

The index space for locals is only accessible inside a function and includes the parameters of that function, which
precede the local variables.

Label indices reference structured control instructions inside an instruction sequence.

Each aggregate type provides an index space for its fields.

Conventions

• The meta variable 𝑙 ranges over label indices.

• The meta variables 𝑥, 𝑦 range over indices in any of the other index spaces.

• The notation idx(𝐴) denotes the set of indices from index space idx occurring free in 𝐴. Sometimes this
set is reinterpreted as the vector of its elements.

Note: For example, if instr* is (data.drop 𝑥)(memory.init 𝑦), then dataidx(instr*) = {𝑥, 𝑦}, or equivalently,
the vector 𝑥 𝑦.

2.5.2 Types

The types component of a module defines a vector of recursive types, each of consisting of a list of sub types
referenced by individual type indices. All function or aggregate types used in a module must be defined in this
component.

2.5.3 Functions

The funcs component of a module defines a vector of functions with the following structure:

func ::= {type typeidx , locals vec(local), body expr}
local ::= {type valtype}

The type of a function declares its signature by reference to a type defined in the module. The parameters of the
function are referenced through 0-based local indices in the function’s body; they are mutable.

The locals declare a vector of mutable local variables and their types. These variables are referenced through local
indices in the function’s body. The index of the first local is the smallest index not referencing a parameter.

2.5. Modules 23

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

The body is an instruction sequence that upon termination must produce a stack matching the function type’s result
type.

Functions are referenced through function indices, starting with the smallest index not referencing a function im-
port.

2.5.4 Tables

The tables component of a module defines a vector of tables described by their table type:

table ::= {type tabletype, init expr}

A table is an array of opaque values of a particular reference type. Moreover, each table slot is initialized with the
init value given by a constant initializer expression. Tables can further be initialized through element segments.

The min size in the limits of the table type specifies the initial size of that table, while its max, if present, restricts
the size to which it can grow later.

Tables are referenced through table indices, starting with the smallest index not referencing a table import. Most
constructs implicitly reference table index 0.

2.5.5 Memories

The mems component of a module defines a vector of linear memories (or memories for short) as described by
their memory type:

mem ::= {type memtype}

A memory is a vector of raw uninterpreted bytes. The min size in the limits of the memory type specifies the initial
size of that memory, while its max, if present, restricts the size to which it can grow later. Both are in units of page
size.

Memories can be initialized through data segments.

Memories are referenced through memory indices, starting with the smallest index not referencing a memory
import. Most constructs implicitly reference memory index 0.

2.5.6 Globals

The globals component of a module defines a vector of global variables (or globals for short):

global ::= {type globaltype, init expr}

Each global stores a single value of the given global type. Its type also specifies whether a global is immutable or
mutable. Moreover, each global is initialized with an init value given by a constant initializer expression.

Globals are referenced through global indices, starting with the smallest index not referencing a global import.

2.5.7 Tags

The tags component of a module defines a vector of tags with the following structure.

tag ::= {type typeidx}

The result type of the function signature with type index typeidx must be empty.

Tags are referenced through tag indices, starting with the smallest index not referencing a tag import.

24 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.5.8 Element Segments

The initial contents of a table is uninitialized. Element segments can be used to initialize a subrange of a table from
a static vector of elements.

The elems component of a module defines a vector of element segments. Each element segment defines a reference
type and a corresponding list of constant element expressions.

Element segments have a mode that identifies them as either passive, active, or declarative. A passive element
segment’s elements can be copied to a table using the table.init instruction. An active element segment copies its
elements into a table during instantiation, as specified by a table index and a constant expression defining an offset
into that table. A declarative element segment is not available at runtime but merely serves to forward-declare
references that are formed in code with instructions like ref.func.

elem ::= {type reftype, init vec(expr),mode elemmode}
elemmode ::= passive

| active {table tableidx , offset expr}
| declarative

The offset is given by a constant expression.

Element segments are referenced through element indices.

2.5.9 Data Segments

The initial contents of a memory are zero bytes. Data segments can be used to initialize a range of memory from
a static vector of bytes.

The datas component of a module defines a vector of data segments.

Like element segments, data segments have a mode that identifies them as either passive or active. A passive data
segment’s contents can be copied into a memory using the memory.init instruction. An active data segment copies
its contents into a memory during instantiation, as specified by a memory index and a constant expression defining
an offset into that memory.

data ::= {init vec(byte),mode datamode}
datamode ::= passive

| active {memory memidx , offset expr}

Data segments are referenced through data indices.

Note: In the current version of WebAssembly, at most one memory is allowed in a module. Consequently, the
only valid memidx is 0.

2.5.10 Start Function

The start component of a module declares the function index of a start function that is automatically invoked when
the module is instantiated, after tables and memories have been initialized.

start ::= {func funcidx}

Note: The start function is intended for initializing the state of a module. The module and its exports are not
accessible externally before this initialization has completed.

2.5. Modules 25

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

2.5.11 Exports

The exports component of a module defines a set of exports that become accessible to the host environment once
the module has been instantiated.

export ::= {name name, desc exportdesc}
exportdesc ::= func funcidx

| table tableidx
| mem memidx
| global globalidx
| tag tagidx

Each export is labeled by a unique name. Exportable definitions are functions, tables, memories, globals, and tags,
which are referenced through a respective descriptor.

Conventions

The following auxiliary notation is defined for sequences of exports, filtering out indices of a specific kind in an
order-preserving fashion:

• funcs(export*) = [funcidx | func funcidx ∈ (export .desc)*]

• tables(export*) = [tableidx | table tableidx ∈ (export .desc)*]

• mems(export*) = [memidx | mem memidx ∈ (export .desc)*]

• globals(export*) = [globalidx | global globalidx ∈ (export .desc)*]

• tags(export*) = [tagidx | tag tagidx ∈ (export .desc)*]

2.5.12 Imports

The imports component of a module defines a set of imports that are required for instantiation.

import ::= {module name, name name, desc importdesc}
importdesc ::= func typeidx

| table tabletype
| mem memtype
| global globaltype
| tag tagtype

Each import is labeled by a two-level name space, consisting of a module name and a name for an entity within
that module. Importable definitions are functions, tables, memories, globals, and tags. Each import is specified by
a descriptor with a respective type that a definition provided during instantiation is required to match.

Every import defines an index in the respective index space. In each index space, the indices of imports go before
the first index of any definition contained in the module itself.

Note: Unlike export names, import names are not necessarily unique. It is possible to import the same
module/name pair multiple times; such imports may even have different type descriptions, including different
kinds of entities. A module with such imports can still be instantiated depending on the specifics of how an em-
bedder allows resolving and supplying imports. However, embedders are not required to support such overloading,
and a WebAssembly module itself cannot implement an overloaded name.

26 Chapter 2. Structure

CHAPTER 3

Validation

3.1 Conventions

Validation checks that a WebAssembly module is well-formed. Only valid modules can be instantiated.

Validity is defined by a type system over the abstract syntax of a module and its contents. For each piece of abstract
syntax, there is a typing rule that specifies the constraints that apply to it. All rules are given in two equivalent
forms:

1. In prose, describing the meaning in intuitive form.

2. In formal notation, describing the rule in mathematical form.14

Note: The prose and formal rules are equivalent, so that understanding of the formal notation is not required to read
this specification. The formalism offers a more concise description in notation that is used widely in programming
languages semantics and is readily amenable to mathematical proof.

In both cases, the rules are formulated in a declarative manner. That is, they only formulate the constraints, they do
not define an algorithm. The skeleton of a sound and complete algorithm for type-checking instruction sequences
according to this specification is provided in the appendix.

3.1.1 Types

To define the semantics, the definition of some sorts of types is extended to include additional forms. By virtue
of not being representable in either the binary format or the text format, these forms cannot be used in a program;
they only occur during validation or execution.

valtype ::= . . . | bot
absheaptype ::= . . . | bot
heaptype ::= . . . | deftype | rec 𝑖
subtype ::= sub final? heaptype* comptype

14 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan Gohman, Luke
Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly15. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

15 https://dl.acm.org/citation.cfm?doid=3062341.3062363

27

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

The unique value type bot is a bottom type that matches all value types. Similarly, bot is also used as a bottom
type of all heap types.

Note: No validation rule uses bottom types explicitly, but various rules can pick any value or heap type, including
bottom. This ensures the existence of principal types, and thus a validation algorithm without back tracking.

A concrete heap type can consist of a defined type directly. this occurs as the result of substituting a type index
with its definition.

A concrete heap type may also be a recursive type index. Such an index refers to the 𝑖-th component of a surrounding
recursive type. It occurs as the result of rolling up the definition of a recursive type.

Finally, the representation of supertypes in a sub type is generalized from mere type indices to heap types. They
occur as defined types or recursive type indices after substituting type indices or rolling up recursive types.

Note: It is an invariant of the semantics that sub types occur only in one of two forms: either as “syntactic” types
as in a source module, where all supertypes are type indices, or as “semantic” types, where all supertypes are
resolved to either defined types or recursive type indices.

A type of any form is closed when it does not contain a heap type that is a type index or a recursive type index
without a surrounding recursive type, i.e., all type indices have been substituted with their defined type and all free
recursive type indices have been unrolled.

Note: Recursive type indices are internal to a recursive type. They are distinguished from regular type indices and
represented such that two closed types are syntactically equal if and only if they have the same recursive structure.

Convention

• The difference rt1 ∖ rt2 between two reference types is defined as follows:

(ref null?1 ht1) ∖ (ref null ht2) = (ref ht1)
(ref null?1 ht1) ∖ (ref ht2) = (ref null?1 ht1)

Note: This definition computes an approximation of the reference type that is inhabited by all values from rt1
except those from rt2. Since the type system does not have general union types, the defnition only affects the
presence of null and cannot express the absence of other values.

3.1.2 Defined Types

Defined types denote the individual types defined in a module. Each such type is represented as a projection from
the recursive type group it originates from, indexed by its position in that group.

deftype ::= rectype.𝑖

Defined types do not occur in the binary or text format, but are formed by rolling up the recursive types defined in
a module.

It is hence an invariant of the semantics that all recursive types occurring in defined types are rolled up.

28 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Conventions

• 𝑡[𝑥* := dt*] denotes the parallel substitution of type indices 𝑥* with defined types dt* in type 𝑡, provided
|𝑥*| = |dt*|.

• 𝑡[(rec 𝑖)* := dt*] denotes the parallel substitution of recursive type indices (rec 𝑖)* with defined types dt*
in type 𝑡, provided |(rec 𝑖)*| = |dt*|.

• 𝑡[:= dt*] is shorthand for the substitution 𝑡[𝑥* := dt*], where 𝑥* = 0 · · · (|dt*| − 1).

3.1.3 Rolling and Unrolling

In order to allow comparing recursive types for equivalence, their representation is changed such that all type
indices internal to the same recursive type are replaced by recursive type indices.

Note: This representation is independent of the type index space, so that it is meaningful across module bound-
aries. Moreover, this representation ensures that types with equivalent recursive structure are also syntactically
equal, hence allowing a simple equality check on (closed) types. It gives rise to an iso-recursive interpretation of
types.

The representation change is performed by two auxiliary operations on the syntax of recursive types:

• Rolling up a recursive type substitutes its internal type indices with corresponding recursive type indices.

• Unrolling a recursive type substitutes its recursive type indices with the corresponding defined types.

These operations are extended to defined types and defined as follows:

roll𝑥(rec subtype
) = rec (subtype[(𝑥+ 𝑖) := (rec 𝑖)*])* (if 𝑖* = 0 · · · (|subtype*| − 1))

unroll(rec subtype*) = rec (subtype[(rec 𝑖)* := ((rec subtype*).𝑖)*])* (if 𝑖* = 0 · · · (|subtype*| − 1))

roll*𝑥(rectype) = ((rec subtype*).𝑖)* (if 𝑖* = 0 · · · (|subtype*| − 1)
∧ roll𝑥(rectype) = rec subtype*)

unroll(rectype.𝑖) = subtype*[𝑖] (if unroll(rectype) = rec subtype*)

In addition, the following auxiliary function denotes the expansion of a defined type:

expand(deftype) = comptype (if unroll(deftype) = sub final? ht* comptype)

3.1.4 Instruction Types

Instruction types classify the behaviour of instructions or instruction sequences, by describing how they manipulate
the operand stack and the initialization status of locals:

instrtype ::= resulttype →localidx* resulttype

An instruction type [𝑡*1] →𝑥* [𝑡*2] describes the required input stack with argument values of types 𝑡*1 that an
instruction pops off and the provided output stack with result values of types 𝑡*2 that it pushes back. Moreover, it
enumerates the indices 𝑥* of locals that have been set by the instruction or sequence.

Note: Instruction types are only used for validation, they do not occur in programs.

3.1. Conventions 29

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.1.5 Local Types

Local types classify locals, by describing their value type as well as their initialization status:

init ::= set | unset
localtype ::= init valtype

Note: Local types are only used for validation, they do not occur in programs.

3.1.6 Contexts

Validity of an individual definition is specified relative to a context, which collects relevant information about the
surrounding module and the definitions in scope:

• Types: the list of types defined in the current module.

• Functions: the list of functions declared in the current module, represented by a defined type that expands
to their function type.

• Tables: the list of tables declared in the current module, represented by their table type.

• Memories: the list of memories declared in the current module, represented by their memory type.

• Globals: the list of globals declared in the current module, represented by their global type.

• Tags: the list of tags declared in the current module, represented by their tag type.

• Element Segments: the list of element segments declared in the current module, represented by the elements’
reference type.

• Data Segments: the list of data segments declared in the current module, each represented by an ok entry.

• Locals: the list of locals declared in the current function (including parameters), represented by their local
type.

• Labels: the stack of labels accessible from the current position, represented by their result type.

• Return: the return type of the current function, represented as an optional result type that is absent when no
return is allowed, as in free-standing expressions.

• References: the list of function indices that occur in the module outside functions and can hence be used to
form references inside them.

In other words, a context contains a sequence of suitable types for each index space, describing each defined entry
in that space. Locals, labels and return type are only used for validating instructions in function bodies, and are
left empty elsewhere. The label stack is the only part of the context that changes as validation of an instruction
sequence proceeds.

More concretely, contexts are defined as records 𝐶 with abstract syntax:

𝐶 ::= { types deftype*,
funcs deftype*,
tables tabletype*,
mems memtype*,
globals globaltype*,
tags tagtype*,
elems reftype*,
datas ok*,
locals localtype*,
labels resulttype*,
return resulttype?,
refs funcidx* }

In addition to field access written 𝐶.field the following notation is adopted for manipulating contexts:

30 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

• When spelling out a context, empty fields are omitted.

• 𝐶, field𝐴* denotes the same context as 𝐶 but with the elements 𝐴* prepended to its field component se-
quence.

Note: Indexing notation like 𝐶.labels[𝑖] is used to look up indices in their respective index space in the context.
Context extension notation 𝐶, field𝐴 is primarily used to locally extend relative index spaces, such as label indices.
Accordingly, the notation is defined to append at the front of the respective sequence, introducing a new relative
index 0 and shifting the existing ones.

Convention

Any form of type can be closed to bring it into closed form relative to a context it is valid in by substituting each
type index 𝑥 occurring in it with the corresponding defined type 𝐶.types[𝑥], after first closing the the types in
𝐶.types themselves.

clos𝐶(𝑡) = 𝑡[:= clos*(𝐶.types)]

clos*(𝜖) = 𝜖

clos*(dt* dt𝑁) = dt ′
*
dt𝑁 [:= dt ′

*
] (if dt ′* = clos*(dt*))

3.1.7 Prose Notation

Validation is specified by stylised rules for each relevant part of the abstract syntax. The rules not only state
constraints defining when a phrase is valid, they also classify it with a type. The following conventions are adopted
in stating these rules.

• A phrase 𝐴 is said to be “valid with type 𝑇 ” if and only if all constraints expressed by the respective rules
are met. The form of 𝑇 depends on what 𝐴 is.

Note: For example, if 𝐴 is a function, then 𝑇 is a function type; for an 𝐴 that is a global, 𝑇 is a global type;
and so on.

• The rules implicitly assume a given context 𝐶.

• In some places, this context is locally extended to a context 𝐶 ′ with additional entries. The formulation
“Under context 𝐶 ′, . . . statement . . . ” is adopted to express that the following statement must apply under
the assumptions embodied in the extended context.

3.1.8 Formal Notation

Note: This section gives a brief explanation of the notation for specifying typing rules formally. For the interested
reader, a more thorough introduction can be found in respective text books.16

The proposition that a phrase 𝐴 has a respective type 𝑇 is written 𝐴 : 𝑇 . In general, however, typing is dependent
on a context 𝐶. To express this explicitly, the complete form is a judgement 𝐶 ⊢ 𝐴 : 𝑇 , which says that 𝐴 : 𝑇
holds under the assumptions encoded in 𝐶.

The formal typing rules use a standard approach for specifying type systems, rendering them into deduction rules.
Every rule has the following general form:

premise1 premise2 . . . premise𝑛
conclusion

16 For example: Benjamin Pierce. Types and Programming LanguagesPage 31, 17. The MIT Press 2002
17 https://www.cis.upenn.edu/~bcpierce/tapl/

3.1. Conventions 31

https://www.cis.upenn.edu/~bcpierce/tapl/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Such a rule is read as a big implication: if all premises hold, then the conclusion holds. Some rules have no
premises; they are axioms whose conclusion holds unconditionally. The conclusion always is a judgment 𝐶 ⊢ 𝐴 :
𝑇 , and there is one respective rule for each relevant construct 𝐴 of the abstract syntax.

Note: For example, the typing rule for the i32.add instruction can be given as an axiom:

𝐶 ⊢ i32.add : [i32 i32] → [i32]

The instruction is always valid with type [i32 i32] → [i32] (saying that it consumes two i32 values and produces
one), independent of any side conditions.

An instruction like local.get can be typed as follows:

𝐶.globals[𝑥] = mut 𝑡

𝐶 ⊢ global.get 𝑥 : [] → [𝑡]

Here, the premise enforces that the immediate global index 𝑥 exists in the context. The instruction produces a value
of its respective type 𝑡 (and does not consume any values). If 𝐶.globals[𝑥] does not exist then the premise does not
hold, and the instruction is ill-typed.

Finally, a structured instruction requires a recursive rule, where the premise is itself a typing judgement:

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, label [𝑡*2] ⊢ instr* : [𝑡*1] → [𝑡*2]

𝐶 ⊢ block blocktype instr* end : [𝑡*1] → [𝑡*2]

A block instruction is only valid when the instruction sequence in its body is. Moreover, the result type must match
the block’s annotation blocktype. If so, then the block instruction has the same type as the body. Inside the body an
additional label of the corresponding result type is available, which is expressed by extending the context 𝐶 with
the additional label information for the premise.

3.2 Types

Simple types, such as number types are universally valid. However, restrictions apply to most other types, such
as reference types, function types, as well as the limits of table types and memory types, which must be checked
during validation.

Moreover, block types are converted to plain function types for ease of processing.

3.2.1 Number Types

Number types are always valid.

𝐶 ⊢ numtype ok

3.2.2 Vector Types

Vector types are always valid.

𝐶 ⊢ vectype ok

32 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.2.3 Heap Types

Concrete Heap types are only valid when the type index is.

absheaptype

• The heap type is valid.

𝐶 ⊢ absheaptype ok

typeidx

• The type 𝐶.types[typeidx] must be defined in the context.

• Then the heap type is valid.
𝐶.types[typeidx] = deftype

𝐶 ⊢ typeidx ok

3.2.4 Reference Types

Reference types are valid when the referenced heap type is.

ref null? heaptype

• The heap type heaptype must be valid.

• Then the reference type is valid.
𝐶 ⊢ heaptype ok

𝐶 ⊢ ref null? heaptype ok

3.2.5 Value Types

Valid value types are either valid number types, valid vector types, or valid reference types.

3.2.6 Block Types

Block types may be expressed in one of two forms, both of which are converted to instruction types by the following
rules.

typeidx

• The type 𝐶.types[typeidx] must be defined in the context.

• The expansion of 𝐶.funcs[typeidx] must be a function type func [𝑡*1] → [𝑡*2].

• Then the block type is valid as instruction type [𝑡*1] → [𝑡*2].

expand(𝐶.types[typeidx]) = func [𝑡*1] → [𝑡*2]

𝐶 ⊢ typeidx : [𝑡*1] → [𝑡*2]

3.2. Types 33

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

[valtype?]

• The value type valtype must either be absent, or valid.

• Then the block type is valid as instruction type [] → [valtype?].

(𝐶 ⊢ valtype ok)?

𝐶 ⊢ [valtype?] : [] → [valtype?]

3.2.7 Result Types

[𝑡*]

• Each value type 𝑡𝑖 in the type sequence 𝑡* must be valid.

• Then the result type is valid.
(𝐶 ⊢ 𝑡 ok)*

𝐶 ⊢ [𝑡*] ok

3.2.8 Instruction Types

[𝑡*1] →𝑥* [𝑡*2]

• The result type [𝑡*1] must be valid.

• The result type [𝑡*2] must be valid.

• Each local index 𝑥𝑖 in 𝑥* must be defined in the context.

• Then the instruction type is valid.
𝐶 ⊢ [𝑡*1] ok 𝐶 ⊢ [𝑡*2] ok (𝐶.locals[𝑥] = localtype)*

𝐶 ⊢ [𝑡*1] →𝑥* [𝑡*2] ok

3.2.9 Function Types

[𝑡*1] → [𝑡*2]

• The result type [𝑡*1] must be valid.

• The result type [𝑡*2] must be valid.

• Then the function type is valid.
𝐶 ⊢ [𝑡*1] ok 𝐶 ⊢ [𝑡*2] ok

𝐶 ⊢ [𝑡*1] → [𝑡*2] ok

34 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.2.10 Composite Types

func functype

• The function type functype must be valid.

• Then the composite type is valid.
𝐶 ⊢ functype ok

𝐶 ⊢ func functype ok

struct fieldtype*

• For each field type fieldtype𝑖 in fieldtype*:

– The field type fieldtype𝑖 must be valid.

• Then the composite type is valid.
(𝐶 ⊢ ft ok)*

𝐶 ⊢ struct ft* ok

array fieldtype

• The field type fieldtype must be valid.

• Then the composite type is valid.
𝐶 ⊢ ft ok

𝐶 ⊢ array ft ok

3.2.11 Field Types

mut storagetype

• The storage type storagetype must be valid.

• Then the field type is valid.
𝐶 ⊢ st ok

𝐶 ⊢ mut st ok

packedtype

• The packed type is valid.

𝐶 ⊢ packedtype ok

3.2. Types 35

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.2.12 Recursive Types

Recursive types are validated for a specific type index that denotes the index of the type defined by the recursive
group.

rec subtype*

• Either the sequence subtype* is empty.

• Or:

– The first sub type of the sequence subtype* must be valid for the type index 𝑥.

– The remaining sequence subtype* must be valid for the type index 𝑥+ 1.

• Then the recursive type is valid for the type index 𝑥.

𝐶 ⊢ rec 𝜖 ok(𝑥)
𝐶 ⊢ subtype ok(𝑥) 𝐶 ⊢ rec subtype ′

* ok(𝑥+ 1)

𝐶 ⊢ rec subtype subtype ′* ok(𝑥)

sub final? 𝑦* comptype

• The composite type comptype must be valid.

• The sequence 𝑦* may be no longer than 1.

• For every type index 𝑦𝑖 in 𝑦*:

– The type index 𝑦𝑖 must be smaller than 𝑥.

– The type index 𝑦𝑖 must exist in the context 𝐶.

– Let subtype𝑖 be the unrolling of the defined type 𝐶.types[𝑦𝑖].

– The sub type subtype𝑖 must not contain final.

– Let comptype ′𝑖 be the composite type in subtype𝑖.

– The composite type comptype must match comptype ′𝑖.

• Then the sub type is valid for the type index 𝑥.

|𝑦*| ≤ 1 (𝑦 < 𝑥)* (unroll(𝐶.types[𝑦]) = sub 𝑦′
*
comptype ′)*

𝐶 ⊢ comptype ok (𝐶 ⊢ comptype ≤ comptype ′)*

𝐶 ⊢ sub final? 𝑦* comptype ok(𝑥)

Note: The side condition on the index ensures that a declared supertype is a previously defined types, preventing
cyclic subtype hierarchies.

Future versions of WebAssembly may allow more than one supertype.

3.2.13 Defined Types

rectype.𝑖

• The recursive type rectype must be valid for some type index 𝑥.

• Let rec subtype* be the defined type rectype.

• The number 𝑖 must be smaller than the length of the sequence subtype* of sub types.

• Then the defined type is valid.

36 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝐶 ⊢ rectype ok(𝑥) rectype = rec subtype𝑛 𝑖 < 𝑛

𝐶 ⊢ rectype.𝑖 ok

3.2.14 Limits

Limits must have meaningful bounds that are within a given range.

{min 𝑛,max 𝑚?}

• The value of 𝑛 must not be larger than 𝑘.

• If the maximum 𝑚? is not empty, then:

– Its value must not be larger than 𝑘.

– Its value must not be smaller than 𝑛.

• Then the limit is valid within range 𝑘.

𝑛 ≤ 𝑘 (𝑚 ≤ 𝑘)? (𝑛 ≤ 𝑚)?

𝐶 ⊢ {min 𝑛,max 𝑚?} : 𝑘

3.2.15 Table Types

limits reftype

• The limits limits must be valid within range 232 − 1.

• The reference type reftype must be valid.

• Then the table type is valid.

𝐶 ⊢ limits : 232 − 1 𝐶 ⊢ reftype ok
𝐶 ⊢ limits reftype ok

3.2.16 Memory Types

limits

• The limits limits must be valid within range 216.

• Then the memory type is valid.

𝐶 ⊢ limits : 216

𝐶 ⊢ limits ok

3.2. Types 37

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.2.17 Tag Types

[𝑡𝑛1] → [𝑡𝑚2]

• The function type [𝑡𝑛1] → [𝑡𝑚2] must be valid.

• The type sequence 𝑡𝑚2 must be empty.

• Then the tag type is valid.

⊢ [𝑡*] → [] ok

3.2.18 Global Types

mut valtype

• The value type valtype must be valid.

• Then the global type is valid.
𝐶 ⊢ valtype ok

𝐶 ⊢ mut valtype ok

3.2.19 External Types

func deftype

• The defined type deftype must be valid.

• The defined type deftype must be a function type.

• Then the external type is valid.
𝐶 ⊢ deftype ok expand(deftype) = func functype

𝐶 ⊢ func deftype

table tabletype

• The table type tabletype must be valid.

• Then the external type is valid.
𝐶 ⊢ tabletype ok

𝐶 ⊢ table tabletype ok

mem memtype

• The memory type memtype must be valid.

• Then the external type is valid.
𝐶 ⊢ memtype ok

𝐶 ⊢ mem memtype ok

38 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

tag tagtype

• The tag type tagtype must be valid.

• Then the external type is valid.
⊢ tagtype ok

⊢ tag tagtype ok

global globaltype

• The global type globaltype must be valid.

• Then the external type is valid.
𝐶 ⊢ globaltype ok

𝐶 ⊢ global globaltype ok

3.2.20 Defaultable Types

A type is defaultable if it has a default value for initialization.

Value Types

• A defaultable value type 𝑡 must be:

– either a number type,

– or a vector type,

– or a nullable reference type.

𝐶 ⊢ numtype defaultable

𝐶 ⊢ vectype defaultable

𝐶 ⊢ (ref null heaptype) defaultable

3.3 Matching

On most types, a notion of subtyping is defined that is applicable in validation rules, during module instantiation
when checking the types of imports, or during execution, when performing casts.

3.3.1 Number Types

A number type numtype1 matches a number type numtype2 if and only if:

• Both numtype1 and numtype2 are the same.

𝐶 ⊢ numtype ≤ numtype

3.3. Matching 39

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.3.2 Vector Types

A vector type vectype1 matches a vector type vectype2 if and only if:

• Both vectype1 and vectype2 are the same.

𝐶 ⊢ vectype ≤ vectype

3.3.3 Heap Types

A heap type heaptype1 matches a heap type heaptype2 if and only if:

• Either both heaptype1 and heaptype2 are the same.

• Or there exists a valid heap type heaptype ′, such that heaptype1 matches heaptype ′ and heaptype ′ matches
heaptype2.

• Or ℎ𝑒𝑎𝑝𝑡𝑦𝑝𝑒1 is eq and heaptype2 is any.

• Or heaptype1 is one of i31, struct, or array and ℎ𝑒𝑎𝑝𝑡𝑦𝑝𝑒2 is eq.

• Or heaptype1 is a defined type which expands to a structure type and heaptype2 is struct.

• Or heaptype1 is a defined type which expands to an array type and heaptype2 is array.

• Or heaptype1 is a defined type which expands to a function type and heaptype2 is func.

• Or heaptype1 is a defined type deftype1 and heaptype2 is a defined type deftype2, and deftype1 matches
deftype2.

• Or heaptype1 is a type index 𝑥1, and the defined type 𝐶.types[𝑥1] matches heaptype2.

• Or heaptype2 is a type index 𝑥2, and heaptype1 matches the defined type 𝐶.types[𝑥2].

• Or heaptype1 is none and heaptype2 matches any.

• Or heaptype1 is nofunc and heaptype2 matches func.

• Or heaptype1 is noextern and heaptype2 matches extern.

• Or heaptype1 is bot.

𝐶 ⊢ heaptype ≤ heaptype

𝐶 ⊢ heaptype ′ ok 𝐶 ⊢ heaptype1 ≤ heaptype ′ 𝐶 ⊢ heaptype ′ ≤ heaptype2
𝐶 ⊢ heaptype1 ≤ heaptype2

𝐶 ⊢ eq ≤ any 𝐶 ⊢ i31 ≤ eq 𝐶 ⊢ struct ≤ eq 𝐶 ⊢ array ≤ eq

expand(deftype) = struct st

𝐶 ⊢ deftype ≤ struct

expand(deftype) = array at

𝐶 ⊢ deftype ≤ array

expand(deftype) = func ft

𝐶 ⊢ deftype ≤ func

𝐶 ⊢ 𝐶.types[typeidx 1] ≤ heaptype2
𝐶 ⊢ typeidx 1 ≤ heaptype2

𝐶 ⊢ heaptype1 ≤ 𝐶.types[typeidx 2]

𝐶 ⊢ heaptype1 ≤ typeidx 2

𝐶 ⊢ ht ≤ any

𝐶 ⊢ none ≤ ht

𝐶 ⊢ ht ≤ func

𝐶 ⊢ nofunc ≤ ht

𝐶 ⊢ ht ≤ extern

𝐶 ⊢ noextern ≤ ht

𝐶 ⊢ bot ≤ heaptype

40 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.3.4 Reference Types

A reference type ref null?1 ℎ𝑒𝑎𝑝𝑡𝑦𝑝𝑒1 matches a reference type ref null?2 ℎ𝑒𝑎𝑝𝑡𝑦𝑝𝑒2 if and only if:

• The heap type heaptype1 matches heaptype2.

• null1 is absent or null2 is present.

𝐶 ⊢ heaptype1 ≤ heaptype2
𝐶 ⊢ ref heaptype1 ≤ ref heaptype2

𝐶 ⊢ heaptype1 ≤ heaptype2
𝐶 ⊢ ref null? heaptype1 ≤ ref null heaptype2

3.3.5 Value Types

A value type valtype1 matches a value type valtype2 if and only if:

• Either both valtype1 and valtype2 are number types and valtype1 matches valtype2.

• Or both valtype1 and valtype2 are reference types and valtype1 matches valtype2.

• Or valtype1 is bot.

𝐶 ⊢ bot ≤ valtype

3.3.6 Result Types

Subtyping is lifted to result types in a pointwise manner. That is, a result type [𝑡*1] matches a result type [𝑡*2] if and
only if:

• Every value type 𝑡1 in [𝑡*1] matches the corresponding value type 𝑡2 in [𝑡*2].

(𝐶 ⊢ 𝑡1 ≤ 𝑡2)
*

𝐶 ⊢ [𝑡*1] ≤ [𝑡*2]

3.3.7 Instruction Types

Subtyping is further lifted to instruction types. An instruction type [𝑡*11] →𝑥*
1
[𝑡*12]matches a type [𝑡𝑎21𝑠𝑡] →𝑥*

2
[𝑡*22]

if and only if:

• There is a common sequence of value types 𝑡* such that 𝑡*21 equals 𝑡* 𝑡′21
* and 𝑡*22 equals 𝑡* 𝑡′22

*.

• The result type [𝑡′21
*
] matches [𝑡*11].

• The result type [𝑡*12] matches [𝑡′22
*
].

• For every local index 𝑥 that is in 𝑥*
2 but not in 𝑥*

1, the local type 𝐶.locals[𝑥] is set 𝑡𝑥 for some value type 𝑡𝑥.

𝐶 ⊢ [𝑡*21] ≤ [𝑡*11] {𝑥*} = {𝑥*
2} ∖ {𝑥*

1}
𝐶 ⊢ [𝑡*12] ≤ [𝑡*22] (𝐶.locals[𝑥] = set 𝑡𝑥)

*

𝐶 ⊢ [𝑡*11] →𝑥*
1
[𝑡*12] ≤ [𝑡* 𝑡*21] →𝑥*

2
[𝑡* 𝑡*22]

Note: Instruction types are contravariant in their input and covariant in their output. Subtyping also incorporates
a sort of “frame” condition, which allows adding arbitrary invariant stack elements on both sides in the super type.

Finally, the supertype may ignore variables from the init set 𝑥*
1. It may also add variables to the init set, provided

these are already set in the context, i.e., are vacuously initialized.

3.3. Matching 41

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.3.8 Function Types

A function type [𝑡*11] → [𝑡*12] matches a type [𝑡𝑎21𝑠𝑡] → [𝑡*22] if and only if:

• The result type [𝑡*21] matches [𝑡*11].

• The result type [𝑡*12] matches [𝑡*22].

𝐶 ⊢ [𝑡*21] ≤ [𝑡*11] 𝐶 ⊢ [𝑡*12] ≤ [𝑡*22]

𝐶 ⊢ [𝑡*11] → [𝑡*12] ≤ [𝑡*21] → [𝑡*22]

3.3.9 Composite Types

A composite type comptype1 matches a type comptype2 if and only if:

• Either the composite type comptype1 is func functype1 and comptype2 is func functype2 and:

– The function type functype1 matches functype2.

• Or the composite type comptype1 is struct fieldtype𝑛1
1 and comptype2 is struct fieldtype2 and:

– The arity 𝑛1 is greater than or equal to 𝑛2.

– For every field type fieldtype2𝑖 in fieldtype𝑛2
2 and corresponding fieldtype1𝑖 in fieldtype𝑛1

1

∗ The field type fieldtype1𝑖 matches fieldtype2𝑖.

• Or the composite type comptype1 is array fieldtype1 and comptype2 is array fieldtype2 and:

– The field type fieldtype1 matches fieldtype2.

𝐶 ⊢ functype1 ≤ functype2
𝐶 ⊢ func functype1 ≤ func functype2

(𝐶 ⊢ fieldtype1 ≤ fieldtype2)
*

𝐶 ⊢ struct fieldtype*1 fieldtype
′*
1 ≤ struct fieldtype*2

𝐶 ⊢ fieldtype1 ≤ fieldtype2
𝐶 ⊢ array fieldtype1 ≤ array fieldtype2

3.3.10 Field Types

A field type mut1 storagetype1 matches a type mut2 storagetype2 if and only if:

• Storage type storagetype1 matches storagetype2.

• Either both mut1 and mut2 are const.

• Or both mut1 and mut2 are var and storagetype2 matches storagetype1 as well.

𝐶 ⊢ storagetype1 ≤ storagetype2
𝐶 ⊢ const storagetype1 ≤ const storagetype2

𝐶 ⊢ storagetype1 ≤ storagetype2
𝐶 ⊢ storagetype2 ≤ storagetype1

𝐶 ⊢ var storagetype1 ≤ var storagetype2

A storage type storagetype1 matches a type storagetype2 if and only if:

• Either storagetype1 is a value type valtype1 and storagetype2 is a value type valtype2 and valtype1 matches
valtype2.

• Or storagetype1 is a packed type packedtype1 and storagetype2 is a packed type packedtype2 and
packedtype1 matches packedtype2.

42 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

A packed type packedtype1 matches a type packedtype2 if and only if:

• The packed type packedtype1 is the same as packedtype2.

𝐶 ⊢ packedtype ≤ packedtype

3.3.11 Defined Types

A defined type deftype1 matches a type deftype2 if and only if:

• Either deftype1 and deftype2 are equal when closed under context 𝐶.

• Or:

– Let the sub type sub final? heaptype* comptype be the result of unrolling deftype1.

– Then there must exist a heap type heaptype𝑖 in heaptype* that matches deftype2.

clos𝐶(deftype1) = clos𝐶(deftype2)

𝐶 ⊢ deftype1 ≤ deftype2

unroll(deftype1) = sub final? heaptype* comptype 𝐶 ⊢ heaptype*[𝑖] ≤ deftype2
𝐶 ⊢ deftype1 ≤ deftype2

Note: Note that there is no explicit definition of type _equivalence_, since it coincides with syntactic equality, as
used in the premise of the fomer rule above.

3.3.12 Limits

Limits {min 𝑛1,max 𝑚?
1} match limits {min 𝑛2,max 𝑚?

2} if and only if:

• 𝑛1 is larger than or equal to 𝑛2.

• Either:

– 𝑚?
2 is empty.

• Or:

– Both 𝑚?
1 and 𝑚?

2 are non-empty.

– 𝑚1 is smaller than or equal to 𝑚2.

𝑛1 ≥ 𝑛2

𝐶 ⊢ {min 𝑛1,max 𝑚?
1} ≤ {min 𝑛2,max 𝜖}

𝑛1 ≥ 𝑛2 𝑚1 ≤ 𝑚2

𝐶 ⊢ {min 𝑛1,max 𝑚1} ≤ {min 𝑛2,max 𝑚2}

3.3.13 Table Types

A table type (limits1 reftype1) matches (limits2 reftype2) if and only if:

• Limits limits1 match limits2.

• The reference type reftype1 matches reftype2, and vice versa.

𝐶 ⊢ limits1 ≤ limits2 𝐶 ⊢ reftype1 ≤ reftype2 𝐶 ⊢ reftype2 ≤ reftype1
𝐶 ⊢ limits1 reftype1 ≤ limits2 reftype2

3.3. Matching 43

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.3.14 Memory Types

A memory type limits1 matches limits2 if and only if:

• Limits limits1 match limits2.

𝐶 ⊢ limits1 ≤ limits2
𝐶 ⊢ limits1 ≤ limits2

3.3.15 Global Types

A global type (mut1 𝑡1) matches (mut2 𝑡2) if and only if:

• Either both mut1 and mut2 are var and 𝑡1 matches 𝑡2 and vice versa.

• Or both mut1 and mut2 are const and 𝑡1 matches 𝑡2.

𝐶 ⊢ 𝑡1 ≤ 𝑡2 𝐶 ⊢ 𝑡2 ≤ 𝑡1
𝐶 ⊢ var 𝑡1 ≤ var 𝑡2

𝐶 ⊢ 𝑡1 ≤ 𝑡2
𝐶 ⊢ const 𝑡1 ≤ const 𝑡2

3.3.16 Tag Types

A tag type tagtype1 matches tagtype2 if and only if they are the same.

𝐶 ⊢ tagtype ≤ tagtype

3.3.17 External Types

Functions

An external type func deftype1 matches func deftype2 if and only if:

• The defined type deftype1 matches deftype2.

𝐶 ⊢ deftype1 ≤ deftype2
𝐶 ⊢ func deftype1 ≤ func deftype2

Tables

An external type table tabletype1 matches table tabletype2 if and only if:

• Table type tabletype1 matches tabletype2.

𝐶 ⊢ tabletype1 ≤ tabletype2
𝐶 ⊢ table tabletype1 ≤ table tabletype2

44 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Memories

An external type mem memtype1 matches mem memtype2 if and only if:

• Memory type memtype1 matches memtype2.

𝐶 ⊢ memtype1 ≤ memtype2
𝐶 ⊢ mem memtype1 ≤ mem memtype2

Globals

An external type global globaltype1 matches global globaltype2 if and only if:

• Global type globaltype1 matches globaltype2.

𝐶 ⊢ globaltype1 ≤ globaltype2
𝐶 ⊢ global globaltype1 ≤ global globaltype2

Tags

An external type tag tagtype1 matches tag tagtype2 if and only if:

• Tag type tagtype1 matches tagtype2.
𝐶 ⊢ tagtype1 ≤ tagtype2

𝐶 ⊢ tag tagtype1 ≤ tag tagtype2

3.4 Instructions

Instructions are classified by instruction types that describe how they manipulate the operand stack and initialize
locals: A type [𝑡*1] →𝑥* [𝑡*2] describes the required input stack with argument values of types 𝑡*1 that an instruction
pops off and the provided output stack with result values of types 𝑡*2 that it pushes back. Moreover, it enumerates
the indices 𝑥* of locals that have been set by the instruction. In most cases, this is empty.

Note: For example, the instruction i32.add has type [i32 i32] → [i32], consuming two i32 values and producing
one. The instruction local.set 𝑥 has type [𝑡] →𝑥 [], provided 𝑡 is the type declared for the local 𝑥.

Typing extends to instruction sequences instr*. Such a sequence has an instruction type [𝑡*1] →𝑥* [𝑡*2] if the
accumulative effect of executing the instructions is consuming values of types 𝑡*1 off the operand stack, pushing
new values of types 𝑡*2, and setting all locals 𝑥*.

For some instructions, the typing rules do not fully constrain the type, and therefore allow for multiple types. Such
instructions are called polymorphic. Two degrees of polymorphism can be distinguished:

• value-polymorphic: the value type 𝑡 of one or several individual operands is unconstrained. That is the case
for all parametric instructions like drop and select.

• stack-polymorphic: the entire (or most of the) instruction type [𝑡*1] → [𝑡*2] of the instruction is uncon-
strained. That is the case for all control instructions that perform an unconditional control transfer, such
as unreachable, br, br_table, and return.

In both cases, the unconstrained types or type sequences can be chosen arbitrarily, as long as they meet the con-
straints imposed for the surrounding parts of the program.

3.4. Instructions 45

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Note: For example, the select instruction is valid with type [𝑡 𝑡 i32] → [𝑡], for any possible number type 𝑡.
Consequently, both instruction sequences

(i32.const 1) (i32.const 2) (i32.const 3) select

and

(f64.const 1.0) (f64.const 2.0) (i32.const 3) select

are valid, with 𝑡 in the typing of select being instantiated to i32 or f64, respectively.

The unreachable instruction is stack-polymorphic, and hence valid with type [𝑡*1] → [𝑡*2] for any possible sequences
of value types 𝑡*1 and 𝑡*2. Consequently,

unreachable i32.add

is valid by assuming type [] → [i32] for the unreachable instruction. In contrast,

unreachable (i64.const 0) i32.add

is invalid, because there is no possible type to pick for the unreachable instruction that would make the sequence
well-typed.

The Appendix describes a type checking algorithm that efficiently implements validation of instruction sequences
as prescribed by the rules given here.

3.4.1 Numeric Instructions

𝑡.const 𝑐

• The instruction is valid with type [] → [𝑡].

𝐶 ⊢ 𝑡.const 𝑐 : [] → [𝑡]

𝑡.unop

• The instruction is valid with type [𝑡] → [𝑡].

𝐶 ⊢ 𝑡.unop : [𝑡] → [𝑡]

𝑡.binop

• The instruction is valid with type [𝑡 𝑡] → [𝑡].

𝐶 ⊢ 𝑡.binop : [𝑡 𝑡] → [𝑡]

𝑡.testop

• The instruction is valid with type [𝑡] → [i32].

𝐶 ⊢ 𝑡.testop : [𝑡] → [i32]

46 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑡.relop

• The instruction is valid with type [𝑡 𝑡] → [i32].

𝐶 ⊢ 𝑡.relop : [𝑡 𝑡] → [i32]

𝑡2.cvtop_𝑡1_sx ?

• The instruction is valid with type [𝑡1] → [𝑡2].

𝐶 ⊢ 𝑡2.cvtop_𝑡1_sx ? : [𝑡1] → [𝑡2]

3.4.2 Reference Instructions

ref.null ht

• The heap type ht must be valid.

• Then the instruction is valid with type [] → [(ref null ht)].
𝐶 ⊢ ht ok

𝐶 ⊢ ref.null ht : [] → [(ref null ht)]

ref.func 𝑥

• The function 𝐶.funcs[𝑥] must be defined in the context.

• Let dt be the defined type 𝐶.funcs[𝑥].

• The function index 𝑥 must be contained in 𝐶.refs.

• The instruction is valid with type [] → [(ref dt)].

𝐶.funcs[𝑥] = dt 𝑥 ∈ 𝐶.refs

𝐶 ⊢ ref.func 𝑥 : [] → [(ref dt)]

ref.is_null

• The instruction is valid with type [(ref null ht)] → [i32], for any valid heap type ht .
𝐶 ⊢ ht ok

𝐶 ⊢ ref.is_null : [(ref null ht)] → [i32]

ref.as_non_null

• The instruction is valid with type [(ref null ht)] → [(ref ht)], for any valid heap type ht .
𝐶 ⊢ ht ok

𝐶 ⊢ ref.as_non_null : [(ref null ht)] → [(ref ht)]

3.4. Instructions 47

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

ref.eq

• The instruction is valid with type [(ref null eq)(ref null eq)] → [i32].

𝐶 ⊢ ref.eq : [(ref null eq) (ref null eq)] → [i32]

ref.test rt

• The reference type rt must be valid.

• Then the instruction is valid with type [rt ′] → [i32] for any valid reference type rt ′ for which rt matches rt ′.

𝐶 ⊢ rt ok 𝐶 ⊢ rt ′ ok 𝐶 ⊢ rt ≤ rt ′

𝐶 ⊢ ref.test rt : [rt ′] → [i32]

Note: The liberty to pick a supertype rt ′ allows typing the instruction with the least precise super type of rt as
input, that is, the top type in the corresponding heap subtyping hierarchy.

ref.cast rt

• The reference type rt must be valid.

• Then the instruction is valid with type [rt ′] → [rt] for any valid reference type rt ′ for which rt matches rt ′.

𝐶 ⊢ rt ok 𝐶 ⊢ rt ′ ok 𝐶 ⊢ rt ≤ rt ′

𝐶 ⊢ ref.cast rt : [rt ′] → [rt]

Note: The liberty to pick a supertype rt ′ allows typing the instruction with the least precise super type of rt as
input, that is, the top type in the corresponding heap subtyping hierarchy.

3.4.3 Aggregate Reference Instructions

struct.new 𝑥

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be a structure type struct fieldtype*.

• For each field type fieldtype𝑖 in fieldtype*:

– Let fieldtype𝑖 be mut storagetype𝑖.

– Let 𝑡𝑖 be the value type unpack(storagetype𝑖).

• Let 𝑡* be the concatenation of all 𝑡𝑖.

• Then the instruction is valid with type [𝑡*] → [(ref 𝑥)].

expand(𝐶.types[𝑥]) = struct (mut st)*

𝐶 ⊢ struct.new 𝑥 : [(unpack(st))*] → [(ref 𝑥)]

48 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

struct.new_default 𝑥

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be a structure type struct fieldtype*.

• For each field type fieldtype𝑖 in fieldtype*:

– Let fieldtype𝑖 be mut storagetype𝑖.

– Let 𝑡𝑖 be the value type unpack(storagetype𝑖).

– The type 𝑡𝑖 must be defaultable.

• Let 𝑡* be the concatenation of all 𝑡𝑖.

• Then the instruction is valid with type [] → [(ref 𝑥)].

expand(𝐶.types[𝑥]) = struct (mut st)* (𝐶 ⊢ unpack(st) defaultable)*

𝐶 ⊢ struct.new_default 𝑥 : [] → [(ref 𝑥)]

struct.get_sx ? 𝑥 𝑦

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be a structure type struct fieldtype*.

• Let the field type mut storagetype be fieldtype*[𝑦].

• Let 𝑡 be the value type unpack(storagetype).

• The extension sx must be present if and only if storagetype is a packed type.

• Then the instruction is valid with type [(ref null 𝑥)] → [𝑡].

expand(𝐶.types[𝑥]) = struct ft* ft*[𝑦] = mut st sx = 𝜖 ⇔ st = unpack(st)

𝐶 ⊢ struct.get_sx ? 𝑥 𝑦 : [(ref null 𝑥)] → [unpack(st)]

struct.set 𝑥 𝑦

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be a structure type struct fieldtype*.

• Let the field type mut storagetype be fieldtype*[𝑦].

• The prefix mut must be var.

• Let 𝑡 be the value type unpack(storagetype).

• Then the instruction is valid with type [(ref null 𝑥) 𝑡] → [].

expand(𝐶.types[𝑥]) = struct ft* ft*[𝑦] = var st

𝐶 ⊢ struct.set 𝑥 𝑦 : [(ref null 𝑥) unpack(st)] → []

array.new 𝑥

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype.

• Let fieldtype be mut storagetype.

• Let 𝑡 be the value type unpack(storagetype).

• Then the instruction is valid with type [𝑡 i32] → [(ref 𝑥)].

expand(𝐶.types[𝑥]) = array (mut st)

𝐶 ⊢ array.new 𝑥 : [unpack(st) i32] → [(ref 𝑥)]

3.4. Instructions 49

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

array.new_default 𝑥

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype.

• Let fieldtype be mut storagetype.

• Let 𝑡 be the value type unpack(storagetype).

• The type 𝑡 must be defaultable.

• Then the instruction is valid with type [i32] → [(ref 𝑥)].

expand(𝐶.types[𝑥]) = array (mut st) 𝐶 ⊢ unpack(st) defaultable
𝐶 ⊢ array.new 𝑥 : [i32] → [(ref 𝑥)]

array.new_fixed 𝑥 𝑛

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype.

• Let fieldtype be mut storagetype.

• Let 𝑡 be the value type unpack(storagetype).

• Then the instruction is valid with type [𝑡𝑛] → [(ref 𝑥)].

expand(𝐶.types[𝑥]) = array (mut st)

𝐶 ⊢ array.new_fixed 𝑥 𝑛 : [unpack(st)𝑛] → [(ref 𝑥)]

array.new_elem 𝑥 𝑦

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype .

• Let fieldtype be mut storagetype.

• The storage type storagetype must be a reference type rt .

• The element segment 𝐶.elems[𝑦] must exist.

• Let rt ′ be the reference type 𝐶.elems[𝑦].

• The reference type rt ′ must match rt .

• Then the instruction is valid with type [i32 i32] → [(ref 𝑥)].

expand(𝐶.types[𝑥]) = array (mut rt) 𝐶 ⊢ 𝐶.elems[𝑦] ≤ rt

𝐶 ⊢ array.new_elem 𝑥 𝑛 : [i32 i32] → [(ref 𝑥)]

array.new_data 𝑥 𝑦

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype.

• Let fieldtype be mut storagetype.

• Let 𝑡 be the value type unpack(storagetype).

• The type 𝑡 must be a numeric type or a vector type.

• The data segment 𝐶.datas[𝑦] must exist.

• Then the instruction is valid with type [i32 i32] → [(ref 𝑥)].

50 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

expand(𝐶.types[𝑥]) = array (mut st) unpack(st) = numtype ∨ unpack(st) = vectype 𝐶.datas[𝑦] = ok
𝐶 ⊢ array.new_data 𝑥 𝑛 : [i32 i32] → [(ref 𝑥)]

array.get_sx ? 𝑥

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype .

• Let the field type mut storagetype be fieldtype.

• Let 𝑡 be the value type unpack(storagetype).

• The extension sx must be present if and only if storagetype is a packed type.

• Then the instruction is valid with type [(ref null 𝑥) i32] → [𝑡].

expand(𝐶.types[𝑥]) = array (mut st) sx = 𝜖 ⇔ st = unpack(st)

𝐶 ⊢ array.get_sx ? 𝑥 : [(ref null 𝑥) i32] → [unpack(st)]

array.set 𝑥

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype.

• Let the field type mut storagetype be fieldtype.

• The prefix mut must be var.

• Let 𝑡 be the value type unpack(storagetype).

• Then the instruction is valid with type [(ref null 𝑥) i32 𝑡] → [].

expand(𝐶.types[𝑥]) = array (var st)

𝐶 ⊢ array.set 𝑥 : [(ref null 𝑥) i32 unpack(st)] → []

array.len

• The the instruction is valid with type [(ref null array)] → [i32].

𝐶 ⊢ array.len : [(ref null array)] → [i32]

array.fill 𝑥

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype.

• Let the field type mut storagetype be fieldtype.

• The prefix mut must be var.

• Let 𝑡 be the value type unpack(storagetype).

• Then the instruction is valid with type [(ref null 𝑥) i32 𝑡 i32] → [].

expand(𝐶.types[𝑥]) = array (var st)

𝐶 ⊢ array.fill 𝑥 : [(ref null 𝑥) i32 unpack(st) i32] → []

3.4. Instructions 51

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

array.copy 𝑥 𝑦

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype1.

• Let the field type mut1 storagetype1 be fieldtype1.

• The prefix mut1 must be var.

• The defined type 𝐶.types[𝑦] must exist.

• The expansion of 𝐶.types[𝑦] must be an array type array fieldtype2.

• Let the field type mut2 storagetype2 be fieldtype2.

• The storage type storagetype2 must match storagetype1.

• Then the instruction is valid with type [(ref null 𝑥) i32 (ref null 𝑦) i32 i32] → [].

expand(𝐶.types[𝑥]) = array (var st1) expand(𝐶.types[𝑦]) = array (mut st2) 𝐶 ⊢ st2 ≤ st1
𝐶 ⊢ array.copy 𝑥 𝑦 : [(ref null 𝑥) i32 (ref null 𝑦) i32 i32] → []

array.init_data 𝑥 𝑦

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype.

• Let the field type mut storagetype be fieldtype.

• The prefix mut must be var.

• Let 𝑡 be the value type unpack(storagetype).

• The value type 𝑡 must be a numeric type or a vector type.

• The data segment 𝐶.datas[𝑦] must exist.

• Then the instruction is valid with type [(ref null 𝑥) i32 i32 i32] → [].

expand(𝐶.types[𝑥]) = array (var st) unpack(st) = numtype ∨ unpack(st) = vectype 𝐶.datas[𝑦] = ok
𝐶 ⊢ array.init_data 𝑥 𝑦 : [(ref null 𝑥) i32 i32 i32] → []

array.init_elem 𝑥 𝑦

• The defined type 𝐶.types[𝑥] must exist.

• The expansion of 𝐶.types[𝑥] must be an array type array fieldtype.

• Let the field type mut storagetype be fieldtype.

• The prefix mut must be var.

• The storage type storagetype must be a reference type rt .

• The element segment 𝐶.elems[𝑦] must exist.

• Let rt ′ be the reference type 𝐶.elems[𝑦].

• The reference type rt ′ must match rt .

• Then the instruction is valid with type [(ref null 𝑥) i32 i32 i32] → [].

expand(𝐶.types[𝑥]) = array (var rt) 𝐶 ⊢ 𝐶.elems[𝑦] ≤ rt

𝐶 ⊢ array.init_elem 𝑥 𝑦 : [(ref null 𝑥) i32 i32 i32] → []

52 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.4.4 Scalar Reference Instructions

ref.i31

• The instruction is valid with type [i32] → [(ref i31)].

𝐶 ⊢ ref.i31 : [i32] → [(ref i31)]

i31.get_sx

• The instruction is valid with type [(ref null i31)] → [i32].

𝐶 ⊢ i31.get_sx : [(ref null i31)] → [i32]

3.4.5 External Reference Instructions

any.convert_extern

• The instruction is valid with type [(ref null?1 extern)] → [(ref null?2 any)] for any null?1 that equals null?2.

null?1 = null?2
𝐶 ⊢ any.convert_extern : [(ref null?1 extern)] → [(ref null?2 any)]

extern.convert_any

• The instruction is valid with type [(ref null?1 any)] → [(ref null?2 extern)] for any null?1 that equals null?2.

null?1 = null?2
𝐶 ⊢ extern.convert_any : [(ref null?1 any)] → [(ref null?2 extern)]

3.4.6 Vector Instructions

Vector instructions can have a prefix to describe the shape of the operand. Packed numeric types, i8 and i16, are
not value types. An auxiliary function maps such packed type shapes to value types:

unpacked(i8x16) = i32
unpacked(i16x8) = i32
unpacked(𝑡x𝑁) = 𝑡

The following auxiliary function denotes the number of lanes in a vector shape, i.e., its dimension:

dim(𝑡x𝑁) = 𝑁

3.4. Instructions 53

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

v128.const 𝑐

• The instruction is valid with type [] → [v128].

𝐶 ⊢ v128.const 𝑐 : [] → [v128]

v128.vvunop

• The instruction is valid with type [v128] → [v128].

𝐶 ⊢ v128.vvunop : [v128] → [v128]

v128.vvbinop

• The instruction is valid with type [v128 v128] → [v128].

𝐶 ⊢ v128.vvbinop : [v128 v128] → [v128]

v128.vvternop

• The instruction is valid with type [v128 v128 v128] → [v128].

𝐶 ⊢ v128.vvternop : [v128 v128 v128] → [v128]

v128.vvtestop

• The instruction is valid with type [v128] → [i32].

𝐶 ⊢ v128.vvtestop : [v128] → [i32]

i8x16.swizzle

• The instruction is valid with type [v128 v128] → [v128].

𝐶 ⊢ i8x16.swizzle : [v128 v128] → [v128]

i8x16.shuffle laneidx 16

• For all laneidx 𝑖, in laneidx 16, laneidx 𝑖 must be smaller than 32.

• The instruction is valid with type [v128 v128] → [v128].

(laneidx < 32)16

𝐶 ⊢ i8x16.shuffle laneidx 16 : [v128 v128] → [v128]

54 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

shape.splat

• Let 𝑡 be unpacked(shape).

• The instruction is valid with type [𝑡] → [v128].

𝐶 ⊢ shape.splat : [unpacked(shape)] → [v128]

shape.extract_lane_sx ? laneidx

• The lane index laneidx must be smaller than dim(shape).

• The instruction is valid with type [v128] → [unpacked(shape)].

laneidx < dim(shape)

𝐶 ⊢ shape.extract_lane_sx ? laneidx : [v128] → [unpacked(shape)]

shape.replace_lane laneidx

• The lane index laneidx must be smaller than dim(shape).

• Let 𝑡 be unpacked(shape).

• The instruction is valid with type [v128 𝑡] → [v128].

laneidx < dim(shape)

𝐶 ⊢ shape.replace_lane laneidx : [v128 unpacked(shape)] → [v128]

shape.vunop

• The instruction is valid with type [v128] → [v128].

𝐶 ⊢ shape.vunop : [v128] → [v128]

shape.vbinop

• The instruction is valid with type [v128 v128] → [v128].

𝐶 ⊢ shape.vbinop : [v128 v128] → [v128]

shape.vrelop

• The instruction is valid with type [v128 v128] → [v128].

𝐶 ⊢ shape.vrelop : [v128 v128] → [v128]

ishape.vishiftop

• The instruction is valid with type [v128 i32] → [v128].

𝐶 ⊢ ishape.vishiftop : [v128 i32] → [v128]

3.4. Instructions 55

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

shape.vtestop

• The instruction is valid with type [v128] → [i32].

𝐶 ⊢ shape.vtestop : [v128] → [i32]

shape.vcvtop_half ?_shape_sx ?_zero?

• The instruction is valid with type [v128] → [v128].

𝐶 ⊢ shape.vcvtop_half ?_shape_sx ?_zero? : [v128] → [v128]

ishape1.narrow_ishape2_sx

• The instruction is valid with type [v128 v128] → [v128].

𝐶 ⊢ ishape1.narrow_ishape2_sx : [v128 v128] → [v128]

ishape.bitmask

• The instruction is valid with type [v128] → [i32].

𝐶 ⊢ ishape.bitmask : [v128] → [i32]

ishape1.dot_ishape2_s

• The instruction is valid with type [v128 v128] → [v128].

𝐶 ⊢ ishape1.dot_ishape2_s : [v128 v128] → [v128]

ishape1.extmul_half _ishape2_sx

• The instruction is valid with type [v128 v128] → [v128].

𝐶 ⊢ ishape1.extmul_half _ishape2_sx : [v128 v128] → [v128]

ishape1.extadd_pairwise_ishape2_sx

• The instruction is valid with type [v128] → [v128].

𝐶 ⊢ ishape1.extadd_pairwise_ishape2_sx : [v128] → [v128]

56 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.4.7 Parametric Instructions

drop

• The instruction is valid with type [𝑡] → [], for any valid value type 𝑡.
𝐶 ⊢ 𝑡 ok

𝐶 ⊢ drop : [𝑡] → []

Note: Both drop and select without annotation are value-polymorphic instructions.

select (𝑡*)?

• If 𝑡* is present, then:

– The result type [𝑡*] must be valid.

– The length of 𝑡* must be 1.

– Then the instruction is valid with type [𝑡* 𝑡* i32] → [𝑡*].

• Else:

– The instruction is valid with type [𝑡 𝑡 i32] → [𝑡], for any valid value type 𝑡 that matches some number
type or vector type.
𝐶 ⊢ [𝑡] ok

𝐶 ⊢ select 𝑡 : [𝑡 𝑡 i32] → [𝑡]

𝐶 ⊢ [𝑡] ok 𝐶 ⊢ [𝑡] ≤ [numtype]

𝐶 ⊢ select : [𝑡 𝑡 i32] → [𝑡]

𝐶 ⊢ [𝑡] ok 𝐶 ⊢ 𝑡 ≤ vectype

𝐶 ⊢ select : [𝑡 𝑡 i32] → [𝑡]

Note: In future versions of WebAssembly, select may allow more than one value per choice.

3.4.8 Variable Instructions

local.get 𝑥

• The local 𝐶.locals[𝑥] must be defined in the context.

• Let init 𝑡 be the local type 𝐶.locals[𝑥].

• The initialization status init must be set.

• Then the instruction is valid with type [] → [𝑡].

𝐶.locals[𝑥] = set 𝑡

𝐶 ⊢ local.get 𝑥 : [] → [𝑡]

local.set 𝑥

• The local 𝐶.locals[𝑥] must be defined in the context.

• Let init 𝑡 be the local type 𝐶.locals[𝑥].

• Then the instruction is valid with type [𝑡] →𝑥 [].

𝐶.locals[𝑥] = init 𝑡

𝐶 ⊢ local.set 𝑥 : [𝑡] →𝑥 []

3.4. Instructions 57

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

local.tee 𝑥

• The local 𝐶.locals[𝑥] must be defined in the context.

• Let init 𝑡 be the local type 𝐶.locals[𝑥].

• Then the instruction is valid with type [𝑡] →𝑥 [𝑡].

𝐶.locals[𝑥] = init 𝑡

𝐶 ⊢ local.tee 𝑥 : [𝑡] →𝑥 [𝑡]

global.get 𝑥

• The global 𝐶.globals[𝑥] must be defined in the context.

• Let mut 𝑡 be the global type 𝐶.globals[𝑥].

• Then the instruction is valid with type [] → [𝑡].

𝐶.globals[𝑥] = mut 𝑡

𝐶 ⊢ global.get 𝑥 : [] → [𝑡]

global.set 𝑥

• The global 𝐶.globals[𝑥] must be defined in the context.

• Let mut 𝑡 be the global type 𝐶.globals[𝑥].

• The mutability mut must be var.

• Then the instruction is valid with type [𝑡] → [].

𝐶.globals[𝑥] = var 𝑡

𝐶 ⊢ global.set 𝑥 : [𝑡] → []

3.4.9 Table Instructions

table.get 𝑥

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits 𝑡 be the table type 𝐶.tables[𝑥].

• Then the instruction is valid with type [i32] → [𝑡].

𝐶.tables[𝑥] = limits 𝑡

𝐶 ⊢ table.get 𝑥 : [i32] → [𝑡]

table.set 𝑥

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits 𝑡 be the table type 𝐶.tables[𝑥].

• Then the instruction is valid with type [i32 𝑡] → [].

𝐶.tables[𝑥] = limits 𝑡

𝐶 ⊢ table.set 𝑥 : [i32 𝑡] → []

58 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

table.size 𝑥

• The table 𝐶.tables[𝑥] must be defined in the context.

• Then the instruction is valid with type [] → [i32].

𝐶.tables[𝑥] = tabletype

𝐶 ⊢ table.size 𝑥 : [] → [i32]

table.grow 𝑥

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits 𝑡 be the table type 𝐶.tables[𝑥].

• Then the instruction is valid with type [𝑡 i32] → [i32].

𝐶.tables[𝑥] = limits 𝑡

𝐶 ⊢ table.grow 𝑥 : [𝑡 i32] → [i32]

table.fill 𝑥

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits 𝑡 be the table type 𝐶.tables[𝑥].

• Then the instruction is valid with type [i32 𝑡 i32] → [].

𝐶.tables[𝑥] = limits 𝑡

𝐶 ⊢ table.fill 𝑥 : [i32 𝑡 i32] → []

table.copy 𝑥 𝑦

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits1 𝑡1 be the table type 𝐶.tables[𝑥].

• The table 𝐶.tables[𝑦] must be defined in the context.

• Let limits2 𝑡2 be the table type 𝐶.tables[𝑦].

• The reference type 𝑡2 must match 𝑡1.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.tables[𝑥] = limits1 𝑡1 𝐶.tables[𝑦] = limits2 𝑡2 𝐶 ⊢ 𝑡2 ≤ 𝑡1
𝐶 ⊢ table.copy 𝑥 𝑦 : [i32 i32 i32] → []

table.init 𝑥 𝑦

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits 𝑡1 be the table type 𝐶.tables[𝑥].

• The element segment 𝐶.elems[𝑦] must be defined in the context.

• Let 𝑡2 be the reference type 𝐶.elems[𝑦].

• The reference type 𝑡2 must match 𝑡1.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.tables[𝑥] = limits 𝑡1 𝐶.elems[𝑦] = 𝑡2 𝐶 ⊢ 𝑡2 ≤ 𝑡1
𝐶 ⊢ table.init 𝑥 𝑦 : [i32 i32 i32] → []

3.4. Instructions 59

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

elem.drop 𝑥

• The element segment 𝐶.elems[𝑥] must be defined in the context.

• Then the instruction is valid with type [] → [].

𝐶.elems[𝑥] = 𝑡

𝐶 ⊢ elem.drop 𝑥 : [] → []

3.4.10 Memory Instructions

𝑡.load 𝑥 memarg

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than the bit width of 𝑡 divided by 8.

• Then the instruction is valid with type [i32] → [𝑡].

𝐶.mems[𝑥] = memtype 2memarg.align ≤ |𝑡|/8
𝐶 ⊢ 𝑡.load 𝑥 memarg : [i32] → [𝑡]

𝑡.load𝑁_sx 𝑥 memarg

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8.

• Then the instruction is valid with type [i32] → [𝑡].

𝐶.mems[𝑥] = memtype 2memarg.align ≤ 𝑁/8

𝐶 ⊢ 𝑡.load𝑁_sx 𝑥 memarg : [i32] → [𝑡]

𝑡.store 𝑥 memarg

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than the bit width of 𝑡 divided by 8.

• Then the instruction is valid with type [i32 𝑡] → [].

𝐶.mems[𝑥] = memtype 2memarg.align ≤ |𝑡|/8
𝐶 ⊢ 𝑡.store 𝑥 memarg : [i32 𝑡] → []

𝑡.store𝑁 𝑥 memarg

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8.

• Then the instruction is valid with type [i32 𝑡] → [].

𝐶.mems[𝑥] = memtype 2memarg.align ≤ 𝑁/8

𝐶 ⊢ 𝑡.store𝑁 𝑥 memarg : [i32 𝑡] → []

60 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

v128.load𝑁x𝑀_sx 𝑥 memarg

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8 ·𝑀 .

• Then the instruction is valid with type [i32] → [v128].

𝐶.mems[𝑥] = memtype 2memarg.align ≤ 𝑁/8 ·𝑀
𝐶 ⊢ v128.load𝑁x𝑀_sx 𝑥 memarg : [i32] → [v128]

v128.load𝑁_splat 𝑥 memarg

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8.

• Then the instruction is valid with type [i32] → [v128].

𝐶.mems[𝑥] = memtype 2memarg.align ≤ 𝑁/8

𝐶 ⊢ v128.load𝑁_splat 𝑥 memarg : [i32] → [v128]

v128.load𝑁_zero 𝑥 memarg

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8.

• Then the instruction is valid with type [i32] → [v128].

𝐶.mems[𝑥] = memtype 2memarg.align ≤ 𝑁/8

𝐶 ⊢ v128.load𝑁_zero 𝑥 memarg : [i32] → [v128]

v128.load𝑁_lane 𝑥 memarg laneidx

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8.

• The lane index laneidx must be smaller than 128/𝑁 .

• Then the instruction is valid with type [i32 v128] → [v128].

𝐶.mems[𝑥] = memtype 2memarg.align < 𝑁/8 laneidx < 128/𝑁

𝐶 ⊢ v128.load𝑁_lane 𝑥 memarg laneidx : [i32 v128] → [v128]

v128.store𝑁_lane 𝑥 memarg laneidx

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The alignment 2memarg.align must not be larger than 𝑁/8.

• The lane index laneidx must be smaller than 128/𝑁 .

• Then the instruction is valid with type [i32 v128] → [v128].

𝐶.mems[𝑥] = memtype 2memarg.align < 𝑁/8 laneidx < 128/𝑁

𝐶 ⊢ v128.store𝑁_lane 𝑥 memarg laneidx : [i32 v128] → []

3.4. Instructions 61

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

memory.size 𝑥

• The memory 𝐶.mems[𝑥] must be defined in the context.

• Then the instruction is valid with type [] → [i32].

𝐶.mems[𝑥] = memtype

𝐶 ⊢ memory.size 𝑥 : [] → [i32]

memory.grow 𝑥

• The memory 𝐶.mems[𝑥] must be defined in the context.

• Then the instruction is valid with type [i32] → [i32].

𝐶.mems[𝑥] = memtype

𝐶 ⊢ memory.grow 𝑥 : [i32] → [i32]

memory.fill 𝑥

• The memory 𝐶.mems[𝑥] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.mems[𝑥] = memtype

𝐶 ⊢ memory.fill 𝑥 : [i32 i32 i32] → []

memory.copy 𝑥 𝑦

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The memory 𝐶.mems[𝑦] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.mems[𝑥] = memtype 𝐶.mems[𝑥] = memtype

𝐶 ⊢ memory.copy 𝑥 𝑦 : [i32 i32 i32] → []

memory.init 𝑥 𝑦

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The data segment 𝐶.datas[𝑦] must be defined in the context.

• Then the instruction is valid with type [i32 i32 i32] → [].

𝐶.mems[𝑥] = memtype 𝐶.datas[𝑦] = ok
𝐶 ⊢ memory.init 𝑥 𝑦 : [i32 i32 i32] → []

data.drop 𝑥

• The data segment 𝐶.datas[𝑥] must be defined in the context.

• Then the instruction is valid with type [] → [].

𝐶.datas[𝑥] = ok
𝐶 ⊢ data.drop 𝑥 : [] → []

62 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.4.11 Control Instructions

nop

• The instruction is valid with type [] → [].

𝐶 ⊢ nop : [] → []

unreachable

• The instruction is valid with any valid type of the form [𝑡*1] → [𝑡*2].

𝐶 ⊢ [𝑡*1] → [𝑡*2] ok
𝐶 ⊢ unreachable : [𝑡*1] → [𝑡*2]

Note: The unreachable instruction is stack-polymorphic.

block blocktype instr* end

• The block type must be valid as some instruction type [𝑡*1] → [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡*2] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*2] ⊢ instr* : [𝑡*1] → [𝑡*2]

𝐶 ⊢ block blocktype instr* end : [𝑡*1] → [𝑡*2]

Note: The notation 𝐶, labels [𝑡*] inserts the new label type at index 0, shifting all others.

loop blocktype instr* end

• The block type must be valid as some instruction type [𝑡*1] →𝑥* [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡*1] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*1] ⊢ instr* : [𝑡*1] → [𝑡*2]

𝐶 ⊢ loop blocktype instr* end : [𝑡*1] → [𝑡*2]

Note: The notation 𝐶, labels [𝑡*] inserts the new label type at index 0, shifting all others.

3.4. Instructions 63

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

if blocktype instr*1 else instr*2 end

• The block type must be valid as some instruction type [𝑡*1] → [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡*2] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr*1 must be valid with type [𝑡*1] → [𝑡*2].

• Under context 𝐶 ′, the instruction sequence instr*2 must be valid with type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1 i32] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*2] ⊢ instr*1 : [𝑡*1] → [𝑡*2] 𝐶, labels [𝑡*2] ⊢ instr*2 : [𝑡*1] → [𝑡*2]

𝐶 ⊢ if blocktype instr*1 else instr
*
2 end : [𝑡*1 i32] → [𝑡*2]

Note: The notation 𝐶, labels [𝑡*] inserts the new label type at index 0, shifting all others.

try_table blocktype catch* instr* end

• The block type must be valid as some function type [𝑡*1] → [𝑡*2].

• For every catch clause catch𝑖 in catch*, catch𝑖 must be valid.

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡*2] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

𝐶 ⊢ blocktype : [𝑡*1] → [𝑡*2] (𝐶 ⊢ catch ok)* 𝐶, labels [𝑡*2] ⊢ instr* : [𝑡*1] → [𝑡*2]

𝐶 ⊢ try_table blocktype catch* instr* end : [𝑡*1] → [𝑡*2]

Note: The notation 𝐶, labels [𝑡*] inserts the new label type at index 0, shifting all others.

catch 𝑥 𝑙

• The tag 𝐶.tags[𝑥] must be defined in the context.

• Let [𝑡*] → [𝑡′
*
] be the tag type 𝐶.tags[𝑥].

• The result type [𝑡′*] must be empty.

• The label 𝐶.labels[𝑙] must be defined in the context.

• The result type [𝑡*] must be the same as 𝐶.labels[𝑙].

• Then the catch clause is valid.
𝐶.tags[𝑥] = [𝑡*] → [] 𝐶.labels[𝑙] = [𝑡*]

𝐶 ⊢ catch 𝑥 𝑙 ok

64 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

catch_ref 𝑥 𝑙

• The tag 𝐶.tags[𝑥] must be defined in the context.

• Let [𝑡*] → [𝑡′
*
] be the tag type 𝐶.tags[𝑥].

• The result type [𝑡′*] must be empty.

• The label 𝐶.labels[𝑙] must be defined in the context.

• The result type [𝑡*] must be the same as 𝐶.labels[𝑙] with exnref appended.

• Then the catch clause is valid.
𝐶.tags[𝑥] = [𝑡*] → [] 𝐶.labels[𝑙] = [𝑡* exnref]

𝐶 ⊢ catch_ref 𝑥 𝑙 ok

catch_all 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• The result type 𝐶.labels[𝑙] must be empty.

• Then the catch clause is valid.
𝐶.labels[𝑙] = []

𝐶 ⊢ catch_all 𝑙 ok

catch_all_ref 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• The result type 𝐶.labels[𝑙]𝑚𝑢𝑠𝑡𝑏𝑒 : 𝑚𝑎𝑡ℎ :.

• Then the catch clause is valid.
𝐶.labels[𝑙] = [exnref]

𝐶 ⊢ catch_all_ref 𝑙 ok

br 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let [𝑡*] be the result type 𝐶.labels[𝑙].

• Then the instruction is valid with any valid type of the form [𝑡*1 𝑡
*] → [𝑡*2].

𝐶.labels[𝑙] = [𝑡*] 𝐶 ⊢ [𝑡*1 𝑡
*] → [𝑡*2] ok

𝐶 ⊢ br 𝑙 : [𝑡*1 𝑡
*] → [𝑡*2]

Note: The label index space in the context 𝐶 contains the most recent label type first, so that 𝐶.labels[𝑙] performs
a relative lookup as expected.

The br instruction is stack-polymorphic.

3.4. Instructions 65

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

br_if 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let [𝑡*] be the result type 𝐶.labels[𝑙].

• Then the instruction is valid with type [𝑡* i32] → [𝑡*].

𝐶.labels[𝑙] = [𝑡*]

𝐶 ⊢ br_if 𝑙 : [𝑡* i32] → [𝑡*]

Note: The label index space in the context 𝐶 contains the most recent label type first, so that 𝐶.labels[𝑙] performs
a relative lookup as expected.

br_table 𝑙* 𝑙𝑁

• The label 𝐶.labels[𝑙𝑁] must be defined in the context.

• For each label 𝑙𝑖 in 𝑙*, the label 𝐶.labels[𝑙𝑖] must be defined in the context.

• There must be a sequence 𝑡* of value types, such that:

– The result type [𝑡*] matches 𝐶.labels[𝑙𝑁].

– For all 𝑙𝑖 in 𝑙*, the result type [𝑡*] matches 𝐶.labels[𝑙𝑖].

• Then the instruction is valid with any valid type of the form [𝑡*1 𝑡
* i32] → [𝑡*2].

(𝐶 ⊢ [𝑡*] ≤ 𝐶.labels[𝑙])* 𝐶 ⊢ [𝑡*] ≤ 𝐶.labels[𝑙𝑁] 𝐶 ⊢ [𝑡*1 𝑡
* i32] → [𝑡*2] ok

𝐶 ⊢ br_table 𝑙* 𝑙𝑁 : [𝑡*1 𝑡
* i32] → [𝑡*2]

Note: The label index space in the context 𝐶 contains the most recent label first, so that 𝐶.labels[𝑙𝑖] performs a
relative lookup as expected.

The br_table instruction is stack-polymorphic.

Furthermore, the result type [𝑡*] is also chosen non-deterministically in this rule. Although it may seem necessary
to compute [𝑡*] as the greatest lower bound of all label types in practice, a simple linear algorithm does not require
this.

br_on_null 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let [𝑡*] be the result type 𝐶.labels[𝑙].

• Then the instruction is valid with type [𝑡* (ref null ht)] → [𝑡* (ref ht)] for any valid heap type ht .

𝐶.labels[𝑙] = [𝑡*] 𝐶 ⊢ ht ok
𝐶 ⊢ br_on_null 𝑙 : [𝑡* (ref null ht)] → [𝑡* (ref ht)]

66 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

br_on_non_null 𝑙

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let [𝑡′*] be the result type 𝐶.labels[𝑙].

• The result type [𝑡′*] must contain at least one type.

• Let the value type 𝑡𝑙 be the last element in the sequence 𝑡′*, and [𝑡*] the remainder of the sequence preceding
it.

• The value type 𝑡𝑙 must be a reference type of the form ref null? ht .

• Then the instruction is valid with type [𝑡* (ref null ht)] → [𝑡*].

𝐶.labels[𝑙] = [𝑡* (ref ht)]

𝐶 ⊢ br_on_non_null 𝑙 : [𝑡* (ref null ht)] → [𝑡*]

br_on_cast 𝑙 rt1 rt2

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let [𝑡*𝑙] be the result type 𝐶.labels[𝑙].

• The type sequence 𝑡*𝑙 must be of the form 𝑡* rt ′.

• The reference type rt1 must be valid.

• The reference type rt2 must be valid.

• The reference type rt2 must match rt1.

• The reference type rt2 must match rt ′.

• Let rt ′1 be the type difference between rt1 and rt2.

• Then the instruction is valid with type [𝑡* rt1] → [𝑡* rt ′1].

𝐶.labels[𝑙] = [𝑡* rt] 𝐶 ⊢ rt1 ok 𝐶 ⊢ rt2 ok 𝐶 ⊢ rt2 ≤ rt1 𝐶 ⊢ rt2 ≤ rt

𝐶 ⊢ br_on_cast 𝑙 rt1 rt2 : [𝑡* rt1] → [𝑡* rt1 ∖ rt2]

br_on_cast_fail 𝑙 rt1 rt2

• The label 𝐶.labels[𝑙] must be defined in the context.

• Let [𝑡*𝑙] be the result type 𝐶.labels[𝑙].

• The type sequence 𝑡*𝑙 must be of the form 𝑡* rt ′.

• The reference type rt1 must be valid.

• The reference type rt2 must be valid.

• The reference type rt2 must match rt1.

• Let rt ′1 be the type difference between rt1 and rt2.

• The reference type rt ′1 must match rt ′.

• Then the instruction is valid with type [𝑡* rt1] → [𝑡* rt2].

𝐶.labels[𝑙] = [𝑡* rt] 𝐶 ⊢ rt1 ok 𝐶 ⊢ rt2 ok 𝐶 ⊢ rt2 ≤ rt1 𝐶 ⊢ rt1 ∖ rt2 ≤ rt

𝐶 ⊢ br_on_cast_fail 𝑙 rt1 rt2 : [𝑡* rt1] → [𝑡* rt2]

3.4. Instructions 67

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

return

• The return type 𝐶.return must not be absent in the context.

• Let [𝑡*] be the result type of 𝐶.return.

• Then the instruction is valid with any valid type of the form [𝑡*1] → [𝑡*2].

𝐶.return = [𝑡*] 𝐶 ⊢ [𝑡*1 𝑡
*] → [𝑡*2] ok

𝐶 ⊢ return : [𝑡*1 𝑡
*] → [𝑡*2]

Note: The return instruction is stack-polymorphic.

𝐶.return is absent (set to 𝜖) when validating an expression that is not a function body. This differs from it being
set to the empty result type ([𝜖]), which is the case for functions not returning anything.

call 𝑥

• The function 𝐶.funcs[𝑥] must be defined in the context.

• The expansion of 𝐶.funcs[𝑥] must be a function type func [𝑡*1] → [𝑡*2].

• Then the instruction is valid with type [𝑡*1] → [𝑡*2].

expand(𝐶.funcs[𝑥]) = func [𝑡*1] → [𝑡*2]

𝐶 ⊢ call 𝑥 : [𝑡*1] → [𝑡*2]

call_ref 𝑥

• The type 𝐶.types[𝑥] must be defined in the context.

• The expansion of 𝐶.funcs[𝑥] must be a function type func [𝑡*1] → [𝑡*2].

• Then the instruction is valid with type [𝑡*1 (ref null 𝑥)] → [𝑡*2].

expand(𝐶.types[𝑥]) = func [𝑡*1] → [𝑡*2]

𝐶 ⊢ call_ref 𝑥 : [𝑡*1 (ref null 𝑥)] → [𝑡*2]

call_indirect 𝑥 𝑦

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits 𝑡 be the table type 𝐶.tables[𝑥].

• The reference type 𝑡 must match type ref null func.

• The type 𝐶.types[𝑦] must be defined in the context.

• The expansion of 𝐶.types[𝑦] must be a function type func [𝑡*1] → [𝑡*2].

• Then the instruction is valid with type [𝑡*1 i32] → [𝑡*2].

𝐶.tables[𝑥] = limits 𝑡 𝐶 ⊢ 𝑡 ≤ ref null func expand(𝐶.types[𝑦]) = func [𝑡*1] → [𝑡*2]

𝐶 ⊢ call_indirect 𝑥 𝑦 : [𝑡*1 i32] → [𝑡*2]

68 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

return_call 𝑥

• The return type 𝐶.return must not be absent in the context.

• The function 𝐶.funcs[𝑥] must be defined in the context.

• The expansion of 𝐶.funcs[𝑥] must be a function type func [𝑡*1] → [𝑡*2].

• The result type [𝑡*2] must match 𝐶.return.

• Then the instruction is valid with any valid type [𝑡*3 𝑡*1] → [𝑡*4].

expand(𝐶.funcs[𝑥]) = func [𝑡*1] → [𝑡*2] 𝐶 ⊢ [𝑡*2] ≤ 𝐶.return 𝐶 ⊢ [𝑡*3 𝑡
*
1] → [𝑡*4] ok

𝐶 ⊢ return_call 𝑥 : [𝑡*3 𝑡
*
1] → [𝑡*4]

Note: The return_call instruction is stack-polymorphic.

return_call_ref 𝑥

• The type 𝐶.types[𝑥] must be defined in the context.

• The expansion of 𝐶.types[𝑥] must be a function type func [𝑡*1] → [𝑡*2].

• The result type [𝑡*2] must match 𝐶.return.

• Then the instruction is valid with any valid type [𝑡*3 𝑡*1 (ref null 𝑥)] → [𝑡*4].

expand(𝐶.types[𝑥]) = func [𝑡*1] → [𝑡*2] 𝐶 ⊢ [𝑡*2] ≤ 𝐶.return 𝐶 ⊢ [𝑡*3 𝑡
*
1 (ref null 𝑥)] → [𝑡*4] ok

𝐶 ⊢ call_ref 𝑥 : [𝑡*3 𝑡
*
1 (ref null 𝑥)] → [𝑡*4]

Note: The return_call_ref instruction is stack-polymorphic.

return_call_indirect 𝑥 𝑦

• The return type 𝐶.return must not be empty in the context.

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits 𝑡 be the table type 𝐶.tables[𝑥].

• The reference type 𝑡 must match type ref null func.

• The type 𝐶.types[𝑦] must be defined in the context.

• The expansion of 𝐶.types[𝑦] must be a function type func [𝑡*1] → [𝑡*2].

• The result type [𝑡*2] must match 𝐶.return.

• Then the instruction is valid with type [𝑡*3 𝑡*1 i32] → [𝑡*4], for any sequences of value types 𝑡*3 and 𝑡*4.

𝐶.tables[𝑥] = limits 𝑡 𝐶 ⊢ 𝑡 ≤ ref null func expand(𝐶.types[𝑦]) = func [𝑡*1] → [𝑡*2] 𝐶 ⊢ [𝑡*2] ≤ 𝐶.return 𝐶 ⊢ [𝑡*3 𝑡
*
1 i32] → [𝑡*4] ok

𝐶 ⊢ return_call_indirect 𝑥 𝑦 : [𝑡*3 𝑡
*
1 i32] → [𝑡*4]

Note: The return_call_indirect instruction is stack-polymorphic.

3.4. Instructions 69

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

throw 𝑥

• The tag 𝐶.tags[𝑥] must be defined in the context.

• Let [𝑡*] → [𝑡′
*
] be the tag type 𝐶.tags[𝑥].

• The result type [𝑡′*] must be empty.

• Then the instruction is valid with type [𝑡*1𝑡*] → [𝑡*2], for any sequences of value types 𝑡*1 and 𝑡*2.

𝐶.tags[𝑥] = [𝑡*] → []

𝐶 ⊢ throw 𝑥 : [𝑡*1 𝑡
*] → [𝑡*2]

Note: The throw instruction is stack-polymorphic.

throw_ref

• The instruction is valid with type [𝑡*1 exnref] → [𝑡*2], for any sequences of value types 𝑡*1 and 𝑡*2.

𝐶 ⊢ throw_ref : [𝑡*1 exnref] → [𝑡*2]

Note: The throw_ref instruction is stack-polymorphic.

3.4.12 Instruction Sequences

Typing of instruction sequences is defined recursively.

Empty Instruction Sequence: 𝜖

• The empty instruction sequence is valid with type [] → [].

𝐶 ⊢ 𝜖 : [] → []

Non-empty Instruction Sequence: instr instr ′
*

• The instruction instr must be valid with some type [𝑡*1] →𝑥*
1
[𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with:

– locals the same as in C, except that for every local index 𝑥 in 𝑥*
1, the local type locals[𝑥] has been

updated to initialization status set.

• Under the context 𝐶 ′, the instruction sequence instr ′* must be valid with some type [𝑡*2] →𝑥*
2
[𝑡*3].

• Then the combined instruction sequence is valid with type [𝑡*1] →𝑥*
1𝑥

*
2
[𝑡*3].

𝐶 ⊢ instr : [𝑡*1] →𝑥*
1
[𝑡*2] (𝐶.locals[𝑥1] = init 𝑡)*

𝐶 ′ ⊢ instr ′
*
: [𝑡*2] →𝑥*

2
[𝑡*3] 𝐶 ′ = 𝐶 (with 𝐶.locals[𝑥1] = set 𝑡)*

𝐶 ⊢ instr instr ′* : [𝑡*1] →𝑥*
1𝑥

*
2
[𝑡*2 𝑡

*
3]

70 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Subsumption for instr*

• The instruction sequence instr* must be valid with some type instrtype.

• The instruction type instrtype ′: must be a valid

• The instruction type instrtype must match the type instrtype ′.

• Then the instruction sequence instr* is also valid with type instrtype ′.

𝐶 ⊢ instr : instrtype 𝐶 ⊢ instrtype ′ ok 𝐶 ⊢ instrtype ≤ instrtype ′

𝐶 ⊢ instr* : instrtype ′

Note: In combination with the previous rule, subsumption allows to compose instructions whose types would not
directly fit otherwise. For example, consider the instruction sequence

(i32.const 1) (i32.const 1) i32.add

To type this sequence, its subsequence (i32.const 1) i32.add needs to be valid with an intermediate type. But the
direct type of (i32.const 1) is [] → [i32], not matching the two inputs expected by i32.add. The subsumption rule
allows to weaken the type of (i32.const 1) to the supertype [i32] → [i32 i32], such that it can be composed with
i32.add and yields the intermediate type [i32] → [i32] for the subsequence. That can in turn be composed with the
first constant.

Furthermore, subsumption allows to drop init variables 𝑥* from the instruction type in a context where they are
not needed, for example, at the end of the body of a block.

3.4.13 Expressions

Expressions expr are classified by result types of the form [𝑡*].

instr* end

• The instruction sequence instr* must be valid with type [] → [𝑡*].

• Then the expression is valid with result type [𝑡*].

𝐶 ⊢ instr* : [] → [𝑡*]

𝐶 ⊢ instr* end : [𝑡*]

Constant Expressions

• In a constant expression instr* end all instructions in instr* must be constant.

• A constant instruction instr must be:

– either of the form 𝑡.const 𝑐,

– or of the form inn.ibinop, where ibinop is limited to add, sub, or mul.

– or of the form ref.null,

– or of the form ref.i31,

– or of the form ref.func 𝑥,

– or of the form struct.new 𝑥,

– or of the form struct.new_default 𝑥,

– or of the form array.new 𝑥,

3.4. Instructions 71

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

– or of the form array.new_default 𝑥,

– or of the form array.new_fixed 𝑥,

– or of the form any.convert_extern,

– or of the form extern.convert_any,

– or of the form global.get 𝑥, in which case 𝐶.globals[𝑥] must be a global type of the form const 𝑡.

(𝐶 ⊢ instr const)*

𝐶 ⊢ instr* end const
𝐶 ⊢ 𝑡.const 𝑐 const ibinop ∈ {add, sub,mul}

𝐶 ⊢ inn.ibinop const

𝐶 ⊢ ref.null 𝑡 const 𝐶 ⊢ ref.i31 const 𝐶 ⊢ ref.func 𝑥 const

𝐶 ⊢ struct.new 𝑥 const 𝐶 ⊢ struct.new_default 𝑥 const

𝐶 ⊢ array.new 𝑥 const 𝐶 ⊢ array.new_default 𝑥 const 𝐶 ⊢ array.new_fixed 𝑥 const

𝐶 ⊢ any.convert_extern const 𝐶 ⊢ extern.convert_any const
𝐶.globals[𝑥] = const 𝑡

𝐶 ⊢ global.get 𝑥 const

Note: Currently, constant expressions occurring in globals are further constrained in that contained global.get
instructions are only allowed to refer to imported or previously defined globals. Constant expressions occurring in
tables may only have global.get instructions that refer to imported globals. This is enforced in the validation rule
for modules by constraining the context 𝐶 accordingly.

The definition of constant expression may be extended in future versions of WebAssembly.

3.5 Modules

Modules are valid when all the components they contain are valid. Furthermore, most definitions are themselves
classified with a suitable type.

3.5.1 Types

The sequence of types defined in a module is validated incrementally, yielding a suitable context.

type*

• If the sequence is empty, then:

– The context 𝐶 must be empty.

– Then the type sequence is valid.

• Otherwise:

– Let the recursive type rectype be the last element in the sequence.

– The sequence without rectype must be valid for some context 𝐶 ′.

– Let the type index 𝑥 be the length of 𝐶 ′.types, i.e., the first type index free in 𝐶 ′.

– Let the sequence of defined types deftype* be the result roll*𝑥(rectype) of rolling up into its sequence
of defined types.

72 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

– The recursive type rectype must be valid under the context 𝐶 for type index 𝑥.

– The current context 𝐶 be the same as 𝐶 ′, but with deftype* appended to types.

– Then the type sequence is valid.

{} ⊢ 𝜖 ok

𝐶 ′ ⊢ type* ok 𝐶 = 𝐶 ′ with types = 𝐶 ′.types roll*|𝐶′.types|(rectype) 𝐶 ⊢ rectype ok(|𝐶 ′.types|)
𝐶 ⊢ type* rectype ok

Note: Despite the appearance, the context 𝐶 is effectively an _output_ of this judgement.

3.5.2 Functions

Functions func are classified by defined types that expand to function types of the form func [𝑡*1] → [𝑡*2].

{type 𝑥, locals 𝑡*, body expr}

• The defined type 𝐶.types[𝑥] must be a function type.

• Let func [𝑡*1] → [𝑡*2] be the expansion of the defined type 𝐶.types[𝑥].

• For each local declared by a value type 𝑡 in 𝑡*:

– The local for type 𝑡 must be valid with local type localtype𝑖.

• Let localtype* be the concatenation of all localtype𝑖.

• Let 𝐶 ′ be the same context as 𝐶, but with:

– locals set to the sequence of value types (set 𝑡1)* localtype*, concatenating parameters and locals,

– labels set to the singular sequence containing only result type [𝑡*2].

– return set to the result type [𝑡*2].

• Under the context 𝐶 ′, the expression expr must be valid with type [𝑡*2].

• Then the function definition is valid with type 𝐶.types[𝑥].

expand(𝐶.types[𝑥]) = func [𝑡*1] → [𝑡*2] (𝐶 ⊢ {type 𝑡} : init 𝑡)* 𝐶, locals (set 𝑡1)
* (init 𝑡)*, labels [𝑡*2], return [𝑡*2] ⊢ expr : [𝑡*2]

𝐶 ⊢ {type 𝑥, locals {type 𝑡}*, body expr} : 𝐶.types[𝑥]

3.5.3 Locals

Locals are classified with local types.

{type valtype}

• The value type valtype must be valid.

• If valtype is defaultable, then:

– The local is valid with local type set valtype.

• Else:

– The local is valid with local type unset valtype.

3.5. Modules 73

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝐶 ⊢ 𝑡 ok 𝐶 ⊢ 𝑡 defaultable
𝐶 ⊢ {type 𝑡} : set 𝑡

𝐶 ⊢ 𝑡 ok
𝐶 ⊢ {type 𝑡} : unset 𝑡

Note: For cases where both rules are applicable, the former yields the more permissable type.

3.5.4 Tables

Tables table are classified by table types.

{type tabletype, init expr}

• The table type tabletype must be valid.

• Let 𝑡 be the element reference type of tabletype .

• The expression expr must be valid with result type [𝑡].

• The expression expr must be constant.

• Then the table definition is valid with type tabletype .
𝐶 ⊢ tabletype ok tabletype = limits 𝑡 𝐶 ⊢ expr : [𝑡] 𝐶 ⊢ expr const

𝐶 ⊢ {type tabletype, init expr} : tabletype

3.5.5 Memories

Memories mem are classified by memory types.

{type memtype}

• The memory type memtype must be valid.

• Then the memory definition is valid with type memtype .
𝐶 ⊢ memtype ok

𝐶 ⊢ {type memtype} : memtype

3.5.6 Globals

Globals global are classified by global types of the form mut 𝑡.

Sequences of globals are handled incrementally, such that each definition has access to previous definitions.

74 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

{type mut 𝑡, init expr}

• The global type mut 𝑡 must be valid.

• The expression expr must be valid with result type [𝑡].

• The expression expr must be constant.

• Then the global definition is valid with type mut 𝑡.
𝐶 ⊢ mut 𝑡 ok 𝐶 ⊢ expr : [𝑡] 𝐶 ⊢ expr const

𝐶 ⊢ {type mut 𝑡, init expr} : mut 𝑡

global*

• If the sequence is empty, then it is valid with the empty sequence of global types.

• Else:

– The first global definition must be valid with some type global type gt1.

– Let 𝐶 ′ be the same context as 𝐶, but with the global type gt1 apppended to the globals vector.

– Under context 𝐶 ′, the remainder of the sequence must be valid with some sequence gt* of global types.

– Then the sequence is valid with the sequence of global types consisting of gt1 prepended to gt*.

𝐶 ⊢ 𝜖 : 𝜖

𝐶 ⊢ global1 : gt1 𝐶 ⊕ {globals gt1} ⊢ global* : gt*

𝐶 ⊢ global1 global* : gt1 gt
*

3.5.7 Tags

Tags tag are classified by their tag type, each containing an index to a function type with empty result.

{type 𝑥}

• The type 𝐶.types[𝑥] must be defined in the context.

• Let [𝑡*] → [𝑡′
*
] be the function type 𝐶.types[𝑥].

• The sequence 𝑡′* must be empty.

• Then the tag definition is valid with tag type [𝑡*] → [].

𝐶.types[𝑥] = [𝑡*] → []

𝐶 ⊢ {type 𝑥} : [𝑡*] → []

Note: Future versions of WebAssembly might allow non-empty return types for tags.

3.5. Modules 75

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.5.8 Element Segments

Element segments elem are classified by the reference type of their elements.

{type 𝑡, init 𝑒*,mode elemmode}

• The reference type 𝑡 must be valid.

• For each 𝑒𝑖 in 𝑒*:

– The expression 𝑒𝑖 must be valid with some result type [𝑡].

– The expression 𝑒𝑖 must be constant.

• The element mode elemmode must be valid with some reference type 𝑡′.

• The reference type 𝑡 must match the reference type 𝑡′.

• Then the element segment is valid with reference type 𝑡.
𝐶 ⊢ 𝑡 ok (𝐶 ⊢ 𝑒 : [𝑡])* (𝐶 ⊢ 𝑒 const)* 𝐶 ⊢ elemmode : 𝑡′ 𝐶 ⊢ 𝑡 ≤ 𝑡′

𝐶 ⊢ {type 𝑡, init 𝑒*,mode elemmode} : 𝑡

passive

• The element mode is valid with any valid reference type.
𝐶 ⊢ reftype ok

𝐶 ⊢ passive : reftype

active {table 𝑥, offset expr}

• The table 𝐶.tables[𝑥] must be defined in the context.

• Let limits 𝑡 be the table type 𝐶.tables[𝑥].

• The expression expr must be valid with result type [i32].

• The expression expr must be constant.

• Then the element mode is valid with reference type 𝑡.

𝐶.tables[𝑥] = limits 𝑡
𝐶 ⊢ expr : [i32] 𝐶 ⊢ expr const
𝐶 ⊢ active {table 𝑥, offset expr} : 𝑡

declarative

• The element mode is valid with any valid reference type.
𝐶 ⊢ reftype ok

𝐶 ⊢ declarative : reftype

76 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.5.9 Data Segments

Data segments data are not classified by any type but merely checked for well-formedness.

{init 𝑏*,mode datamode}

• The data mode datamode must be valid.

• Then the data segment is valid.
𝐶 ⊢ datamode ok

𝐶 ⊢ {init 𝑏*,mode datamode} ok

passive

• The data mode is valid.

𝐶 ⊢ passive ok

active {memory 𝑥, offset expr}

• The memory 𝐶.mems[𝑥] must be defined in the context.

• The expression expr must be valid with result type [i32].

• The expression expr must be constant.

• Then the data mode is valid.
𝐶.mems[𝑥] = limits 𝐶 ⊢ expr : [i32] 𝐶 ⊢ expr const

𝐶 ⊢ active {memory 𝑥, offset expr} ok

3.5.10 Start Function

Start function declarations start are not classified by any type.

{func 𝑥}

• The function 𝐶.funcs[𝑥] must be defined in the context.

• The expansion of 𝐶.funcs[𝑥] must be a function type func [] → [].

• Then the start function is valid.
expand(𝐶.funcs[𝑥]) = func [] → []

𝐶 ⊢ {func 𝑥} ok

3.5. Modules 77

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

3.5.11 Exports

Exports export and export descriptions exportdesc are classified by their external type.

{name name, desc exportdesc}

• The export description exportdesc must be valid with external type externtype.

• Then the export is valid with external type externtype.
𝐶 ⊢ exportdesc : externtype

𝐶 ⊢ {name name, desc exportdesc} : externtype

func 𝑥

• The function 𝐶.funcs[𝑥] must be defined in the context.

• Let dt be the defined type 𝐶.funcs[𝑥].

• Then the export description is valid with external type func dt .
𝐶.funcs[𝑥] = dt

𝐶 ⊢ func 𝑥 : func dt

table 𝑥

• The table 𝐶.tables[𝑥] must be defined in the context.

• Then the export description is valid with external type table 𝐶.tables[𝑥].

𝐶.tables[𝑥] = tabletype

𝐶 ⊢ table 𝑥 : table tabletype

mem 𝑥

• The memory 𝐶.mems[𝑥] must be defined in the context.

• Then the export description is valid with external type mem 𝐶.mems[𝑥].

𝐶.mems[𝑥] = memtype

𝐶 ⊢ mem 𝑥 : mem memtype

global 𝑥

• The global 𝐶.globals[𝑥] must be defined in the context.

• Then the export description is valid with external type global 𝐶.globals[𝑥].

𝐶.globals[𝑥] = globaltype

𝐶 ⊢ global 𝑥 : global globaltype

78 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

tag 𝑥

• The tag 𝐶.tags[𝑥] must be defined in the context.

• Then the export description is valid with external type tag 𝐶.tags[𝑥].

𝐶.tags[𝑥] = tagtype

𝐶 ⊢ tag 𝑥 : tag tagtype

3.5.12 Imports

Imports import and import descriptions importdesc are classified by external types.

{module name1, name name2, desc importdesc}

• The import description importdesc must be valid with type externtype.

• Then the import is valid with type externtype.
𝐶 ⊢ importdesc : externtype

𝐶 ⊢ {module name1, name name2, desc importdesc} : externtype

func 𝑥

• The defined type 𝐶.types[𝑥] must be a function type.

• Then the import description is valid with type func 𝐶.types[𝑥].

expand(𝐶.types[𝑥]) = func functype

𝐶 ⊢ func 𝑥 : func 𝐶.types[𝑥]

table tabletype

• The table type tabletype must be valid.

• Then the import description is valid with type table tabletype.
𝐶 ⊢ tabletype ok

𝐶 ⊢ table tabletype : table tabletype

mem memtype

• The memory type memtype must be valid.

• Then the import description is valid with type mem memtype.
𝐶 ⊢ memtype ok

𝐶 ⊢ mem memtype : mem memtype

3.5. Modules 79

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

global globaltype

• The global type globaltype must be valid.

• Then the import description is valid with type global globaltype.
𝐶 ⊢ globaltype ok

𝐶 ⊢ global globaltype : global globaltype

tag tag

• Let {type 𝑥} be the tag tag .

• The type 𝐶.types[𝑥] must be defined in the context.

• The tag type 𝐶.types[𝑥] must be a valid tag type.

• Then the import description is valid with type tag 𝐶.types[𝑥].

⊢ 𝐶.types[𝑥] ok
𝐶 ⊢ tag {type 𝑥} : tag 𝐶.types[𝑥]

3.5.13 Modules

Modules are classified by their mapping from the external types of their imports to those of their exports.

A module is entirely closed, that is, its components can only refer to definitions that appear in the module itself.
Consequently, no initial context is required. Instead, the context 𝐶 for validation of the module’s content is con-
structed from the definitions in the module.

The external types classifying a module may contain free type indices that refer to types defined within the module.

• Let module be the module to validate.

• The types module.types must be valid yielding a context 𝐶0.

• Let 𝐶 be a context where:

– 𝐶.types is 𝐶0.types,

– 𝐶.funcs is funcs(it*) concatenated with dt*, with the import’s external types it* and the internal de-
fined types dt* as determined below,

– 𝐶.tables is tables(it*) concatenated with tt*, with the import’s external types it* and the internal table
types tt* as determined below,

– 𝐶.mems is mems(it*) concatenated with mt*, with the import’s external types it* and the internal
memory types mt* as determined below,

– 𝐶.globals is globals(it*) concatenated with gt*, with the import’s external types it* and the internal
global types gt* as determined below,

– 𝐶.tags is tags(it*) concatenated with ht*, with the import’s external types it* and the internal tag
types ht* as determined below,

– 𝐶.elems is rt* as determined below,

– 𝐶.datas is ok𝑛, where 𝑛 is the length of the vector module.datas,

– 𝐶.locals is empty,

– 𝐶.labels is empty,

– 𝐶.return is empty.

– 𝐶.refs is the set funcidx(module with funcs = 𝜖 with start = 𝜖), i.e., the set of function indices
occurring in the module, except in its functions or start function.

80 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

• Let 𝐶 ′ be the context where:

– 𝐶 ′.globals is the sequence globals(it*),

– 𝐶 ′.types is the same as 𝐶.types,

– 𝐶 ′.funcs is the same as 𝐶.funcs,

– 𝐶 ′.tables is the same as 𝐶.tables,

– 𝐶 ′.mems is the same as 𝐶.mems,

– 𝐶 ′.refs is the same as 𝐶.refs,

– all other fields are empty.

• Under the context 𝐶 ′:

– The sequence module.globals of globals must be valid with a sequence gt* of global types.

– For each table𝑖 in module.tables, the definition table𝑖 must be valid with a table type tt 𝑖.

– For each mem𝑖 in module.mems, the definition mem𝑖 must be valid with a memory type mt 𝑖.

• Under the context 𝐶:

– For each func𝑖 in module.funcs, the definition func𝑖 must be valid with a defined type dt 𝑖.

– For each tag 𝑖 in module.tags, the definition tag 𝑖 must be valid with a tag type ht 𝑖.

– For each elem𝑖 in module.elems, the segment elem𝑖 must be valid with reference type rt 𝑖.

– For each data𝑖 in module.datas, the segment data𝑖 must be valid.

– If module.start is non-empty, then module.start must be valid.

– For each import 𝑖 in module.imports, the segment import 𝑖 must be valid with an external type it 𝑖.

– For each export 𝑖 in module.exports, the segment export 𝑖 must be valid with external type et 𝑖.

• Let dt* be the concatenation of the internal function types dt 𝑖, in index order.

• Let tt* be the concatenation of the internal table types tt 𝑖, in index order.

• Let mt* be the concatenation of the internal memory types mt 𝑖, in index order.

• Let gt* be the concatenation of the internal global types gt 𝑖, in index order.

• Let ht* be the concatenation of the internal tag types ht 𝑖, in index order.

• Let rt* be the concatenation of the reference types rt 𝑖, in index order.

• Let it* be the concatenation of external types it 𝑖 of the imports, in index order.

• Let et* be the concatenation of external types et 𝑖 of the exports, in index order.

• The length of 𝐶.mems must not be larger than 1.

• All export names export 𝑖.name must be different.

• Then the module is valid with external types it* → et*.

𝐶0 ⊢ type* ok 𝐶 ′ ⊢ global* : gt* (𝐶 ′ ⊢ table : tt)* (𝐶 ′ ⊢ mem : mt)* (𝐶 ⊢ func : dt)* (𝐶 ⊢ tag : ht)*

(𝐶 ⊢ elem : rt)* (𝐶 ⊢ data ok)𝑛 (𝐶 ⊢ start ok)? (𝐶 ⊢ import : it)*

idt* = funcs(it*) itt* = tables(it*) imt* = mems(it*)
igt* = globals(it*) iht* = tags(it*)

𝑥* = funcidx(module with funcs = 𝜖 with start = 𝜖)
𝐶 = {types 𝐶0.types, funcs idt

* dt*, tables itt* tt*,mems imt* mt*, globals igt* gt*, tags iht* ht*, elems rt*, datas ok𝑛, refs 𝑥*}
𝐶 ′ = {types 𝐶0.types, globals igt

, funcs (𝐶.funcs), tables (𝐶.tables),mems (𝐶.mems), refs (𝐶.refs)} (export .name) disjoint
module = {types type*, funcs func*, tables table*,mems mem*, globals global*, tags tag*,

elems elem*, datas data𝑛, start start?, imports import*, exports export*}
⊢ module : it* → et*

3.5. Modules 81

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Note: All functions in a module are mutually recursive. Consequently, the definition of the context𝐶 in this rule is
recursive: it depends on the outcome of validation of the function, table, memory, and global definitions contained
in the module, which itself depends on 𝐶. However, this recursion is just a specification device. All types needed
to construct 𝐶 can easily be determined from a simple pre-pass over the module that does not perform any actual
validation.

Globals, however, are not recursive but evaluated sequentially, such that each constant expressions only has access
to imported or previously defined globals.

82 Chapter 3. Validation

CHAPTER 4

Execution

4.1 Conventions

WebAssembly code is executed when instantiating a module or invoking an exported function on the resulting
module instance.

Execution behavior is defined in terms of an abstract machine that models the program state. It includes a stack,
which records operand values and control constructs, and an abstract store containing global state.

For each instruction, there is a rule that specifies the effect of its execution on the program state. Furthermore,
there are rules describing the instantiation of a module. As with validation, all rules are given in two equivalent
forms:

1. In prose, describing the execution in intuitive form.

2. In formal notation, describing the rule in mathematical form.18

Note: As with validation, the prose and formal rules are equivalent, so that understanding of the formal notation
is not required to read this specification. The formalism offers a more concise description in notation that is used
widely in programming languages semantics and is readily amenable to mathematical proof.

4.1.1 Prose Notation

Execution is specified by stylised, step-wise rules for each instruction of the abstract syntax. The following con-
ventions are adopted in stating these rules.

• The execution rules implicitly assume a given store 𝑆.

• The execution rules also assume the presence of an implicit stack that is modified by pushing or popping
values, labels, and frames.

• Certain rules require the stack to contain at least one frame. The most recent frame is referred to as the
current frame.

18 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan Gohman, Luke
Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssemblyPage 83, 19. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

19 https://dl.acm.org/citation.cfm?doid=3062341.3062363

83

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

• Both the store and the current frame are mutated by replacing some of their components. Such replacement
is assumed to apply globally.

• The execution of an instruction may trap, in which case the entire computation is aborted and no further
modifications to the store are performed by it. (Other computations can still be initiated afterwards.)

• The execution of an instruction may also end in a jump to a designated target, which defines the next instruc-
tion to execute.

• Execution can enter and exit instruction sequences that form blocks.

• Instruction sequences are implicitly executed in order, unless a trap or jump occurs, or an exception is thrown.

• In various places the rules contain assertions expressing crucial invariants about the program state.

4.1.2 Formal Notation

Note: This section gives a brief explanation of the notation for specifying execution formally. For the interested
reader, a more thorough introduction can be found in respective text books.20

The formal execution rules use a standard approach for specifying operational semantics, rendering them into
reduction rules. Every rule has the following general form:

configuration →˓ configuration

A configuration is a syntactic description of a program state. Each rule specifies one step of execution. As long
as there is at most one reduction rule applicable to a given configuration, reduction – and thereby execution – is
deterministic. WebAssembly has only very few exceptions to this, which are noted explicitly in this specification.

For WebAssembly, a configuration typically is a tuple (𝑆;𝐹 ; instr*) consisting of the current store 𝑆, the call
frame 𝐹 of the current function, and the sequence of instructions that is to be executed. (A more precise definition
is given later.)

To avoid unnecessary clutter, the store 𝑆 and the frame 𝐹 are omitted from reduction rules that do not touch them.

There is no separate representation of the stack. Instead, it is conveniently represented as part of the configuration’s
instruction sequence. In particular, values are defined to coincide with const instructions, and a sequence of const
instructions can be interpreted as an operand “stack” that grows to the right.

Note: For example, the reduction rule for the i32.add instruction can be given as follows:

(i32.const 𝑛1) (i32.const 𝑛2) i32.add →˓ (i32.const (𝑛1 + 𝑛2) mod 232)

Per this rule, two const instructions and the add instruction itself are removed from the instruction stream and
replaced with one new const instruction. This can be interpreted as popping two values off the stack and pushing
the result.

When no result is produced, an instruction reduces to the empty sequence:

nop →˓ 𝜖

Labels and frames are similarly defined to be part of an instruction sequence.

The order of reduction is determined by the definition of an appropriate evaluation context.

Reduction terminates when no more reduction rules are applicable. Soundness of the WebAssembly type system
guarantees that this is only the case when the original instruction sequence has either been reduced to a sequence of

20 For example: Benjamin Pierce. Types and Programming LanguagesPage 84, 21. The MIT Press 2002
21 https://www.cis.upenn.edu/~bcpierce/tapl/

84 Chapter 4. Execution

https://www.cis.upenn.edu/~bcpierce/tapl/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

const instructions, which can be interpreted as the values of the resulting operand stack, or if a trap or an uncaught
exception occurred.

Note: For example, the following instruction sequence,

(f64.const 𝑥1) (f64.const 𝑥2) f64.neg (f64.const 𝑥3) f64.add f64.mul

terminates after three steps:

(f64.const 𝑥1) (f64.const 𝑥2) f64.neg (f64.const 𝑥3) f64.add f64.mul
→˓ (f64.const 𝑥1) (f64.const 𝑥4) (f64.const 𝑥3) f64.add f64.mul
→˓ (f64.const 𝑥1) (f64.const 𝑥5) f64.mul
→˓ (f64.const 𝑥6)

where 𝑥4 = −𝑥2 and 𝑥5 = −𝑥2 + 𝑥3 and 𝑥6 = 𝑥1 · (−𝑥2 + 𝑥3).

4.2 Runtime Structure

Store, stack, and other runtime structure forming the WebAssembly abstract machine, such as values or module
instances, are made precise in terms of additional auxiliary syntax.

4.2.1 Values

WebAssembly computations manipulate values of either the four basic number types, i.e., integers and floating-
point data of 32 or 64 bit width each, or vectors of 128 bit width, or of reference type.

In most places of the semantics, values of different types can occur. In order to avoid ambiguities, values are
therefore represented with an abstract syntax that makes their type explicit. It is convenient to reuse the same
notation as for the const instructions and ref.null producing them.

References other than null are represented with additional administrative instructions. They either are scalar ref-
erences, containing a 31-bit integer, structure references, pointing to a specific structure address, array references,
pointing to a specific array address, function references, pointing to a specific function address, exception refer-
ences, pointing to a specific exception address, or host references pointing to an uninterpreted form of host address
defined by the embedder. Any of the aformentioned references can furthermore be wrapped up as an external
reference.

num ::= i32.const i32
| i64.const i64
| f32.const f32
| f64.const f64

vec ::= v128.const i128
ref ::= ref.null (absheaptype | deftype)

| ref.i31 u31
| ref.struct structaddr
| ref.array arrayaddr
| ref.func funcaddr
| ref.exn exnaddr
| ref.host hostaddr
| ref.extern ref

val ::= num | vec | ref

Note: Future versions of WebAssembly may add additional forms of reference.

4.2. Runtime Structure 85

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Value types can have an associated default value; it is the respective value 0 for number types, 0 for vector types,
and null for nullable reference types. For other references, no default value is defined, default𝑡 hence is an optional
value val?.

default𝑡 = 𝑡.const 0 (if 𝑡 = numtype)
default𝑡 = 𝑡.const 0 (if 𝑡 = vectype)
default𝑡 = ref.null 𝑡 (if 𝑡 = (ref null heaptype))
default𝑡 = 𝜖 (if 𝑡 = (ref heaptype))

Convention

• The meta variable 𝑟 ranges over reference values where clear from context.

4.2.2 Results

A result is the outcome of a computation. It is either a sequence of values, an uncaught exception, or a trap.

result ::= val*

| 𝑇 [(ref.exn exnaddr) throw_ref]
| trap

4.2.3 Store

The store represents all global state that can be manipulated by WebAssembly programs. It consists of the runtime
representation of all instances of functions, tables, memories, globals, tags, element segments, data segments, and
structures, arrays or exceptions that have been allocated during the life time of the abstract machine.22

It is an invariant of the semantics that no element or data instance is addressed from anywhere else but the owning
module instances.

Syntactically, the store is defined as a record listing the existing instances of each category:

store ::= { funcs funcinst*,
tables tableinst*,
mems meminst*,
globals globalinst*,
tags taginst*,
elems eleminst*,
datas datainst*,
structs structinst*,
arrays arrayinst*,
exns exninst* }

Convention

• The meta variable 𝑆 ranges over stores where clear from context.
22 In practice, implementations may apply techniques like garbage collection or reference counting to remove objects from the store that are

no longer referenced. However, such techniques are not semantically observable, and hence outside the scope of this specification.

86 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.2.4 Addresses

Function instances, table instances, memory instances, global instances, tag instances, element instances, data
instances and structure, array instances or exception instances in the store are referenced with abstract addresses.
These are simply indices into the respective store component. In addition, an embedder may supply an uninterpreted
set of host addresses.

addr ::= 0 | 1 | 2 | . . .
funcaddr ::= addr
tableaddr ::= addr
memaddr ::= addr
globaladdr ::= addr
tagaddr ::= addr
elemaddr ::= addr
dataaddr ::= addr
structaddr ::= addr
arrayaddr ::= addr
exnaddr ::= addr
hostaddr ::= addr

An embedder may assign identity to exported store objects corresponding to their addresses, even where this iden-
tity is not observable from within WebAssembly code itself (such as for function instances or immutable globals).

Note: Addresses are dynamic, globally unique references to runtime objects, in contrast to indices, which are
static, module-local references to their original definitions. A memory address memaddr denotes the abstract
address of a memory instance in the store, not an offset inside a memory instance.

There is no specific limit on the number of allocations of store objects, hence logical addresses can be arbitrarily
large natural numbers.

Conventions

• The notation addr(𝐴) denotes the set of addresses from address space addr occurring free in 𝐴. We some-
times reinterpret this set as the vector of its elements.

4.2.5 Module Instances

A module instance is the runtime representation of a module. It is created by instantiating a module, and collects
runtime representations of all entities that are imported, defined, or exported by the module.

moduleinst ::= { types deftype*,
funcaddrs funcaddr*,
tableaddrs tableaddr*,
memaddrs memaddr*,
globaladdrs globaladdr*,
tagaddrs tagaddr*,
elemaddrs elemaddr*,
dataaddrs dataaddr*,
exports exportinst* }

Each component references runtime instances corresponding to respective declarations from the original module
– whether imported or defined – in the order of their static indices. Function instances, table instances, memory
instances, global instances, and tag instances are referenced with an indirection through their respective addresses
in the store.

It is an invariant of the semantics that all export instances in a given module instance have different names.

4.2. Runtime Structure 87

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.2.6 Function Instances

A function instance is the runtime representation of a function. It effectively is a closure of the original function
over the runtime module instance of its originating module. The module instance is used to resolve references to
other definitions during execution of the function.

funcinst ::= {type deftype,module moduleinst , code func}
| {type deftype, hostcode hostfunc}

hostfunc ::= . . .

A host function is a function expressed outside WebAssembly but passed to a module as an import. The definition
and behavior of host functions are outside the scope of this specification. For the purpose of this specification, it
is assumed that when invoked, a host function behaves non-deterministically, but within certain constraints that
ensure the integrity of the runtime.

Note: Function instances are immutable, and their identity is not observable by WebAssembly code. However,
the embedder might provide implicit or explicit means for distinguishing their addresses.

4.2.7 Table Instances

A table instance is the runtime representation of a table. It records its type and holds a vector of reference values.

tableinst ::= {type tabletype, elem vec(ref)}

Table elements can be mutated through table instructions, the execution of an active element segment, or by external
means provided by the embedder.

It is an invariant of the semantics that all table elements have a type matching the element type of tabletype . It
also is an invariant that the length of the element vector never exceeds the maximum size of tabletype , if present.

4.2.8 Memory Instances

A memory instance is the runtime representation of a linear memory. It records its type and holds a vector of bytes.

meminst ::= {type memtype, data vec(byte)}

The length of the vector always is a multiple of the WebAssembly page size, which is defined to be the constant
65536 – abbreviated 64Ki.

The bytes can be mutated through memory instructions, the execution of an active data segment, or by external
means provided by the embedder.

It is an invariant of the semantics that the length of the byte vector, divided by page size, never exceeds the maximum
size of memtype , if present.

4.2.9 Global Instances

A global instance is the runtime representation of a global variable. It records its type and holds an individual
value.

globalinst ::= {type globaltype, value val}

The value of mutable globals can be mutated through variable instructions or by external means provided by the
embedder.

It is an invariant of the semantics that the value has a type matching the value type of globaltype.

88 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.2.10 Tag Instances

A tag instance is the runtime representation of a tag definition. It records the type of the tag.

taginst ::= {type tagtype}

4.2.11 Element Instances

An element instance is the runtime representation of an element segment. It holds a vector of references and their
common type.

eleminst ::= {type reftype, elem vec(ref)}

4.2.12 Data Instances

An data instance is the runtime representation of a data segment. It holds a vector of bytes.

datainst ::= {data vec(byte)}

4.2.13 Export Instances

An export instance is the runtime representation of an export. It defines the export’s name and the associated
external value.

exportinst ::= {name name, value externval}

4.2.14 External Values

An external value is the runtime representation of an entity that can be imported or exported. It is an address
denoting either a function instance, table instance, memory instance, tag instances, or global instances in the shared
store.

externval ::= func funcaddr
| table tableaddr
| mem memaddr
| global globaladdr
| tag tagaddr

Conventions

The following auxiliary notation is defined for sequences of external values. It filters out entries of a specific kind
in an order-preserving fashion:

• funcs(externval*) = [funcaddr | (func funcaddr) ∈ externval*]

• tables(externval*) = [tableaddr | (table tableaddr) ∈ externval*]

• mems(externval*) = [memaddr | (mem memaddr) ∈ externval*]

• globals(externval*) = [globaladdr | (global globaladdr) ∈ externval*]

• tags(externval*) = [tagaddr | (tag tagaddr) ∈ externval*]

4.2. Runtime Structure 89

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.2.15 Aggregate Instances

A structure instance is the runtime representation of a heap object allocated from a structure type. Likewise,
an array instance is the runtime representation of a heap object allocated from an array type. Both record their
respective defined type and hold a vector of the values of their fields.

structinst ::= {type deftype, fields vec(fieldval)}
arrayinst ::= {type deftype, fields vec(fieldval)}
fieldval ::= val | packedval
packedval ::= i8.pack u8 | i16.pack u16

Conventions

• Conversion of a regular value to a field value is defined as follows:

packvaltype(val) = val
packpackedtype(i32.const 𝑖) = packedtype.pack (wrap32,|pack|(𝑖))

• The inverse conversion of a field value to a regular value is defined as follows:

unpackvaltype(val) = val
unpacksxpackedtype(packedtype.pack 𝑖) = i32.const (extendsx|packedtype|,32(𝑖))

4.2.16 Exception Instances

An exception instance is the runtime representation of an _exception_ produced by a throw instruction. It holds
the address of the respective tag and the argument values.

exninst ::= {tag tagaddr , fields vec(val)}

4.2.17 Stack

Besides the store, most instructions interact with an implicit stack. The stack contains the following kinds of entries:

• Values: the operands of instructions.

• Labels: active structured control instructions that can be targeted by branches.

• Activations: the call frames of active function calls.

• Handlers: active exception handlers.

These entries can occur on the stack in any order during the execution of a program. Stack entries are described
by abstract syntax as follows.

Note: It is possible to model the WebAssembly semantics using separate stacks for operands, control constructs,
and calls. However, because the stacks are interdependent, additional book keeping about associated stack heights
would be required. For the purpose of this specification, an interleaved representation is simpler.

90 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Values

Values are represented by themselves.

Labels

Labels carry an argument arity 𝑛 and their associated branch target, which is expressed syntactically as an instruc-
tion sequence:

label ::= label𝑛{instr*}

Intuitively, instr* is the continuation to execute when the branch is taken, in place of the original control construct.

Note: For example, a loop label has the form

label𝑛{loop . . . end}

When performing a branch to this label, this executes the loop, effectively restarting it from the beginning. Con-
versely, a simple block label has the form

label𝑛{𝜖}

When branching, the empty continuation ends the targeted block, such that execution can proceed with consecutive
instructions.

Activation Frames

Activation frames carry the return arity 𝑛 of the respective function, hold the values of its locals (including ar-
guments) in the order corresponding to their static local indices, and a reference to the function’s own module
instance:

frame ::= frame𝑛{framestate}
framestate ::= {locals (val?)*,module moduleinst}

Locals may be uninitialized, in which case they are empty. Locals are mutated by respective variable instructions.

Exception Handlers

Exception handlers are installed by try_table instructions and record the corresponding list of catch clauses:

handler ::= handler𝑛{catch*}

The handlers on the stack are searched when an exception is thrown.

Conventions

• The meta variable 𝐿 ranges over labels where clear from context.

• The meta variable 𝐹 ranges over frame states where clear from context.

• The meta variable 𝐻 ranges over exception handlers where clear from context.

• The following auxiliary definition takes a block type and looks up the instruction type that it denotes in the
current frame:

instrtype𝑆;𝐹 (typeidx) = functype (if expand(𝐹.module.types[typeidx]) = func functype)
instrtype𝑆;𝐹 ([valtype

?]) = [] → [valtype?]

4.2. Runtime Structure 91

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.2.18 Administrative Instructions

Note: This section is only relevant for the formal notation.

In order to express the reduction of traps, calls, exception handling, and control instructions, the syntax of instruc-
tions is extended to include the following administrative instructions:

instr ::= . . .
| trap
| ref.i31 u31
| ref.struct structaddr
| ref.array arrayaddr
| ref.func funcaddr
| ref.exn exnaddr
| ref.host hostaddr
| ref.extern ref
| invoke funcaddr
| return_invoke funcaddr
| label𝑛{instr*} instr* end
| handler𝑛{catch*} instr* end
| frame𝑛{framestate} instr* end

The trap instruction represents the occurrence of a trap. Traps are bubbled up through nested instruction sequences,
ultimately reducing the entire program to a single trap instruction, signalling abrupt termination.

The ref.i31 instruction represents unboxed scalar reference values, ref.struct and ref.array represent structure and
array references, respectively, ref.func represents function references, and ref.exn represents exception references.
Similarly, ref.host represents host references and ref.extern represents any externalized reference.

The invoke instruction represents the imminent invocation of a function instance, identified by its address. It unifies
the handling of different forms of calls. Analogously, return_invoke represents the imminent tail invocation of a
function instance.

The label, frame, and handler instructions model labels, frames, and active exception handlers, respectively, “on
the stack”. Moreover, the administrative syntax maintains the nesting structure of the original structured control
instruction or function body and their instruction sequences with an end marker. That way, the end of the inner
instruction sequence is known when part of an outer sequence.

Note: For example, the reduction rule for block is:

block [𝑡𝑛] instr* end →˓ label𝑛{𝜖} instr* end

This replaces the block with a label instruction, which can be interpreted as “pushing” the label on the stack. When
end is reached, i.e., the inner instruction sequence has been reduced to the empty sequence – or rather, a sequence
of 𝑛 const instructions representing the resulting values – then the label instruction is eliminated courtesy of its
own reduction rule:

label𝑚{instr*} val𝑛 end →˓ val𝑛

This can be interpreted as removing the label from the stack and only leaving the locally accumulated operand
values.

92 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Block Contexts

In order to specify the reduction of branches, the following syntax of block contexts is defined, indexed by the count
𝑘 of labels surrounding a hole [_] that marks the place where the next step of computation is taking place:

𝐵𝑘 ::= val 𝐵𝑘 | 𝐵𝑘 instr | handler𝑛{catch*} 𝐵𝑘 end | 𝐶𝑘

𝐶0 ::= [_]
𝐶𝑘+1 ::= label𝑛{instr*} 𝐵𝑘 end

This definition allows to index active labels surrounding a branch or return instruction.

Note: For example, the reduction of a simple branch can be defined as follows:

label0{instr*} 𝐵𝑙[br 𝑙] end →˓ instr*

Here, the hole [_] of the context is instantiated with a branch instruction. When a branch occurs, this rule replaces
the target label and associated instruction sequence with the label’s continuation. The selected label is identified
through the label index 𝑙, which corresponds to the number of surrounding label instructions that must be hopped
over – which is exactly the count encoded in the index of a block context.

Throw Contexts

In order to specify the reduction of try_table blocks, the following syntax of throw contexts is defined, as well as
associated structural rules:

𝑇 ::= [_]
| val* 𝑇 instr*

| label𝑛{instr*} 𝑇 end
| frame𝑛{𝐹} 𝑇 end

Throw contexts allow matching the program context around a throw instruction up to the innermost enclosing
exception handler, if one exists.

Note: Contrary to block contexts, throw contexts do not skip over handlers.

Configurations

A configuration consists of the current store and an executing thread.

A thread is a computation over instructions that operates relative to the state of a current frame referring to the
module instance in which the computation runs, i.e., where the current function originates from.

config ::= store; thread
thread ::= framestate; instr*

Note: The current version of WebAssembly is single-threaded, but configurations with multiple threads may be
supported in the future.

4.2. Runtime Structure 93

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Evaluation Contexts

Finally, the following definition of evaluation context and associated structural rules enable reduction inside in-
struction sequences and administrative forms as well as the propagation of traps:

𝐸 ::= [_] | val* 𝐸 instr* | label𝑛{instr*} 𝐸 end

𝑆;𝐹 ;𝐸[instr*] →˓ 𝑆′;𝐹 ′;𝐸[instr ′
*
]

(if 𝑆;𝐹 ; instr* →˓ 𝑆′;𝐹 ′; instr ′
*
)

𝑆;𝐹 ; frame𝑛{𝐹 ′} instr* end →˓ 𝑆′;𝐹 ; frame𝑛{𝐹 ′′} instr ′* end
(if 𝑆;𝐹 ′; instr* →˓ 𝑆′;𝐹 ′′; instr ′

*
)

𝑆;𝐹 ;𝐸[trap] →˓ 𝑆;𝐹 ; trap (if 𝐸 ̸= [_])
𝑆;𝐹 ; frame𝑛{𝐹 ′} trap end →˓ 𝑆;𝐹 ; trap

Reduction terminates when a thread’s instruction sequence has been reduced to a result, that is, either a sequence
of values, to an uncaught exception, or to a trap.

Note: The restriction on evaluation contexts rules out contexts like [_] and 𝜖 [_] 𝜖 for which 𝐸[trap] = trap.

For an example of reduction under evaluation contexts, consider the following instruction sequence.

(f64.const 𝑥1) (f64.const 𝑥2) f64.neg (f64.const 𝑥3) f64.add f64.mul

This can be decomposed into 𝐸[(f64.const 𝑥2) f64.neg] where

𝐸 = (f64.const 𝑥1) [_] (f64.const 𝑥3) f64.add f64.mul

Moreover, this is the only possible choice of evaluation context where the contents of the hole matches the left-hand
side of a reduction rule.

4.3 Numerics

Numeric primitives are defined in a generic manner, by operators indexed over a bit width 𝑁 .

Some operators are non-deterministic, because they can return one of several possible results (such as different NaN
values). Technically, each operator thus returns a set of allowed values. For convenience, deterministic results are
expressed as plain values, which are assumed to be identified with a respective singleton set.

Some operators are partial, because they are not defined on certain inputs. Technically, an empty set of results is
returned for these inputs.

In formal notation, each operator is defined by equational clauses that apply in decreasing order of precedence.
That is, the first clause that is applicable to the given arguments defines the result. In some cases, similar clauses
are combined into one by using the notation ± or ∓. When several of these placeholders occur in a single clause,
then they must be resolved consistently: either the upper sign is chosen for all of them or the lower sign.

Note: For example, the fcopysign operator is defined as follows:

fcopysign𝑁 (±𝑝1,±𝑝2) = ±𝑝1
fcopysign𝑁 (±𝑝1,∓𝑝2) = ∓𝑝1

This definition is to be read as a shorthand for the following expansion of each clause into two separate ones:

fcopysign𝑁 (+𝑝1,+𝑝2) = +𝑝1
fcopysign𝑁 (−𝑝1,−𝑝2) = −𝑝1
fcopysign𝑁 (+𝑝1,−𝑝2) = −𝑝1
fcopysign𝑁 (−𝑝1,+𝑝2) = +𝑝1

94 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Numeric operators are lifted to input sequences by applying the operator element-wise, returning a sequence of
results. When there are multiple inputs, they must be of equal length.

𝑜𝑝(𝑐𝑛1 , . . . , 𝑐
𝑛
𝑘) = 𝑜𝑝(𝑐𝑛1 [0], . . . , 𝑐

𝑛
𝑘 [0]) . . . 𝑜𝑝(𝑐𝑛1 [𝑛− 1], . . . , 𝑐𝑛𝑘 [𝑛− 1])

Note: For example, the unary operator fabs, when given a sequence of floating-point values, return a sequence of
floating-point results:

fabs𝑁 (𝑧𝑛) = fabs𝑁 (𝑧[0]) . . . fabs𝑁 (𝑧[𝑛])

The binary operator iadd, when given two sequences of integers of the same length, 𝑛, return a sequence of integer
results:

iadd𝑁 (𝑖𝑛1 , 𝑖
𝑛
2) = iadd𝑁 (𝑖1[0], 𝑖2[0]) . . . iadd𝑁 (𝑖1[𝑛], 𝑖2[𝑛])

Conventions:

• The meta variable 𝑑 is used to range over single bits.

• The meta variable 𝑝 is used to range over (signless) magnitudes of floating-point values, including nan and
∞.

• The meta variable 𝑞 is used to range over (signless) rational magnitudes, excluding nan or ∞.

• The notation 𝑓−1 denotes the inverse of a bijective function 𝑓 .

• Truncation of rational values is written trunc(±𝑞), with the usual mathematical definition:

trunc(±𝑞) = ±𝑖 (if 𝑖 ∈ N ∧+𝑞 − 1 < 𝑖 ≤ +𝑞)

• Saturation of integers is written sat_u𝑁 (𝑖) and sat_s𝑁 (𝑖). The arguments to these two functions range over
arbitrary signed integers.

– Unsigned saturation, sat_u𝑁 (𝑖) clamps 𝑖 to between 0 and 2𝑁 − 1:

sat_u𝑁 (𝑖) = 2𝑁 − 1 (if 𝑖 > 2𝑁 − 1)
sat_u𝑁 (𝑖) = 0 (if 𝑖 < 0)
sat_u𝑁 (𝑖) = 𝑖 (otherwise)

– Signed saturation, sat_s𝑁 (𝑖) clamps 𝑖 to between −2𝑁−1 and 2𝑁−1 − 1:

sat_s𝑁 (𝑖) = signed−1
𝑁 (−2𝑁−1) (if 𝑖 < −2𝑁−1)

sat_s𝑁 (𝑖) = signed−1
𝑁 (2𝑁−1 − 1) (if 𝑖 > 2𝑁−1 − 1)

sat_s𝑁 (𝑖) = 𝑖 (otherwise)

4.3.1 Representations

Numbers and numeric vectors have an underlying binary representation as a sequence of bits:

bitsi𝑁 (𝑖) = ibits𝑁 (𝑖)
bitsf𝑁 (𝑧) = fbits𝑁 (𝑧)
bitsv𝑁 (𝑖) = ibits𝑁 (𝑖)

The first case of these applies to representations of both integer value types and packed types.

Each of these functions is a bijection, hence they are invertible.

4.3. Numerics 95

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Integers

Integers are represented as base two unsigned numbers:

ibits𝑁 (𝑖) = 𝑑𝑁−1 . . . 𝑑0 (𝑖 = 2𝑁−1 · 𝑑𝑁−1 + · · ·+ 20 · 𝑑0)

Boolean operators like ∧, ∨, or ⊻ are lifted to bit sequences of equal length by applying them pointwise.

Floating-Point

Floating-point values are represented in the respective binary format defined by IEEE 75423 (Section 3.4):

fbits𝑁 (±(1 +𝑚 · 2−𝑀) · 2𝑒) = fsign(±) ibits𝐸(𝑒+ fbias𝑁) ibits𝑀 (𝑚)
fbits𝑁 (±(0 +𝑚 · 2−𝑀) · 2𝑒) = fsign(±) (0)𝐸 ibits𝑀 (𝑚)
fbits𝑁 (±∞) = fsign(±) (1)𝐸 (0)𝑀

fbits𝑁 (±nan(𝑛)) = fsign(±) (1)𝐸 ibits𝑀 (𝑛)

fbias𝑁 = 2𝐸−1 − 1
fsign(+) = 0
fsign(−) = 1

where 𝑀 = signif(𝑁) and 𝐸 = expon(𝑁).

Vectors

Numeric vectors of type v𝑁 have the same underlying representation as an i𝑁 . They can also be interpreted as a
sequence of numeric values packed into a v𝑁 with a particular shape 𝑡x𝑀 , provided that 𝑁 = |𝑡| ·𝑀 .

lanes𝑡x𝑀 (𝑐) = 𝑐0 . . . 𝑐𝑀−1

(where 𝑤= |𝑡|/8
∧ 𝑏*= bytesi𝑁 (𝑐)
∧ 𝑐𝑖= bytes−1

𝑡 (𝑏*[𝑖 · 𝑤 : 𝑤]))

This function is a bijection on i𝑁 , hence it is invertible.

Storage

When a number is stored into memory, it is converted into a sequence of bytes in little endian24 byte order:

bytes𝑡(𝑖) = littleendian(bits𝑡(𝑖))

littleendian(𝜖) = 𝜖
littleendian(𝑑8 𝑑′

*
) = littleendian(𝑑′

*
) ibits−1

8 (𝑑8)

Again these functions are invertible bijections.

4.3.2 Integer Operations

Sign Interpretation

Integer operators are defined on i𝑁 values. Operators that use a signed interpretation convert the value using the
following definition, which takes the two’s complement when the value lies in the upper half of the value range
(i.e., its most significant bit is 1):

signed𝑁 (𝑖) = 𝑖 (0 ≤ 𝑖 < 2𝑁−1)
signed𝑁 (𝑖) = 𝑖− 2𝑁 (2𝑁−1 ≤ 𝑖 < 2𝑁)

This function is bijective, and hence invertible.
23 https://ieeexplore.ieee.org/document/8766229
24 https://en.wikipedia.org/wiki/Endianness#Little-endian

96 Chapter 4. Execution

https://ieeexplore.ieee.org/document/8766229
https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Boolean Interpretation

The integer result of predicates – i.e., tests and relational operators – is defined with the help of the following
auxiliary function producing the value 1 or 0 depending on a condition.

bool(𝐶) = 1 (if 𝐶)
bool(𝐶) = 0 (otherwise)

iadd𝑁 (𝑖1, 𝑖2)

• Return the result of adding 𝑖1 and 𝑖2 modulo 2𝑁 .

iadd𝑁 (𝑖1, 𝑖2) = (𝑖1 + 𝑖2) mod 2𝑁

isub𝑁 (𝑖1, 𝑖2)

• Return the result of subtracting 𝑖2 from 𝑖1 modulo 2𝑁 .

isub𝑁 (𝑖1, 𝑖2) = (𝑖1 − 𝑖2 + 2𝑁) mod 2𝑁

imul𝑁 (𝑖1, 𝑖2)

• Return the result of multiplying 𝑖1 and 𝑖2 modulo 2𝑁 .

imul𝑁 (𝑖1, 𝑖2) = (𝑖1 · 𝑖2) mod 2𝑁

idiv_u𝑁 (𝑖1, 𝑖2)

• If 𝑖2 is 0, then the result is undefined.

• Else, return the result of dividing 𝑖1 by 𝑖2, truncated toward zero.

idiv_u𝑁 (𝑖1, 0) = {}
idiv_u𝑁 (𝑖1, 𝑖2) = trunc(𝑖1/𝑖2)

Note: This operator is partial.

idiv_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• If 𝑗2 is 0, then the result is undefined.

• Else if 𝑗1 divided by 𝑗2 is 2𝑁−1, then the result is undefined.

• Else, return the result of dividing 𝑗1 by 𝑗2, truncated toward zero.

idiv_s𝑁 (𝑖1, 0) = {}
idiv_s𝑁 (𝑖1, 𝑖2) = {} (if signed𝑁 (𝑖1)/signed𝑁 (𝑖2) = 2𝑁−1)
idiv_s𝑁 (𝑖1, 𝑖2) = signed−1

𝑁 (trunc(signed𝑁 (𝑖1)/signed𝑁 (𝑖2)))

Note: This operator is partial. Besides division by 0, the result of (−2𝑁−1)/(−1) = +2𝑁−1 is not representable
as an 𝑁 -bit signed integer.

4.3. Numerics 97

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

irem_u𝑁 (𝑖1, 𝑖2)

• If 𝑖2 is 0, then the result is undefined.

• Else, return the remainder of dividing 𝑖1 by 𝑖2.

irem_u𝑁 (𝑖1, 0) = {}
irem_u𝑁 (𝑖1, 𝑖2) = 𝑖1 − 𝑖2 · trunc(𝑖1/𝑖2)

Note: This operator is partial.

As long as both operators are defined, it holds that 𝑖1 = 𝑖2 · idiv_u(𝑖1, 𝑖2) + irem_u(𝑖1, 𝑖2).

irem_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• If 𝑖2 is 0, then the result is undefined.

• Else, return the remainder of dividing 𝑗1 by 𝑗2, with the sign of the dividend 𝑗1.

irem_s𝑁 (𝑖1, 0) = {}
irem_s𝑁 (𝑖1, 𝑖2) = signed−1

𝑁 (𝑗1 − 𝑗2 · trunc(𝑗1/𝑗2))
(where 𝑗1 = signed𝑁 (𝑖1) ∧ 𝑗2 = signed𝑁 (𝑖2))

Note: This operator is partial.

As long as both operators are defined, it holds that 𝑖1 = 𝑖2 · idiv_s(𝑖1, 𝑖2) + irem_s(𝑖1, 𝑖2).

inot𝑁 (𝑖)

• Return the bitwise negation of 𝑖.

inot𝑁 (𝑖) = ibits−1
𝑁 (ibits𝑁 (𝑖) ⊻ ibits𝑁 (2𝑁 − 1))

iand𝑁 (𝑖1, 𝑖2)

• Return the bitwise conjunction of 𝑖1 and 𝑖2.

iand𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) ∧ ibits𝑁 (𝑖2))

iandnot𝑁 (𝑖1, 𝑖2)

• Return the bitwise conjunction of 𝑖1 and the bitwise negation of 𝑖2.

iandnot𝑁 (𝑖1, 𝑖2) = iand𝑁 (𝑖1, inot𝑁 (𝑖2))

98 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

ior𝑁 (𝑖1, 𝑖2)

• Return the bitwise disjunction of 𝑖1 and 𝑖2.

ior𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) ∨ ibits𝑁 (𝑖2))

ixor𝑁 (𝑖1, 𝑖2)

• Return the bitwise exclusive disjunction of 𝑖1 and 𝑖2.

ixor𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) ⊻ ibits𝑁 (𝑖2))

ishl𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 left by 𝑘 bits, modulo 2𝑁 .

ishl𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑁−𝑘

2 0𝑘) (if ibits𝑁 (𝑖1) = 𝑑𝑘1 𝑑𝑁−𝑘
2 ∧ 𝑘 = 𝑖2 mod𝑁)

ishr_u𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 right by 𝑘 bits, extended with 0 bits.

ishr_u𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (0𝑘 𝑑𝑁−𝑘

1) (if ibits𝑁 (𝑖1) = 𝑑𝑁−𝑘
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod𝑁)

ishr_s𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 right by 𝑘 bits, extended with the most significant bit of the original value.

ishr_s𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑘+1

0 𝑑𝑁−𝑘−1
1) (if ibits𝑁 (𝑖1) = 𝑑0 𝑑

𝑁−𝑘−1
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod𝑁)

irotl𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of rotating 𝑖1 left by 𝑘 bits.

irotl𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑁−𝑘

2 𝑑𝑘1) (if ibits𝑁 (𝑖1) = 𝑑𝑘1 𝑑𝑁−𝑘
2 ∧ 𝑘 = 𝑖2 mod𝑁)

irotr𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of rotating 𝑖1 right by 𝑘 bits.

irotr𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑘2 𝑑𝑁−𝑘

1) (if ibits𝑁 (𝑖1) = 𝑑𝑁−𝑘
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod𝑁)

4.3. Numerics 99

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

iclz𝑁 (𝑖)

• Return the count of leading zero bits in 𝑖; all bits are considered leading zeros if 𝑖 is 0.

iclz𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = 0𝑘 (1 𝑑*)?)

ictz𝑁 (𝑖)

• Return the count of trailing zero bits in 𝑖; all bits are considered trailing zeros if 𝑖 is 0.

ictz𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = (𝑑* 1)? 0𝑘)

ipopcnt𝑁 (𝑖)

• Return the count of non-zero bits in 𝑖.

ipopcnt𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = (0* 1)𝑘 0*)

ieqz𝑁 (𝑖)

• Return 1 if 𝑖 is zero, 0 otherwise.

ieqz𝑁 (𝑖) = bool(𝑖 = 0)

ieq𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 equals 𝑖2, 0 otherwise.

ieq𝑁 (𝑖1, 𝑖2) = bool(𝑖1 = 𝑖2)

ine𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 does not equal 𝑖2, 0 otherwise.

ine𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ̸= 𝑖2)

ilt_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is less than 𝑖2, 0 otherwise.

ilt_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 < 𝑖2)

ilt_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is less than 𝑗2, 0 otherwise.

ilt_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) < signed𝑁 (𝑖2))

100 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

igt_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is greater than 𝑖2, 0 otherwise.

igt_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 > 𝑖2)

igt_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is greater than 𝑗2, 0 otherwise.

igt_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) > signed𝑁 (𝑖2))

ile_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is less than or equal to 𝑖2, 0 otherwise.

ile_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ≤ 𝑖2)

ile_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is less than or equal to 𝑗2, 0 otherwise.

ile_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) ≤ signed𝑁 (𝑖2))

ige_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is greater than or equal to 𝑖2, 0 otherwise.

ige_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ≥ 𝑖2)

ige_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is greater than or equal to 𝑗2, 0 otherwise.

ige_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) ≥ signed𝑁 (𝑖2))

4.3. Numerics 101

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

iextend𝑀_s𝑁 (𝑖)

• Let 𝑗 be the result of computing wrap𝑁,𝑀 (𝑖).

• Return extends𝑀,𝑁 (𝑗).

iextend𝑀_s𝑁 (𝑖) = extends𝑀,𝑁 (wrap𝑁,𝑀 (𝑖))

ibitselect𝑁 (𝑖1, 𝑖2, 𝑖3)

• Let 𝑗1 be the bitwise conjunction of 𝑖1 and 𝑖3.

• Let 𝑗′3 be the bitwise negation of 𝑖3.

• Let 𝑗2 be the bitwise conjunction of 𝑖2 and 𝑗′3.

• Return the bitwise disjunction of 𝑗1 and 𝑗2.

ibitselect𝑁 (𝑖1, 𝑖2, 𝑖3) = ior𝑁 (iand𝑁 (𝑖1, 𝑖3), iand𝑁 (𝑖2, inot𝑁 (𝑖3)))

iabs𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖.

• If 𝑗 is greater than or equal to 0, then return 𝑖.

• Else return the negation of j, modulo 2𝑁 .

iabs𝑁 (𝑖) = 𝑖 (if signed𝑁 (𝑖) ≥ 0)
iabs𝑁 (𝑖) = −signed𝑁 (𝑖) mod 2𝑁 (otherwise)

ineg𝑁 (𝑖)

• Return the result of negating 𝑖, modulo 2𝑁 .

ineg𝑁 (𝑖) = (2𝑁 − 𝑖) mod 2𝑁

imin_u𝑁 (𝑖1, 𝑖2)

• Return 𝑖1 if ilt_u𝑁 (𝑖1, 𝑖2) is 1, return 𝑖2 otherwise.

imin_u𝑁 (𝑖1, 𝑖2) = 𝑖1 (if ilt_u𝑁 (𝑖1, 𝑖2) = 1)
imin_u𝑁 (𝑖1, 𝑖2) = 𝑖2 (otherwise)

imin_s𝑁 (𝑖1, 𝑖2)

• Return 𝑖1 if ilt_s𝑁 (𝑖1, 𝑖2) is 1, return 𝑖2 otherwise.

imin_s𝑁 (𝑖1, 𝑖2) = 𝑖1 (if ilt_s𝑁 (𝑖1, 𝑖2) = 1)
imin_s𝑁 (𝑖1, 𝑖2) = 𝑖2 (otherwise)

102 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

imax_u𝑁 (𝑖1, 𝑖2)

• Return 𝑖1 if igt_u𝑁 (𝑖1, 𝑖2) is 1, return 𝑖2 otherwise.

imax_u𝑁 (𝑖1, 𝑖2) = 𝑖1 (if igt_u𝑁 (𝑖1, 𝑖2) = 1)
imax_u𝑁 (𝑖1, 𝑖2) = 𝑖2 (otherwise)

imax_s𝑁 (𝑖1, 𝑖2)

• Return 𝑖1 if igt_s𝑁 (𝑖1, 𝑖2) is 1, return 𝑖2 otherwise.

imax_s𝑁 (𝑖1, 𝑖2) = 𝑖1 (if igt_s𝑁 (𝑖1, 𝑖2) = 1)
imax_s𝑁 (𝑖1, 𝑖2) = 𝑖2 (otherwise)

iaddsat_u𝑁 (𝑖1, 𝑖2)

• Let 𝑖 be the result of adding 𝑖1 and 𝑖2.

• Return sat_u𝑁 (𝑖).

iaddsat_u𝑁 (𝑖1, 𝑖2) = sat_u𝑁 (𝑖1 + 𝑖2)

iaddsat_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1
• Let 𝑗2 be the signed interpretation of 𝑖2
• Let 𝑗 be the result of adding 𝑗1 and 𝑗2.

• Return sat_s𝑁 (𝑗).

iaddsat_s𝑁 (𝑖1, 𝑖2) = sat_s𝑁 (signed𝑁 (𝑖1) + signed𝑁 (𝑖2))

isubsat_u𝑁 (𝑖1, 𝑖2)

• Let 𝑖 be the result of subtracting 𝑖2 from 𝑖1.

• Return sat_u𝑁 (𝑖).

isubsat_u𝑁 (𝑖1, 𝑖2) = sat_u𝑁 (𝑖1 − 𝑖2)

isubsat_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1
• Let 𝑗2 be the signed interpretation of 𝑖2
• Let 𝑗 be the result of subtracting 𝑗2 from 𝑗1.

• Return sat_s𝑁 (𝑗).

isubsat_s𝑁 (𝑖1, 𝑖2) = sat_s𝑁 (signed𝑁 (𝑖1)− signed𝑁 (𝑖2))

4.3. Numerics 103

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

iavgr_u𝑁 (𝑖1, 𝑖2)

• Let 𝑗 be the result of adding 𝑖1, 𝑖2, and 1.

• Return the result of dividing 𝑗 by 2, truncated toward zero.

iavgr_u𝑁 (𝑖1, 𝑖2) = trunc((𝑖1 + 𝑖2 + 1)/2)

iq15mulrsat_s𝑁 (𝑖1, 𝑖2)

• Return the result of sat_s𝑁 (ishr_s𝑁 (𝑖1 · 𝑖2 + 214, 15)).

iq15mulrsat_s𝑁 (𝑖1, 𝑖2) = sat_s𝑁 (ishr_s𝑁 (𝑖1 · 𝑖2 + 214, 15))

4.3.3 Floating-Point Operations

Floating-point arithmetic follows the IEEE 75425 standard, with the following qualifications:

• All operators use round-to-nearest ties-to-even, except where otherwise specified. Non-default directed
rounding attributes are not supported.

• Following the recommendation that operators propagate NaN payloads from their operands is permitted but
not required.

• All operators use “non-stop” mode, and floating-point exceptions are not otherwise observable. In particular,
neither alternate floating-point exception handling attributes nor operators on status flags are supported.
There is no observable difference between quiet and signalling NaNs.

Note: Some of these limitations may be lifted in future versions of WebAssembly.

Rounding

Rounding always is round-to-nearest ties-to-even, in correspondence with IEEE 75426 (Section 4.3.1).

An exact floating-point number is a rational number that is exactly representable as a floating-point number of
given bit width 𝑁 .

A limit number for a given floating-point bit width 𝑁 is a positive or negative number whose magnitude is the
smallest power of 2 that is not exactly representable as a floating-point number of width 𝑁 (that magnitude is 2128
for 𝑁 = 32 and 21024 for 𝑁 = 64).

A candidate number is either an exact floating-point number or a positive or negative limit number for the given
bit width 𝑁 .

A candidate pair is a pair 𝑧1, 𝑧2 of candidate numbers, such that no candidate number exists that lies between the
two.

A real number 𝑟 is converted to a floating-point value of bit width 𝑁 as follows:

• If 𝑟 is 0, then return +0.

• Else if 𝑟 is an exact floating-point number, then return 𝑟.

• Else if 𝑟 greater than or equal to the positive limit, then return +∞.

• Else if 𝑟 is less than or equal to the negative limit, then return −∞.

• Else if 𝑧1 and 𝑧2 are a candidate pair such that 𝑧1 < 𝑟 < 𝑧2, then:
25 https://ieeexplore.ieee.org/document/8766229
26 https://ieeexplore.ieee.org/document/8766229

104 Chapter 4. Execution

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

– If |𝑟 − 𝑧1| < |𝑟 − 𝑧2|, then let 𝑧 be 𝑧1.

– Else if |𝑟 − 𝑧1| > |𝑟 − 𝑧2|, then let 𝑧 be 𝑧2.

– Else if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| and the significand of 𝑧1 is even, then let 𝑧 be 𝑧1.

– Else, let 𝑧 be 𝑧2.

• If 𝑧 is 0, then:

– If 𝑟 < 0, then return −0.

– Else, return +0.

• Else if 𝑧 is a limit number, then:

– If 𝑟 < 0, then return −∞.

– Else, return +∞.

• Else, return 𝑧.

float𝑁 (0) = +0
float𝑁 (𝑟) = 𝑟 (if 𝑟 ∈ exact𝑁)
float𝑁 (𝑟) = +∞ (if 𝑟 ≥ +limit𝑁)
float𝑁 (𝑟) = −∞ (if 𝑟 ≤ −limit𝑁)
float𝑁 (𝑟) = closest𝑁 (𝑟, 𝑧1, 𝑧2) (if 𝑧1 < 𝑟 < 𝑧2 ∧ (𝑧1, 𝑧2) ∈ candidatepair𝑁)

closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧1) (if |𝑟 − 𝑧1| < |𝑟 − 𝑧2|)
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧2) (if |𝑟 − 𝑧1| > |𝑟 − 𝑧2|)
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧1) (if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| ∧ even𝑁 (𝑧1))
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧2) (if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| ∧ even𝑁 (𝑧2))

rectify𝑁 (𝑟,±limit𝑁) = ±∞
rectify𝑁 (𝑟, 0) = +0 (𝑟 ≥ 0)
rectify𝑁 (𝑟, 0) = −0 (𝑟 < 0)
rectify𝑁 (𝑟, 𝑧) = 𝑧

where:

exact𝑁 = f𝑁 ∩Q
limit𝑁 = 22

expon(𝑁)−1

candidate𝑁 = exact𝑁 ∪ {+limit𝑁 ,−limit𝑁}
candidatepair𝑁 = {(𝑧1, 𝑧2) ∈ candidate2𝑁 | 𝑧1 < 𝑧2 ∧ ∀𝑧 ∈ candidate𝑁 , 𝑧 ≤ 𝑧1 ∨ 𝑧 ≥ 𝑧2}
even𝑁 ((𝑑+𝑚 · 2−𝑀) · 2𝑒) ⇔ 𝑚mod 2 = 0
even𝑁 (±limit𝑁) ⇔ true

NaN Propagation

When the result of a floating-point operator other than fneg, fabs, or fcopysign is a NaN, then its sign is non-
deterministic and the payload is computed as follows:

• If the payload of all NaN inputs to the operator is canonical (including the case that there are no NaN inputs),
then the payload of the output is canonical as well.

• Otherwise the payload is picked non-deterministically among all arithmetic NaNs; that is, its most significant
bit is 1 and all others are unspecified.

This non-deterministic result is expressed by the following auxiliary function producing a set of allowed outputs
from a set of inputs:

nans𝑁{𝑧*} = {+nan(𝑛),−nan(𝑛) | 𝑛 = canon𝑁} (if ∀nan(𝑛) ∈ 𝑧*, 𝑛 = canon𝑁)
nans𝑁{𝑧*} = {+nan(𝑛),−nan(𝑛) | 𝑛 ≥ canon𝑁} (otherwise)

4.3. Numerics 105

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

fadd𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite signs, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal sign, then return that infinity.

• Else if either 𝑧1 or 𝑧2 is an infinity, then return that infinity.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return that zero.

• Else if either 𝑧1 or 𝑧2 is a zero, then return the other operand.

• Else if both 𝑧1 and 𝑧2 are values with the same magnitude but opposite signs, then return positive zero.

• Else return the result of adding 𝑧1 and 𝑧2, rounded to the nearest representable value.

fadd𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fadd𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fadd𝑁 (±∞,∓∞) = nans𝑁{}
fadd𝑁 (±∞,±∞) = ±∞
fadd𝑁 (𝑧1,±∞) = ±∞
fadd𝑁 (±∞, 𝑧2) = ±∞
fadd𝑁 (±0,∓0) = +0
fadd𝑁 (±0,±0) = ±0
fadd𝑁 (𝑧1,±0) = 𝑧1
fadd𝑁 (±0, 𝑧2) = 𝑧2
fadd𝑁 (±𝑞,∓𝑞) = +0
fadd𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 + 𝑧2)

fsub𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal signs, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite sign, then return 𝑧1.

• Else if 𝑧1 is an infinity, then return that infinity.

• Else if 𝑧2 is an infinity, then return that infinity negated.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return 𝑧1.

• Else if 𝑧2 is a zero, then return 𝑧1.

• Else if 𝑧1 is a zero, then return 𝑧2 negated.

• Else if both 𝑧1 and 𝑧2 are the same value, then return positive zero.

• Else return the result of subtracting 𝑧2 from 𝑧1, rounded to the nearest representable value.

106 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

fsub𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fsub𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fsub𝑁 (±∞,±∞) = nans𝑁{}
fsub𝑁 (±∞,∓∞) = ±∞
fsub𝑁 (𝑧1,±∞) = ∓∞
fsub𝑁 (±∞, 𝑧2) = ±∞
fsub𝑁 (±0,±0) = +0
fsub𝑁 (±0,∓0) = ±0
fsub𝑁 (𝑧1,±0) = 𝑧1
fsub𝑁 (±0,±𝑞2) = ∓𝑞2
fsub𝑁 (±𝑞,±𝑞) = +0
fsub𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 − 𝑧2)

Note: Up to the non-determinism regarding NaNs, it always holds that fsub𝑁 (𝑧1, 𝑧2) = fadd𝑁 (𝑧1, fneg𝑁 (𝑧2)).

fmul𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if one of 𝑧1 and 𝑧2 is a zero and the other an infinity, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal sign, then return positive infinity.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite sign, then return negative infinity.

• Else if either 𝑧1 or 𝑧2 is an infinity and the other a value with equal sign, then return positive infinity.

• Else if either 𝑧1 or 𝑧2 is an infinity and the other a value with opposite sign, then return negative infinity.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return negative zero.

• Else return the result of multiplying 𝑧1 and 𝑧2, rounded to the nearest representable value.

fmul𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmul𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmul𝑁 (±∞,±0) = nans𝑁{}
fmul𝑁 (±∞,∓0) = nans𝑁{}
fmul𝑁 (±0,±∞) = nans𝑁{}
fmul𝑁 (±0,∓∞) = nans𝑁{}
fmul𝑁 (±∞,±∞) = +∞
fmul𝑁 (±∞,∓∞) = −∞
fmul𝑁 (±𝑞1,±∞) = +∞
fmul𝑁 (±𝑞1,∓∞) = −∞
fmul𝑁 (±∞,±𝑞2) = +∞
fmul𝑁 (±∞,∓𝑞2) = −∞
fmul𝑁 (±0,±0) = +0
fmul𝑁 (±0,∓0) = −0
fmul𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 · 𝑧2)

4.3. Numerics 107

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

fdiv𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if 𝑧1 is an infinity and 𝑧2 a value with equal sign, then return positive infinity.

• Else if 𝑧1 is an infinity and 𝑧2 a value with opposite sign, then return negative infinity.

• Else if 𝑧2 is an infinity and 𝑧1 a value with equal sign, then return positive zero.

• Else if 𝑧2 is an infinity and 𝑧1 a value with opposite sign, then return negative zero.

• Else if 𝑧1 is a zero and 𝑧2 a value with equal sign, then return positive zero.

• Else if 𝑧1 is a zero and 𝑧2 a value with opposite sign, then return negative zero.

• Else if 𝑧2 is a zero and 𝑧1 a value with equal sign, then return positive infinity.

• Else if 𝑧2 is a zero and 𝑧1 a value with opposite sign, then return negative infinity.

• Else return the result of dividing 𝑧1 by 𝑧2, rounded to the nearest representable value.

fdiv𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fdiv𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fdiv𝑁 (±∞,±∞) = nans𝑁{}
fdiv𝑁 (±∞,∓∞) = nans𝑁{}
fdiv𝑁 (±0,±0) = nans𝑁{}
fdiv𝑁 (±0,∓0) = nans𝑁{}
fdiv𝑁 (±∞,±𝑞2) = +∞
fdiv𝑁 (±∞,∓𝑞2) = −∞
fdiv𝑁 (±𝑞1,±∞) = +0
fdiv𝑁 (±𝑞1,∓∞) = −0
fdiv𝑁 (±0,±𝑞2) = +0
fdiv𝑁 (±0,∓𝑞2) = −0
fdiv𝑁 (±𝑞1,±0) = +∞
fdiv𝑁 (±𝑞1,∓0) = −∞
fdiv𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1/𝑧2)

fmin𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if either 𝑧1 or 𝑧2 is a negative infinity, then return negative infinity.

• Else if either 𝑧1 or 𝑧2 is a positive infinity, then return the other value.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite signs, then return negative zero.

• Else return the smaller value of 𝑧1 and 𝑧2.

fmin𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmin𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmin𝑁 (+∞, 𝑧2) = 𝑧2
fmin𝑁 (−∞, 𝑧2) = −∞
fmin𝑁 (𝑧1,+∞) = 𝑧1
fmin𝑁 (𝑧1,−∞) = −∞
fmin𝑁 (±0,∓0) = −0
fmin𝑁 (𝑧1, 𝑧2) = 𝑧1 (if 𝑧1 ≤ 𝑧2)
fmin𝑁 (𝑧1, 𝑧2) = 𝑧2 (if 𝑧2 ≤ 𝑧1)

108 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

fmax𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if either 𝑧1 or 𝑧2 is a positive infinity, then return positive infinity.

• Else if either 𝑧1 or 𝑧2 is a negative infinity, then return the other value.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite signs, then return positive zero.

• Else return the larger value of 𝑧1 and 𝑧2.

fmax𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmax𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmax𝑁 (+∞, 𝑧2) = +∞
fmax𝑁 (−∞, 𝑧2) = 𝑧2
fmax𝑁 (𝑧1,+∞) = +∞
fmax𝑁 (𝑧1,−∞) = 𝑧1
fmax𝑁 (±0,∓0) = +0
fmax𝑁 (𝑧1, 𝑧2) = 𝑧1 (if 𝑧1 ≥ 𝑧2)
fmax𝑁 (𝑧1, 𝑧2) = 𝑧2 (if 𝑧2 ≥ 𝑧1)

fcopysign𝑁 (𝑧1, 𝑧2)

• If 𝑧1 and 𝑧2 have the same sign, then return 𝑧1.

• Else return 𝑧1 with negated sign.

fcopysign𝑁 (±𝑝1,±𝑝2) = ±𝑝1
fcopysign𝑁 (±𝑝1,∓𝑝2) = ∓𝑝1

fabs𝑁 (𝑧)

• If 𝑧 is a NaN, then return 𝑧 with positive sign.

• Else if 𝑧 is an infinity, then return positive infinity.

• Else if 𝑧 is a zero, then return positive zero.

• Else if 𝑧 is a positive value, then 𝑧.

• Else return 𝑧 negated.

fabs𝑁 (±nan(𝑛)) = +nan(𝑛)
fabs𝑁 (±∞) = +∞
fabs𝑁 (±0) = +0
fabs𝑁 (±𝑞) = +𝑞

fneg𝑁 (𝑧)

• If 𝑧 is a NaN, then return 𝑧 with negated sign.

• Else if 𝑧 is an infinity, then return that infinity negated.

• Else if 𝑧 is a zero, then return that zero negated.

• Else return 𝑧 negated.

fneg𝑁 (±nan(𝑛)) = ∓nan(𝑛)
fneg𝑁 (±∞) = ∓∞
fneg𝑁 (±0) = ∓0
fneg𝑁 (±𝑞) = ∓𝑞

4.3. Numerics 109

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

fsqrt𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is negative infinity, then return an element of nans𝑁{}.

• Else if 𝑧 is positive infinity, then return positive infinity.

• Else if 𝑧 is a zero, then return that zero.

• Else if 𝑧 has a negative sign, then return an element of nans𝑁{}.

• Else return the square root of 𝑧.

fsqrt𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fsqrt𝑁 (−∞) = nans𝑁{}
fsqrt𝑁 (+∞) = +∞
fsqrt𝑁 (±0) = ±0
fsqrt𝑁 (−𝑞) = nans𝑁{}
fsqrt𝑁 (+𝑞) = float𝑁

(︀√
𝑞
)︀

fceil𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is smaller than 0 but greater than −1, then return negative zero.

• Else return the smallest integral value that is not smaller than 𝑧.

fceil𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fceil𝑁 (±∞) = ±∞
fceil𝑁 (±0) = ±0
fceil𝑁 (−𝑞) = −0 (if −1 < −𝑞 < 0)
fceil𝑁 (±𝑞) = float𝑁 (𝑖) (if ±𝑞 ≤ 𝑖 < ±𝑞 + 1)

ffloor𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than 1, then return positive zero.

• Else return the largest integral value that is not larger than 𝑧.

ffloor𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
ffloor𝑁 (±∞) = ±∞
ffloor𝑁 (±0) = ±0
ffloor𝑁 (+𝑞) = +0 (if 0 < +𝑞 < 1)
ffloor𝑁 (±𝑞) = float𝑁 (𝑖) (if ±𝑞 − 1 < 𝑖 ≤ ±𝑞)

110 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

ftrunc𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than 1, then return positive zero.

• Else if 𝑧 is smaller than 0 but greater than −1, then return negative zero.

• Else return the integral value with the same sign as 𝑧 and the largest magnitude that is not larger than the
magnitude of 𝑧.

ftrunc𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
ftrunc𝑁 (±∞) = ±∞
ftrunc𝑁 (±0) = ±0
ftrunc𝑁 (+𝑞) = +0 (if 0 < +𝑞 < 1)
ftrunc𝑁 (−𝑞) = −0 (if −1 < −𝑞 < 0)
ftrunc𝑁 (±𝑞) = float𝑁 (±𝑖) (if +𝑞 − 1 < 𝑖 ≤ +𝑞)

fnearest𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than or equal to 0.5, then return positive zero.

• Else if 𝑧 is smaller than 0 but greater than or equal to −0.5, then return negative zero.

• Else return the integral value that is nearest to 𝑧; if two values are equally near, return the even one.

fnearest𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fnearest𝑁 (±∞) = ±∞
fnearest𝑁 (±0) = ±0
fnearest𝑁 (+𝑞) = +0 (if 0 < +𝑞 ≤ 0.5)
fnearest𝑁 (−𝑞) = −0 (if −0.5 ≤ −𝑞 < 0)
fnearest𝑁 (±𝑞) = float𝑁 (±𝑖) (if |𝑖− 𝑞| < 0.5)
fnearest𝑁 (±𝑞) = float𝑁 (±𝑖) (if |𝑖− 𝑞| = 0.5 ∧ 𝑖 even)

feq𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if both 𝑧1 and 𝑧2 are the same value, then return 1.

• Else return 0.
feq𝑁 (±nan(𝑛), 𝑧2) = 0
feq𝑁 (𝑧1,±nan(𝑛)) = 0
feq𝑁 (±0,∓0) = 1
feq𝑁 (𝑧1, 𝑧2) = bool(𝑧1 = 𝑧2)

4.3. Numerics 111

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

fne𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if both 𝑧1 and 𝑧2 are the same value, then return 0.

• Else return 1.
fne𝑁 (±nan(𝑛), 𝑧2) = 1
fne𝑁 (𝑧1,±nan(𝑛)) = 1
fne𝑁 (±0,∓0) = 0
fne𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ̸= 𝑧2)

flt𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 0.

• Else if 𝑧1 is positive infinity, then return 0.

• Else if 𝑧1 is negative infinity, then return 1.

• Else if 𝑧2 is positive infinity, then return 1.

• Else if 𝑧2 is negative infinity, then return 0.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if 𝑧1 is smaller than 𝑧2, then return 1.

• Else return 0.
flt𝑁 (±nan(𝑛), 𝑧2) = 0
flt𝑁 (𝑧1,±nan(𝑛)) = 0
flt𝑁 (𝑧, 𝑧) = 0
flt𝑁 (+∞, 𝑧2) = 0
flt𝑁 (−∞, 𝑧2) = 1
flt𝑁 (𝑧1,+∞) = 1
flt𝑁 (𝑧1,−∞) = 0
flt𝑁 (±0,∓0) = 0
flt𝑁 (𝑧1, 𝑧2) = bool(𝑧1 < 𝑧2)

fgt𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 0.

• Else if 𝑧1 is positive infinity, then return 1.

• Else if 𝑧1 is negative infinity, then return 0.

• Else if 𝑧2 is positive infinity, then return 0.

• Else if 𝑧2 is negative infinity, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if 𝑧1 is larger than 𝑧2, then return 1.

• Else return 0.

112 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

fgt𝑁 (±nan(𝑛), 𝑧2) = 0
fgt𝑁 (𝑧1,±nan(𝑛)) = 0
fgt𝑁 (𝑧, 𝑧) = 0
fgt𝑁 (+∞, 𝑧2) = 1
fgt𝑁 (−∞, 𝑧2) = 0
fgt𝑁 (𝑧1,+∞) = 0
fgt𝑁 (𝑧1,−∞) = 1
fgt𝑁 (±0,∓0) = 0
fgt𝑁 (𝑧1, 𝑧2) = bool(𝑧1 > 𝑧2)

fle𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 1.

• Else if 𝑧1 is positive infinity, then return 0.

• Else if 𝑧1 is negative infinity, then return 1.

• Else if 𝑧2 is positive infinity, then return 1.

• Else if 𝑧2 is negative infinity, then return 0.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if 𝑧1 is smaller than or equal to 𝑧2, then return 1.

• Else return 0.
fle𝑁 (±nan(𝑛), 𝑧2) = 0
fle𝑁 (𝑧1,±nan(𝑛)) = 0
fle𝑁 (𝑧, 𝑧) = 1
fle𝑁 (+∞, 𝑧2) = 0
fle𝑁 (−∞, 𝑧2) = 1
fle𝑁 (𝑧1,+∞) = 1
fle𝑁 (𝑧1,−∞) = 0
fle𝑁 (±0,∓0) = 1
fle𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ≤ 𝑧2)

fge𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 1.

• Else if 𝑧1 is positive infinity, then return 1.

• Else if 𝑧1 is negative infinity, then return 0.

• Else if 𝑧2 is positive infinity, then return 0.

• Else if 𝑧2 is negative infinity, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if 𝑧1 is smaller than or equal to 𝑧2, then return 1.

• Else return 0.

4.3. Numerics 113

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

fge𝑁 (±nan(𝑛), 𝑧2) = 0
fge𝑁 (𝑧1,±nan(𝑛)) = 0
fge𝑁 (𝑧, 𝑧) = 1
fge𝑁 (+∞, 𝑧2) = 1
fge𝑁 (−∞, 𝑧2) = 0
fge𝑁 (𝑧1,+∞) = 0
fge𝑁 (𝑧1,−∞) = 1
fge𝑁 (±0,∓0) = 1
fge𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ≥ 𝑧2)

fpmin𝑁 (𝑧1, 𝑧2)

• If 𝑧2 is less than 𝑧1 then return 𝑧2.

• Else return 𝑧1.

fpmin𝑁 (𝑧1, 𝑧2) = 𝑧2 (if flt𝑁 (𝑧2, 𝑧1) = 1)
fpmin𝑁 (𝑧1, 𝑧2) = 𝑧1 (otherwise)

fpmax𝑁 (𝑧1, 𝑧2)

• If 𝑧1 is less than 𝑧2 then return 𝑧2.

• Else return 𝑧1.

fpmax𝑁 (𝑧1, 𝑧2) = 𝑧2 (if flt𝑁 (𝑧1, 𝑧2) = 1)
fpmax𝑁 (𝑧1, 𝑧2) = 𝑧1 (otherwise)

4.3.4 Conversions

extendu𝑀,𝑁 (𝑖)

• Return 𝑖.

extendu𝑀,𝑁 (𝑖) = 𝑖

Note: In the abstract syntax, unsigned extension just reinterprets the same value.

extends𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖 of size 𝑀 .

• Return the two’s complement of 𝑗 relative to size 𝑁 .

extends𝑀,𝑁 (𝑖) = signed−1
𝑁 (signed𝑀 (𝑖))

114 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

wrap𝑀,𝑁 (𝑖)

• Return 𝑖 modulo 2𝑁 .

wrap𝑀,𝑁 (𝑖) = 𝑖mod 2𝑁

truncu𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then the result is undefined.

• Else if 𝑧 is an infinity, then the result is undefined.

• Else if 𝑧 is a number and trunc(𝑧) is a value within range of the target type, then return that value.

• Else the result is undefined.
truncu𝑀,𝑁 (±nan(𝑛)) = {}
truncu𝑀,𝑁 (±∞) = {}
truncu𝑀,𝑁 (±𝑞) = trunc(±𝑞) (if −1 < trunc(±𝑞) < 2𝑁)
truncu𝑀,𝑁 (±𝑞) = {} (otherwise)

Note: This operator is partial. It is not defined for NaNs, infinities, or values for which the result is out of range.

truncs𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then the result is undefined.

• Else if 𝑧 is an infinity, then the result is undefined.

• If 𝑧 is a number and trunc(𝑧) is a value within range of the target type, then return that value.

• Else the result is undefined.
truncs𝑀,𝑁 (±nan(𝑛)) = {}
truncs𝑀,𝑁 (±∞) = {}
truncs𝑀,𝑁 (±𝑞) = trunc(±𝑞) (if −2𝑁−1 − 1 < trunc(±𝑞) < 2𝑁−1)
truncs𝑀,𝑁 (±𝑞) = {} (otherwise)

Note: This operator is partial. It is not defined for NaNs, infinities, or values for which the result is out of range.

trunc_sat_u𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then return 0.

• Else if 𝑧 is negative infinity, then return 0.

• Else if 𝑧 is positive infinity, then return 2𝑁 − 1.

• Else, return sat_u𝑁 (trunc(𝑧)).

trunc_sat_u𝑀,𝑁 (±nan(𝑛)) = 0
trunc_sat_u𝑀,𝑁 (−∞) = 0
trunc_sat_u𝑀,𝑁 (+∞) = 2𝑁 − 1
trunc_sat_u𝑀,𝑁 (𝑧) = sat_u𝑁 (trunc(𝑧))

4.3. Numerics 115

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

trunc_sat_s𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then return 0.

• Else if 𝑧 is negative infinity, then return −2𝑁−1.

• Else if 𝑧 is positive infinity, then return 2𝑁−1 − 1.

• Else, return sat_s𝑁 (trunc(𝑧)).

trunc_sat_s𝑀,𝑁 (±nan(𝑛)) = 0
trunc_sat_s𝑀,𝑁 (−∞) = −2𝑁−1

trunc_sat_s𝑀,𝑁 (+∞) = 2𝑁−1 − 1
trunc_sat_s𝑀,𝑁 (𝑧) = sat_s𝑁 (trunc(𝑧))

promote𝑀,𝑁 (𝑧)

• If 𝑧 is a canonical NaN, then return an element of nans𝑁{} (i.e., a canonical NaN of size 𝑁).

• Else if 𝑧 is a NaN, then return an element of nans𝑁{±nan(1)} (i.e., any arithmetic NaN of size 𝑁).

• Else, return 𝑧.

promote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{} (if 𝑛 = canon𝑁)
promote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{+nan(1)} (otherwise)
promote𝑀,𝑁 (𝑧) = 𝑧

demote𝑀,𝑁 (𝑧)

• If 𝑧 is a canonical NaN, then return an element of nans𝑁{} (i.e., a canonical NaN of size 𝑁).

• Else if 𝑧 is a NaN, then return an element of nans𝑁{±nan(1)} (i.e., any NaN of size 𝑁).

• Else if 𝑧 is an infinity, then return that infinity.

• Else if 𝑧 is a zero, then return that zero.

• Else, return float𝑁 (𝑧).

demote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{} (if 𝑛 = canon𝑁)
demote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{+nan(1)} (otherwise)
demote𝑀,𝑁 (±∞) = ±∞
demote𝑀,𝑁 (±0) = ±0
demote𝑀,𝑁 (±𝑞) = float𝑁 (±𝑞)

convertu𝑀,𝑁 (𝑖)

• Return float𝑁 (𝑖).

convertu𝑀,𝑁 (𝑖) = float𝑁 (𝑖)

116 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

converts𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖.

• Return float𝑁 (𝑗).

converts𝑀,𝑁 (𝑖) = float𝑁 (signed𝑀 (𝑖))

reinterpret𝑡1,𝑡2(𝑐)

• Let 𝑑* be the bit sequence bits𝑡1(𝑐).

• Return the constant 𝑐′ for which bits𝑡2(𝑐
′) = 𝑑*.

reinterpret𝑡1,𝑡2(𝑐) = bits−1
𝑡2 (bits𝑡1(𝑐))

narrows
𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖 of size 𝑀 .

• Return sat_s𝑁 (𝑗).

narrows
𝑀,𝑁 (𝑖) = sat_s𝑁 (signed𝑀 (𝑖))

narrowu
𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖 of size 𝑀 .

• Return sat_u𝑁 (𝑗).

narrowu
𝑀,𝑁 (𝑖) = sat_u𝑁 (signed𝑀 (𝑖))

4.4 Types

Execution has to check and compare types in a few places, such as executing call_indirect or instantiating modules.

It is an invariant of the semantics that all types occurring during execution are closed.

Note: Runtime type checks generally involve types from multiple modules or types not defined by a module at
all, such that module-local type indices are not meaningful.

4.4.1 Instantiation

Any form of type can be instantiated into a closed type inside a module instance by substituting each type index 𝑥
occurring in it with the corresponding defined type moduleinst .types[𝑥].

closmoduleinst(𝑡) = 𝑡[:= moduleinst .types]

Note: This is the runtime equivalent to type closure.

4.4. Types 117

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.5 Values

4.5.1 Value Typing

For the purpose of checking argument values against the parameter types of exported functions, values are classified
by value types. The following auxiliary typing rules specify this typing relation relative to a store 𝑆 in which
possibly referenced addresses live.

Numeric Values 𝑡.const 𝑐

• The value is valid with number type 𝑡.

𝑆 ⊢ 𝑡.const 𝑐 : 𝑡

Vector Values 𝑡.const 𝑐

• The value is valid with vector type 𝑡.

𝑆 ⊢ 𝑡.const 𝑐 : 𝑡

Null References ref.null 𝑡

• The heap type must be valid under the empty context.

• Then value is valid with reference type (ref null 𝑡′), where the heap type 𝑡′ that is the least type that matches
𝑡.

⊢ 𝑡 ok 𝑡′ ∈ {none, nofunc, noextern} ⊢ 𝑡′ ≤ 𝑡

𝑆 ⊢ ref.null 𝑡 : (ref null 𝑡′)

Note: A null reference is typed with the least type in its respective hierarchy. That ensures that it is compatible
with any nullable type in that hierarchy.

Scalar References ref.i31 𝑖

• The value is valid with reference type (ref i31).

𝑆 ⊢ ref.i31 𝑖 : ref i31

Structure References ref.struct 𝑎

• The structure address 𝑎 must exist in the store.

• Let structinst be the structure instance 𝑆.structs[𝑎].

• Let deftype be the defined type structinst .type.

• The expansion of deftype must be a struct type.

• Then the value is valid with reference type (ref deftype).

deftype = 𝑆.structs[𝑎].type expand(deftype) = struct structtype

𝑆 ⊢ ref.struct 𝑎 : ref deftype

118 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Array References ref.array 𝑎

• The array address 𝑎 must exist in the store.

• Let arrayinst be the array instance 𝑆.arrays[𝑎].

• Let deftype be the defined type arrayinst .type.

• The expansion of deftype must be an array type.

• Then the value is valid with reference type (ref arraytype).

deftype = 𝑆.arrays[𝑎].type expand(deftype) = array arraytype

𝑆 ⊢ ref.array 𝑎 : ref deftype

Exception References ref.exn 𝑎

• The store entry 𝑆.exns[𝑎] must exist.

• Then the value is valid with reference type exnref.
𝑆.exns[𝑎] = exninst

𝑆 ⊢ ref.exn : exnref

Function References ref.func 𝑎

• The function address 𝑎 must exist in the store.

• Let funcinst be the function instance 𝑆.funcs[𝑎].

• Let deftype be the defined type funcinst .type.

• The expansion of deftype must be a function type.

• Then the value is valid with reference type (ref functype).

deftype = 𝑆.funcs[𝑎].type expand(deftype) = func functype

𝑆 ⊢ ref.func 𝑎 : ref deftype

Host References ref.host 𝑎

• The value is valid with reference type (ref any).

𝑆 ⊢ ref.host 𝑎 : ref any

Note: A host reference is considered internalized by this rule.

External References ref.extern ref

• The reference value ref must be valid with some reference type (ref null? 𝑡).

• The heap type 𝑡 must match the heap type any.

• Then the value is valid with reference type (ref null? extern).

𝑆 ⊢ ref : ref null? 𝑡 ⊢ 𝑡 ≤ any

𝑆 ⊢ ref.extern ref : ref null? extern

4.5. Values 119

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Subsumption

• The value must be valid with some value type 𝑡.

• The value type 𝑡 matches another valid type 𝑡′.

• Then the value is valid with type 𝑡′.
𝑆 ⊢ val : 𝑡 ⊢ 𝑡′ ok ⊢ 𝑡 ≤ 𝑡′

𝑆 ⊢ val : 𝑡′

4.5.2 External Typing

For the purpose of checking external values against imports, such values are classified by external types. The
following auxiliary typing rules specify this typing relation relative to a store 𝑆 in which the referenced instances
live.

func 𝑎

• The store entry 𝑆.funcs[𝑎] must exist.

• Then func 𝑎 is valid with external type func 𝑆.funcs[𝑎].type.

𝑆 ⊢ func 𝑎 : func 𝑆.funcs[𝑎].type

table 𝑎

• The store entry 𝑆.tables[𝑎] must exist.

• Then table 𝑎 is valid with external type table 𝑆.tables[𝑎].type.

𝑆 ⊢ table 𝑎 : table 𝑆.tables[𝑎].type

mem 𝑎

• The store entry 𝑆.mems[𝑎] must exist.

• Then mem 𝑎 is valid with external type mem 𝑆.mems[𝑎].type.

𝑆 ⊢ mem 𝑎 : mem 𝑆.mems[𝑎].type

global 𝑎

• The store entry 𝑆.globals[𝑎] must exist.

• Then global 𝑎 is valid with external type global 𝑆.globals[𝑎].type.

𝑆 ⊢ global 𝑎 : global 𝑆.globals[𝑎].type

120 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

tag 𝑎

• The store entry 𝑆.tags[𝑎] must exist.

• Let tagtype be the function type 𝑆.tags[𝑎].type.

• Then tag 𝑎 is valid with external type tag tagtype.

𝑆 ⊢ tag 𝑎 : tag 𝑆.tags[𝑎].type

Subsumption

• The external value must be valid with some external type et .

• The external type et matches another valid type et ′.

• Then the external value is valid with type et ′.
𝑆 ⊢ externval : et ⊢ et ′ ok ⊢ et ≤ et ′

𝑆 ⊢ externval : et ′

4.6 Instructions

WebAssembly computation is performed by executing individual instructions.

4.6.1 Numeric Instructions

Numeric instructions are defined in terms of the generic numeric operators. The mapping of numeric instructions
to their underlying operators is expressed by the following definition:

op i𝑁 (𝑖1, . . . , 𝑖𝑘) = iop𝑁 (𝑖1, . . . , 𝑖𝑘)
opf𝑁 (𝑧1, . . . , 𝑧𝑘) = fop𝑁 (𝑧1, . . . , 𝑧𝑘)

And for conversion operators:

cvtopsx?

𝑡1,𝑡2(𝑐) = cvtopsx?

|𝑡1|,|𝑡2|(𝑐)

Where the underlying operators are partial, the corresponding instruction will trap when the result is not defined.
Where the underlying operators are non-deterministic, because they may return one of multiple possible NaN
values, so are the corresponding instructions.

Note: For example, the result of instruction i32.add applied to operands 𝑖1, 𝑖2 invokes addi32(𝑖1, 𝑖2), which maps
to the generic iadd32(𝑖1, 𝑖2) via the above definition. Similarly, i64.trunc_f32_s applied to 𝑧 invokes truncsf32,i64(𝑧),
which maps to the generic truncs32,64(𝑧).

𝑡.const 𝑐

1. Push the value 𝑡.const 𝑐 to the stack.

Note: No formal reduction rule is required for this instruction, since const instructions already are values.

4.6. Instructions 121

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑡.unop

1. Assert: due to validation, a value of value type 𝑡 is on the top of the stack.

2. Pop the value 𝑡.const 𝑐1 from the stack.

3. If unop𝑡(𝑐1) is defined, then:

a. Let 𝑐 be a possible result of computing unop𝑡(𝑐1).

b. Push the value 𝑡.const 𝑐 to the stack.

4. Else:

a. Trap.

(𝑡.const 𝑐1) 𝑡.unop →˓ (𝑡.const 𝑐) (if 𝑐 ∈ unop𝑡(𝑐1))
(𝑡.const 𝑐1) 𝑡.unop →˓ trap (if unop𝑡(𝑐1) = {})

𝑡.binop

1. Assert: due to validation, two values of value type 𝑡 are on the top of the stack.

2. Pop the value 𝑡.const 𝑐2 from the stack.

3. Pop the value 𝑡.const 𝑐1 from the stack.

4. If binop𝑡(𝑐1, 𝑐2) is defined, then:

a. Let 𝑐 be a possible result of computing binop𝑡(𝑐1, 𝑐2).

b. Push the value 𝑡.const 𝑐 to the stack.

5. Else:

a. Trap.

(𝑡.const 𝑐1) (𝑡.const 𝑐2) 𝑡.binop →˓ (𝑡.const 𝑐) (if 𝑐 ∈ binop𝑡(𝑐1, 𝑐2))
(𝑡.const 𝑐1) (𝑡.const 𝑐2) 𝑡.binop →˓ trap (if binop𝑡(𝑐1, 𝑐2) = {})

𝑡.testop

1. Assert: due to validation, a value of value type 𝑡 is on the top of the stack.

2. Pop the value 𝑡.const 𝑐1 from the stack.

3. Let 𝑐 be the result of computing testop𝑡(𝑐1).

4. Push the value i32.const 𝑐 to the stack.

(𝑡.const 𝑐1) 𝑡.testop →˓ (i32.const 𝑐) (if 𝑐 = testop𝑡(𝑐1))

𝑡.relop

1. Assert: due to validation, two values of value type 𝑡 are on the top of the stack.

2. Pop the value 𝑡.const 𝑐2 from the stack.

3. Pop the value 𝑡.const 𝑐1 from the stack.

4. Let 𝑐 be the result of computing relop𝑡(𝑐1, 𝑐2).

5. Push the value i32.const 𝑐 to the stack.

(𝑡.const 𝑐1) (𝑡.const 𝑐2) 𝑡.relop →˓ (i32.const 𝑐) (if 𝑐 = relop𝑡(𝑐1, 𝑐2))

122 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑡2.cvtop_𝑡1_sx ?

1. Assert: due to validation, a value of value type 𝑡1 is on the top of the stack.

2. Pop the value 𝑡1.const 𝑐1 from the stack.

3. If cvtopsx?

𝑡1,𝑡2(𝑐1) is defined:

a. Let 𝑐2 be a possible result of computing cvtopsx?

𝑡1,𝑡2(𝑐1).

b. Push the value 𝑡2.const 𝑐2 to the stack.

4. Else:

a. Trap.

(𝑡1.const 𝑐1) 𝑡2.cvtop_𝑡1_sx ? →˓ (𝑡2.const 𝑐2) (if 𝑐2 ∈ cvtopsx?

𝑡1,𝑡2(𝑐1))

(𝑡1.const 𝑐1) 𝑡2.cvtop_𝑡1_sx ? →˓ trap (if cvtopsx?

𝑡1,𝑡2(𝑐1) = {})

4.6.2 Reference Instructions

ref.null 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Push the value ref.null deftype to the stack.

𝐹 ; (ref.null 𝑥) →˓ 𝐹 ; (ref.null deftype) (if deftype = 𝐹.module.types[𝑥])

Note: No formal reduction rule is required for the case ref.null absheaptype, since the instruction form is already
a value.

ref.func 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.funcaddrs[𝑥] exists.

3. Let 𝑎 be the function address 𝐹.module.funcaddrs[𝑥].

4. Push the value ref.func 𝑎 to the stack.

𝐹 ; (ref.func 𝑥) →˓ 𝐹 ; (ref.func 𝑎) (if 𝑎 = 𝐹.module.funcaddrs[𝑥])

ref.is_null

1. Assert: due to validation, a reference value is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is ref.null ht , then:

a. Push the value i32.const 1 to the stack.

4. Else:

a. Push the value i32.const 0 to the stack.

4.6. Instructions 123

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

ref ref.is_null →˓ (i32.const 1) (if ref = ref.null ht)
ref ref.is_null →˓ (i32.const 0) (otherwise)

ref.as_non_null

1. Assert: due to validation, a reference value is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is ref.null ht , then:

a. Trap.

4. Push the value ref back to the stack.

ref ref.as_non_null →˓ trap (if ref = ref.null ht)
ref ref.as_non_null →˓ ref (otherwise)

ref.eq

1. Assert: due to validation, two reference values are on the top of the stack.

2. Pop the value ref 2 from the stack.

3. Pop the value ref 1 from the stack.

4. If ref 1 is the same as ref 2, then:

a. Push the value i32.const 1 to the stack.

5. Else:

a. Push the value i32.const 0 to the stack.
ref 1 ref 2 ref.eq →˓ (i32.const 1) (if ref 1 = (ref.null ht1) ∧ ref 2 = (ref.null ht2))
ref 1 ref 2 ref.eq →˓ (i32.const 1) (if ref 1 = ref 2)
ref 1 ref 2 ref.eq →˓ (i32.const 0) (otherwise)

ref.test rt

1. Let 𝐹 be the current frame.

2. Let rt1 be the reference type clos𝐹.module(rt).

3. Assert: due to validation, rt1 is closed.

4. Assert: due to validation, a reference value is on the top of the stack.

5. Pop the value ref from the stack.

6. Assert: due to validation, the reference value is valid with some reference type.

7. Let rt2 be the reference type of ref .

8. If the reference type rt2 matches rt1, then:

a. Push the value i32.const 1 to the stack.

9. Else:

a. Push the value i32.const 0 to the stack.
𝑆;𝐹 ; ref (ref.test rt) →˓ (i32.const 1) (if 𝑆 ⊢ ref : rt ′∧ ⊢ rt ′ ≤ clos𝐹.module(rt))
𝑆;𝐹 ; ref (ref.test rt) →˓ (i32.const 0) (otherwise)

124 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

ref.cast rt

1. Let 𝐹 be the current frame.

2. Let rt1 be the reference type clos𝐹.module(rt).

3. Assert: due to validation, rt1 is closed.

4. Assert: due to validation, a reference value is on the top of the stack.

5. Pop the value ref from the stack.

6. Assert: due to validation, the reference value is valid with some reference type.

7. Let rt2 be the reference type of ref .

8. If the reference type rt2 matches rt1, then:

a. Push the value ref back to the stack.

9. Else:

a. Trap.

𝑆;𝐹 ; ref (ref.cast rt) →˓ ref (if 𝑆 ⊢ ref : rt ′∧ ⊢ rt ′ ≤ clos𝐹.module(rt))
𝑆;𝐹 ; ref (ref.cast rt) →˓ trap (otherwise)

ref.i31

1. Assert: due to validation, a value of type i32 is on the top of the stack.

2. Pop the value i32.const 𝑖 from the stack.

3. Let 𝑗 be the result of computing wrap32,31(𝑖).

4. Push the reference value (ref.i31 𝑗) to the stack.

(i32.const 𝑖) ref.i31 →˓ (ref.i31 wrap32,31(𝑖))

i31.get_sx

1. Assert: due to validation, a value of type (ref null i31) is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is ref.null 𝑡, then:

a. Trap.

4. Assert: due to validation, a ref is a scalar reference.

5. Let ref.i31 𝑖 be the reference value ref .

6. Let 𝑗 be the result of computing extendsx31,32(𝑖).

7. Push the value i32.const 𝑗 to the stack.

(ref.i31 𝑖) i31.get_sx →˓ (i32.const extendsx31,32(𝑖))
(ref.null 𝑡) i31.get_sx →˓ trap

4.6. Instructions 125

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

struct.new 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is a structure type.

5. Let struct ft* be the expanded structure type of deftype.

6. Let 𝑛 be the length of the field type sequence ft*.

7. Assert: due to validation, 𝑛 values are on the top of the stack.

8. Pop the 𝑛 values val* from the stack.

9. For every value val 𝑖 in val* and corresponding field type ft 𝑖 in ft*:

a. Let fieldval 𝑖 be the result of computing packft𝑖(val 𝑖)).

10. Let fieldval* the concatenation of all field values fieldval 𝑖.

11. Let si be the structure instance {type deftype, fields fieldval*}.

12. Let 𝑎 be the length of 𝑆.structs.

13. Append si to 𝑆.structs.

14. Push the structure reference ref.struct 𝑎 to the stack.
𝑆;𝐹 ; val𝑛 (struct.new 𝑥) →˓ 𝑆′;𝐹 ; (ref.struct |𝑆.structs|)

(if expand(𝐹.module.types[𝑥]) = struct ft𝑛

∧ si = {type 𝐹.module.types[𝑥], fields (packft(val))
𝑛}

∧ 𝑆′ = 𝑆 with structs = 𝑆.structs si)

struct.new_default 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is a structure type.

5. Let struct ft* be the expanded structure type of deftype.

6. Let 𝑛 be the length of the field type sequence ft*.

7. For every field type ft 𝑖 in ft*:

a. Let 𝑡𝑖 be the value type unpack(ft 𝑖).

b. Assert: due to validation, default𝑡𝑖 is defined.

c. Push the value default𝑡𝑖 to the stack.

8. Execute the instruction (struct.new 𝑥).

𝐹 ; (struct.new_default 𝑥) →˓ (defaultunpack(ft)))
𝑛 (struct.new 𝑥)

(if expand(𝐹.module.types[𝑥]) = struct ft𝑛)

126 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

struct.get_sx ? 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is a structure type with at least 𝑦 + 1 fields.

5. Let struct ft* be the expanded structure type of deftype.

6. Let ft𝑦 be the 𝑦-th field type of ft*.

7. Assert: due to validation, a value of type (ref null 𝑥) is on the top of the stack.

8. Pop the value ref from the stack.

9. If ref is ref.null 𝑡, then:

a. Trap.

10. Assert: due to validation, a ref is a structure reference.

11. Let ref.struct 𝑎 be the reference value ref .

12. Assert: due to validation, the structure instance 𝑆.structs[𝑎] exists and has at least 𝑦 + 1 fields.

13. Let fieldval be the field value 𝑆.structs[𝑎].fields[𝑦].

14. Let val be the result of computing unpacksx
?

ft𝑦
(fieldval)).

15. Push the value val to the stack.
𝑆;𝐹 ; (ref.struct 𝑎) (struct.get_sx ? 𝑥 𝑦) →˓ val (if expand(𝐹.module.types[𝑥]) = struct ft𝑛

∧ val = unpacksx
?

ft𝑛[𝑦](𝑆.structs[𝑎].fields[𝑦]))

𝑆;𝐹 ; (ref.null 𝑡) (struct.get_sx ? 𝑥 𝑦) →˓ trap

struct.set 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is a structure type with at least 𝑦 + 1 fields.

5. Let struct ft* be the expanded structure type of deftype.

6. Let ft𝑦 be the 𝑦-th field type of ft*.

7. Assert: due to validation, a value is on the top of the stack.

8. Pop the value val from the stack.

9. Assert: due to validation, a value of type (ref null 𝑥) is on the top of the stack.

10. Pop the value ref from the stack.

11. If ref is ref.null 𝑡, then:

a. Trap.

12. Assert: due to validation, a ref is a structure reference.

13. Let ref.struct 𝑎 be the reference value ref .

14. Assert: due to validation, the structure instance 𝑆.structs[𝑎] exists and has at least 𝑦 + 1 fields.

15. Let fieldval be the result of computing packft𝑦 (val)).

16. Replace the field value 𝑆.structs[𝑎].fields[𝑦] with fieldval .

4.6. Instructions 127

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑆;𝐹 ; (ref.struct 𝑎) val (struct.set 𝑥 𝑦) →˓ 𝑆′; 𝜖 (if expand(𝐹.module.types[𝑥]) = struct ft𝑛

∧ 𝑆′ = 𝑆 with structs[𝑎].fields[𝑦] = packft𝑛[𝑦](val))
𝑆;𝐹 ; (ref.null 𝑡) val (struct.set 𝑥 𝑦) →˓ trap

array.new 𝑥

1. Assert: due to validation, a value of type i32 is on the top of the stack.

2. Pop the value (i32.const 𝑛) from the stack.

3. Assert: due to validation, a value is on the top of the stack.

4. Pop the value val from the stack.

5. Push the value val to the stack 𝑛 times.

6. Execute the instruction (array.new_fixed 𝑥 𝑛).

val (i32.const 𝑛) (array.new 𝑥) →˓ val𝑛 (array.new_fixed 𝑥 𝑛)

array.new_default 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is an array type.

5. Let array ft be the expanded array type of deftype.

6. Assert: due to validation, a value of type i32 is on the top of the stack.

7. Pop the value i32.const 𝑛 from the stack.

8. Let 𝑡 be the value type unpack(ft).

9. Assert: due to validation, default𝑡 is defined.

10. Push the value default𝑡 to the stack 𝑛 times.

11. Execute the instruction (array.new_fixed 𝑥 𝑛).

𝐹 ; (i32.const 𝑛) (array.new_default 𝑥) →˓ (defaultunpack(ft))
𝑛 (array.new_fixed 𝑥 𝑛)

(if expand(𝐹.module.types[𝑥]) = array ft)

array.new_fixed 𝑥 𝑛

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is a array type.

5. Let array ft be the expanded array type of deftype.

6. Assert: due to validation, 𝑛 values are on the top of the stack.

7. Pop the 𝑛 values val* from the stack.

8. For every value val 𝑖 in val*:

a. Let fieldval 𝑖 be the result of computing packft(val 𝑖)).

9. Let fieldval* be the concatenation of all field values fieldval 𝑖.

128 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

10. Let ai be the array instance {type deftype, fields fieldval*}.

11. Let 𝑎 be the length of 𝑆.arrays.

12. Append ai to 𝑆.arrays.

13. Push the array reference ref.array 𝑎 to the stack.

𝑆;𝐹 ; val𝑛 (array.new_fixed 𝑥 𝑛) →˓ 𝑆′;𝐹 ; (ref.array |𝑆.arrays|)
(if expand(𝐹.module.types[𝑥]) = array ft
∧ ai = {type 𝐹.module.types[𝑥], fields (packft(val))

𝑛}
∧ 𝑆′ = 𝑆 with arrays = 𝑆.arrays ai)

array.new_data 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is an array type.

5. Let array ft be the expanded array type of deftype.

6. Assert: due to validation, the data address 𝐹.module.dataaddrs[𝑦] exists.

7. Let da be the data address 𝐹.module.dataaddrs[𝑦].

8. Assert: due to validation, the data instance 𝑆.datas[da] exists.

9. Let datainst be the data instance 𝑆.datas[da].

10. Assert: due to validation, two values of type i32 are on the top of the stack.

11. Pop the value i32.const 𝑛 from the stack.

12. Pop the value i32.const 𝑠 from the stack.

13. Assert: due to validation, the field type ft has a defined bit width.

14. Let 𝑧 be the bit width of field type ft divided by eight.

15. If the sum of 𝑠 and 𝑛 times 𝑧 is larger than the length of datainst .data, then:

a. Trap.

16. Let 𝑏* be the byte sequence datainst .data[𝑠 : 𝑛 · 𝑧].

17. Let 𝑡 be the value type unpack(ft).

18. For each consecutive subsequence 𝑏′𝑛 of 𝑏*:

a. Assert: due to validation, bytesft is defined.

b. Let 𝑐𝑖 be the constant for which bytesft(𝑐𝑖) is 𝑏′𝑛.

c. Push the value 𝑡.const 𝑐𝑖 to the stack.

19. Execute the instruction (array.new_fixed 𝑥 𝑛).

𝑆;𝐹 ; (i32.const 𝑠) (i32.const 𝑛) (array.new_data 𝑥 𝑦) →˓ trap
(if expand(𝐹.module.types[𝑥]) = array ft𝑛

∧ 𝑠+ 𝑛 · |ft |/8 > |𝑆.datas[𝐹.module.dataaddrs[𝑦]].data|)

𝑆;𝐹 ; (i32.const 𝑠) (i32.const 𝑛) (array.new_data 𝑥 𝑦) →˓ (𝑡.const 𝑐)𝑛 (array.new_fixed 𝑥 𝑛)
(if expand(𝐹.module.types[𝑥]) = array ft𝑛

∧ 𝑡 = unpack(ft)
∧ concat((bytesft(𝑐))

𝑛) = 𝑆.datas[𝐹.module.dataaddrs[𝑦]].data[𝑠 : 𝑛 · |ft |/8]

4.6. Instructions 129

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

array.new_elem 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the element address 𝐹.module.elemaddrs[𝑦] exists.

3. Let ea be the element address 𝐹.module.elemaddrs[𝑦].

4. Assert: due to validation, the element instance 𝑆.elems[ea] exists.

5. Let eleminst be the element instance 𝑆.elems[ea].

6. Assert: due to validation, two values of type i32 are on the top of the stack.

7. Pop the value (i32.const 𝑛) from the stack.

8. Pop the value (i32.const 𝑠) from the stack.

9. If the sum of 𝑠 and 𝑛 is larger than the length of eleminst .elem, then:

a. Trap.

10. Let ref * be the reference sequence eleminst .elem[𝑠 : 𝑛].

11. Push the references ref * to the stack.

12. Execute the instruction (array.new_fixed 𝑥 𝑛).

𝑆;𝐹 ; (i32.const 𝑠) (i32.const 𝑛) (array.new_elem 𝑥 𝑦) →˓ trap
(if 𝑠+ 𝑛 > |𝑆.elems[𝐹.module.elemaddrs[𝑦]].elem|)

𝑆;𝐹 ; (i32.const 𝑠) (i32.const 𝑛) (array.new_elem 𝑥 𝑦) →˓ ref 𝑛 (array.new_fixed 𝑥 𝑛)
(if ref 𝑛 = 𝑆.elems[𝐹.module.elemaddrs[𝑦]].elem[𝑠 : 𝑛])

array.get_sx ? 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is an array type.

5. Let array ft be the expanded array type of deftype.

6. Assert: due to validation, a value of type i32 is on the top of the stack.

7. Pop the value i32.const 𝑖 from the stack.

8. Assert: due to validation, a value of type (ref null 𝑥) is on the top of the stack.

9. Pop the value ref from the stack.

10. If ref is ref.null 𝑡, then:

a. Trap.

11. Assert: due to validation, ref is an array reference.

12. Let ref.array 𝑎 be the reference value ref .

13. Assert: due to validation, the array instance 𝑆.arrays[𝑎] exists.

14. If 𝑛 is larger than or equal to the length of 𝑆.arrays[𝑎].fields, then:

a. Trap.

15. Let fieldval be the field value 𝑆.arrays[𝑎].fields[𝑖].

16. Let val be the result of computing unpacksx
?

ft (fieldval)).

130 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

17. Push the value val to the stack.

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑖) (array.get_sx ? 𝑥) →˓ trap
(if 𝑖 ≥ |arrays[𝑎].fields|)

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑖) (array.get_sx ? 𝑥) →˓ val
(if expand(𝐹.module.types[𝑥]) = array ft

∧ val = unpacksx
?

ft (𝑆.arrays[𝑎].fields[𝑖]))

𝑆;𝐹 ; (ref.null 𝑡) (i32.const 𝑖) (array.get_sx ? 𝑥) →˓ trap

array.set 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is an array type.

5. Let array ft be the expanded array type of deftype.

6. Assert: due to validation, a value is on the top of the stack.

7. Pop the value val from the stack.

8. Assert: due to validation, a value of type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. Assert: due to validation, a value of type (ref null 𝑥) is on the top of the stack.

11. Pop the value ref from the stack.

12. If ref is ref.null 𝑡, then:

a. Trap.

13. Assert: due to validation, ref is an array reference.

14. Let ref.array 𝑎 be the reference value ref .

15. Assert: due to validation, the array instance 𝑆.arrays[𝑎] exists.

16. If 𝑛 is larger than or equal to the length of 𝑆.arrays[𝑎].fields, then:

a. Trap.

17. Let fieldval be the result of computing packft(val)).

18. Replace the field value 𝑆.arrays[𝑎].fields[𝑖] with fieldval .

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑖) val (array.set 𝑥) →˓ trap
(if 𝑖 ≥ |arrays[𝑎].fields|)

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑖) val (array.set 𝑥) →˓ 𝑆′; 𝜖
(if expand(𝐹.module.types[𝑥]) = array ft
∧ 𝑆′ = 𝑆 with arrays[𝑎].fields[𝑖] = packft(val))

𝑆;𝐹 ; (ref.null 𝑡) (i32.const 𝑖) val (array.set 𝑥) →˓ trap

4.6. Instructions 131

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

array.len

1. Assert: due to validation, a value of type (ref null array) is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is ref.null 𝑡, then:

a. Trap.

4. Assert: due to validation, ref is an array reference.

5. Let ref.array 𝑎 be the reference value ref .

6. Assert: due to validation, the array instance 𝑆.arrays[𝑎] exists.

7. Let 𝑛 be the length of 𝑆.arrays[𝑎].fields.

8. Push the value (i32.const 𝑛) to the stack.

𝑆; (ref.array 𝑎) array.len →˓ (i32.const |𝑆.arrays[𝑎].fields|)
𝑆; (ref.null 𝑡) array.len →˓ trap

array.fill 𝑥

1. Assert: due to validation, a value of type i32 is on the top of the stack.

2. Pop the value 𝑛 from the stack.

3. Assert: due to validation, a value is on the top of the stack.

4. Pop the value val from the stack.

5. Assert: due to validation, a value of type i32 is on the top of the stack.

6. Pop the value 𝑑 from the stack.

7. Assert: due to validation, a value of type (ref null 𝑥) is on the top of the stack.

8. Pop the value ref from the stack.

9. If ref is ref.null 𝑡, then:

a. Trap.

10. Assert: due to validation, ref is an array reference.

11. Let ref.array 𝑎 be the reference value ref .

12. Assert: due to validation, the array instance 𝑆.arrays[𝑎] exists.

13. If 𝑑+ 𝑛 is larger than or equal to the length of 𝑆.arrays[𝑎].fields, then:

a. Trap.

14. If 𝑛 = 0, then:

a. Return.

15. Push the value ref.array 𝑎 to the stack.

16. Push the value i32.const 𝑑 to the stack.

17. Push the value val to the stack.

18. Execute the instruction array.set 𝑥.

19. Push the value ref.array 𝑎 to the stack.

20. Assert: due to the earlier check against the array size, 𝑑+ 1 < 232.

21. Push the value i32.const (𝑑+ 1) to the stack.

22. Push the value val to the stack.

132 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

23. Push the value i32.const (𝑛− 1) to the stack.

24. Execute the instruction array.fill 𝑥.

𝑆; (ref.array 𝑎) (i32.const 𝑑) val (i32.const 𝑛) (array.fill 𝑥) →˓ trap
(if 𝑑+ 𝑛 > |𝑆.arrays[𝑎].fields|)

𝑆; (ref.array 𝑎) (i32.const 𝑑) val (i32.const 0) (array.fill 𝑥) →˓ 𝑆; 𝜖
(otherwise)

𝑆; (ref.array 𝑎) (i32.const 𝑑) val (i32.const 𝑛+ 1) (array.fill 𝑥) →˓
𝑆; (ref.array 𝑎) (i32.const 𝑑) val (array.set 𝑥)

(ref.array 𝑎) (i32.const 𝑑+ 1) val (i32.const 𝑛) (array.fill 𝑥)
(otherwise)

𝑆; (ref.null 𝑡) (i32.const 𝑑) val (i32.const 𝑛) (array.fill 𝑥) →˓ trap

array.copy 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑦] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑦].

4. Assert: due to validation, the expansion of deftype is an array type.

5. Let array mut st be the expanded array type deftype.

6. Assert: due to validation, a value of type i32 is on the top of the stack.

7. Pop the value i32.const 𝑛 from the stack.

8. Assert: due to validation, a value of type i32 is on the top of the stack.

9. Pop the value i32.const 𝑠 from the stack.

10. Assert: due to validation, a value of type (ref null 𝑦) is on the top of the stack.

11. Pop the value ref 2 from the stack.

12. Assert: due to validation, a value of type i32 is on the top of the stack.

13. Pop the value i32.const 𝑑 from the stack.

14. Assert: due to validation, a value of type (ref null 𝑥) is on the top of the stack.

15. Pop the value ref 1 from the stack.

16. If ref 1 is ref.null 𝑡, then:

a. Trap.

17. Assert: due to validation, ref 1 is an array reference.

18. Let ref.array 𝑎1 be the reference value ref 1.

19. If ref 2 is ref.null 𝑡, then:

a. Trap.

20. Assert: due to validation, ref 2 is an array reference.

21. Let ref.array 𝑎2 be the reference value ref 2.

22. Assert: due to validation, the array instance 𝑆.arrays[𝑎1] exists.

23. Assert: due to validation, the array instance 𝑆.arrays[𝑎2] exists.

24. If 𝑑+ 𝑛 is larger than or equal to the length of 𝑆.arrays[𝑎1].fields, then:

a. Trap.

4.6. Instructions 133

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

25. If 𝑠+ 𝑛 is larger than or equal to the length of 𝑆.arrays[𝑎2].fields, then:

a. Trap.

26. If 𝑛 = 0, then:

a. Return.

27. If 𝑑 ≤ 𝑠, then:

a. Push the value ref.array 𝑎1 to the stack.

b. Push the value i32.const 𝑑 to the stack.

c. Push the value ref.array 𝑎2 to the stack.

d. Push the value i32.const 𝑠 to the stack.

e. Execute getfield(st).

f. Execute the instruction array.set 𝑥.

g. Push the value ref.array 𝑎1 to the stack.

h. Assert: due to the earlier check against the array size, 𝑑+ 1 < 232.

i. Push the value i32.const (𝑑+ 1) to the stack.

j. Push the value ref.array 𝑎2 to the stack.

k. Assert: due to the earlier check against the array size, 𝑠+ 1 < 232.

l. Push the value i32.const (𝑠+ 1) to the stack.

28. Else:

a. Push the value ref.array 𝑎1 to the stack.

b. Assert: due to the earlier check against the memory size, 𝑑+ 𝑛− 1 < 232.

c. Push the value i32.const (𝑑+ 𝑛− 1) to the stack.

d. Push the value ref.array 𝑎2 to the stack.

e. Assert: due to the earlier check against the memory size, 𝑠+ 𝑛− 1 < 232.

f. Push the value i32.const (𝑠+ 𝑛− 1) to the stack.

g. Execute getfield(st).

h. Execute the instruction array.set 𝑥.

i. Push the value ref.array 𝑎1 to the stack.

j. Push the value i32.const 𝑑 to the stack.

k. Push the value ref.array 𝑎2 to the stack.

l. Push the value i32.const 𝑠 to the stack.

29. Push the value i32.const (𝑛− 1) to the stack.

30. Execute the instruction array.copy 𝑥 𝑦.

134 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑆;𝐹 ; (ref.array 𝑎1) (i32.const 𝑑) (ref.array 𝑎2) (i32.const 𝑠) (i32.const 𝑛) (array.copy 𝑥 𝑦) →˓ trap
(if 𝑑+ 𝑛 > |𝑆.arrays[𝑎1].fields| ∨ 𝑠+ 𝑛 > |𝑆.arrays[𝑎2].fields|)

𝑆;𝐹 ; (ref.array 𝑎1) (i32.const 𝑑) (ref.array 𝑎2) (i32.const 𝑠) (i32.const 0) (array.copy 𝑥 𝑦) →˓ 𝑆; 𝜖
(otherwise)

𝑆;𝐹 ; (ref.array 𝑎1) (i32.const 𝑑) (ref.array 𝑎2) (i32.const 𝑠) (i32.const 𝑛+ 1) (array.copy 𝑥 𝑦) →˓
(ref.array 𝑎1) (i32.const 𝑑)
(ref.array 𝑎2) (i32.const 𝑠) getfield(st)
(array.set 𝑥)
(ref.array 𝑎1) (i32.const 𝑑+ 1) (ref.array 𝑎2) (i32.const 𝑠+ 1) (i32.const 𝑛) (array.copy 𝑥 𝑦)

(otherwise, if 𝑑 ≤ 𝑠 ∧ 𝐹.module.types[𝑦] = array mut st)

𝑆;𝐹 ; (ref.array 𝑎1) (i32.const 𝑑) (ref.array 𝑎2) (i32.const 𝑠) (i32.const 𝑛+ 1) (array.copy 𝑥 𝑦) →˓
(ref.array 𝑎1) (i32.const 𝑑+ 𝑛)
(ref.array 𝑎2) (i32.const 𝑠+ 𝑛) getfield(st)
(array.set 𝑥)
(ref.array 𝑎1) (i32.const 𝑑) (ref.array 𝑎2) (i32.const 𝑠) (i32.const 𝑛) (array.copy 𝑥 𝑦)

(otherwise, if 𝑑 > 𝑠 ∧ 𝐹.module.types[𝑦] = array mut st)

𝑆;𝐹 ; (ref.null 𝑡) (i32.const 𝑑) val (i32.const 𝑠) (i32.const 𝑛) (array.copy 𝑥 𝑦) →˓ trap

𝑆;𝐹 ; val (i32.const 𝑑) (ref.null 𝑡) (i32.const 𝑠) (i32.const 𝑛) (array.copy 𝑥 𝑦) →˓ trap

Where:

getfield(valtype) = array.get 𝑦
getfield(packedtype) = array.get_u 𝑦

array.init_data 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is an array type.

5. Let array ft be the expanded array type deftype.

6. Assert: due to validation, the data address 𝐹.module.dataaddrs[𝑦] exists.

7. Let da be the data address 𝐹.module.dataaddrs[𝑦].

8. Assert: due to validation, the data instance 𝑆.datas[da] exists.

9. Let datainst be the data instance 𝑆.datas[da].

10. Assert: due to validation, three values of type i32 are on the top of the stack.

11. Pop the value i32.const 𝑛 from the stack.

12. Pop the value i32.const 𝑠 from the stack.

13. Pop the value i32.const 𝑑 from the stack.

14. Assert: due to validation, a value of type (ref null 𝑥) is on the top of the stack.

15. Pop the value ref from the stack.

16. If ref is ref.null 𝑡, then:

a. Trap.

17. Assert: due to validation, ref is an array reference.

4.6. Instructions 135

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

18. Let ref.array 𝑎 be the reference value ref .

19. Assert: due to validation, the array instance 𝑆.arrays[𝑎] exists.

20. Assert: due to validation, the field type ft has a defined bit width.

21. Let 𝑧 be the bit width of field type ft divided by eight.

22. If 𝑑+ 𝑛 is larger than the length of 𝑆.arrays[𝑎].fields, or the sum of 𝑠 and 𝑛 times 𝑧 is larger than the length
of datainst .data, then:

a. Trap.

23. If 𝑛 = 0, then:

a. Return.

24. Let 𝑏* be the byte sequence datainst .data[𝑠 : 𝑧].

25. Let 𝑡 be the value type unpack(ft).

26. Assert: due to validation, bytesft is defined.

27. Let 𝑐 be the constant for which bytesft(𝑐) is 𝑏*.

28. Push the value ref.array 𝑎 to the stack.

29. Push the value i32.const 𝑑 to the stack.

30. Push the value 𝑡.const 𝑐 to the stack.

31. Execute the instruction array.set 𝑥.

32. Push the value ref.array 𝑎 to the stack.

33. Push the value i32.const (𝑑+ 1) to the stack.

34. Push the value i32.const (𝑠+ 𝑧) to the stack.

35. Push the value i32.const (𝑛− 1) to the stack.

36. Execute the instruction array.init_data 𝑥 𝑦.

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (array.init_data 𝑥 𝑦) →˓ trap
(if 𝑑+ 𝑛 > |𝑆.arrays[𝑎].fields|
∨ (𝐹.module.types[𝑥] = array ft ∧ 𝑠+ 𝑛 · |ft |/8 > |𝑆.datas[𝐹.module.dataaddrs[𝑦]].data|))

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) (array.init_data 𝑥 𝑦) →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛+ 1) (array.init_data 𝑥 𝑦) →˓
𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑑) (𝑡.const 𝑐) (array.set 𝑥)

(ref.array 𝑎) (i32.const 𝑑+ 1) (i32.const 𝑠+ |ft |/8) (i32.const 𝑛) (array.init_data 𝑥 𝑦)
(otherwise, if 𝐹.module.types[𝑥] = array ft

∧ 𝑡 = unpack(ft)
∧ bytesft(𝑐) = 𝑆.datas[𝐹.module.dataaddrs[𝑦]].data[𝑠 : |ft |/8]

𝑆;𝐹 ; (ref.null 𝑡) (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (array.init_data 𝑥 𝑦) →˓ trap

136 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

array.init_elem 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Assert: due to validation, the expansion of deftype is an array type.

5. Let array ft be the expanded array type deftype.

6. Assert: due to validation, the element address 𝐹.module.elemaddrs[𝑦] exists.

7. Let ea be the element address 𝐹.module.elemaddrs[𝑦].

8. Assert: due to validation, the element instance 𝑆.elems[ea] exists.

9. Let eleminst be the element instance 𝑆.elems[ea].

10. Assert: due to validation, three values of type i32 are on the top of the stack.

11. Pop the value i32.const 𝑛 from the stack.

12. Pop the value i32.const 𝑠 from the stack.

13. Pop the value i32.const 𝑑 from the stack.

14. Assert: due to validation, a value of type (ref null 𝑥) is on the top of the stack.

15. Pop the value ref from the stack.

16. If ref is ref.null 𝑡, then:

a. Trap.

17. Assert: due to validation, ref is an array reference.

18. Let ref.array 𝑎 be the reference value ref .

19. Assert: due to validation, the array instance 𝑆.arrays[𝑎] exists.

20. If 𝑑 + 𝑛 is larger than the length of 𝑆.arrays[𝑎].fields, or 𝑠 + 𝑛 is larger than the length of eleminst .elem,
then:

a. Trap.

21. If 𝑛 = 0, then:

a. Return.

22. Let ref ′ be the reference value eleminst .elem[𝑠].

23. Push the value ref.array 𝑎 to the stack.

24. Push the value i32.const 𝑑 to the stack.

25. Push the value ref ′ to the stack.

26. Execute the instruction array.set 𝑥.

27. Push the value ref.array 𝑎 to the stack.

28. Push the value i32.const (𝑑+ 1) to the stack.

29. Push the value i32.const (𝑠+ 1) to the stack.

30. Push the value i32.const (𝑛− 1) to the stack.

31. Execute the instruction array.init_elem 𝑥 𝑦.

4.6. Instructions 137

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (array.init_elem 𝑥 𝑦) →˓ trap
(if 𝑑+ 𝑛 > |𝑆.arrays[𝑎].fields|
∨ 𝑠+ 𝑛 > |𝑆.elems[𝐹.module.elemaddrs[𝑦]].elem|)

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) (array.init_elem 𝑥 𝑦) →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛+ 1) (array.init_elem 𝑥 𝑦) →˓
𝑆;𝐹 ; (ref.array 𝑎) (i32.const 𝑑) ref (array.set 𝑥)

(ref.array 𝑎) (i32.const 𝑑+ 1) (i32.const 𝑠+ 1) (i32.const 𝑛) (array.init_elem 𝑥 𝑦)
(otherwise, if ref = 𝑆.elems[𝐹.module.elemaddrs[𝑦]].elem[𝑠])

𝑆;𝐹 ; (ref.null 𝑡) (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (array.init_elem 𝑥 𝑦) →˓ trap

any.convert_extern

1. Assert: due to validation, a reference value is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is ref.null ht , then:

a. Push the reference value (ref.null any) to the stack.

4. Else:

a. Assert: due to validation, a ref is an external reference.

b. Let ref.extern ref ′ be the reference value ref .

c. Push the reference value ref ′ to the stack.

(ref.nullht) any.convert_extern →˓ (ref.null any)
(ref.extern ref) any.convert_extern →˓ ref

extern.convert_any

1. Assert: due to validation, a reference value is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is ref.null ht , then:

a. Push the reference value (ref.null extern) to the stack.

4. Else:

a. Let ref ′ be the reference value (ref.extern ref).

b. Push the reference value ref ′ to the stack.

(ref.nullht) extern.convert_any →˓ (ref.null extern)
ref extern.convert_any →˓ (ref.extern ref) (if ref ̸= (ref.nullht))

138 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.6.3 Vector Instructions

Vector instructions that operate bitwise are handled as integer operations of respective width.

opv𝑁 (𝑖1, . . . , 𝑖𝑘) = iop𝑁 (𝑖1, . . . , 𝑖𝑘)

Most other vector instructions are defined in terms of numeric operators that are applied lane-wise according to
the given shape.

op𝑡x𝑁 (𝑛1, . . . , 𝑛𝑘) = lanes−1
𝑡x𝑁 (op𝑡(𝑖1, . . . , 𝑖𝑘)

*) (if 𝑖*1 = lanes𝑡x𝑁 (𝑛1) ∧ · · · ∧ 𝑖*𝑘 = lanes𝑡x𝑁 (𝑛𝑘)

Note: For example, the result of instruction i32x4.add applied to operands 𝑣1, 𝑣2 invokes addi32x4(𝑣1, 𝑣2), which
maps to lanes−1

i32x4(addi32(𝑖1, 𝑖2)
*), where 𝑖*1 and 𝑖*2 are sequences resulting from invoking lanesi32x4(𝑣1) and

lanesi32x4(𝑣2) respectively.

v128.const 𝑐

1. Push the value v128.const 𝑐 to the stack.

Note: No formal reduction rule is required for this instruction, since const instructions coincide with values.

v128.vvunop

1. Assert: due to validation, a value of value type v128 is on the top of the stack.

2. Pop the value v128.const 𝑐1 from the stack.

3. Let 𝑐 be the result of computing vvunopv128(𝑐1).

4. Push the value v128.const 𝑐 to the stack.

(v128.const 𝑐1) v128.vvunop →˓ (v128.const 𝑐) (if 𝑐 = vvunopv128(𝑐1))

v128.vvbinop

1. Assert: due to validation, two values of value type v128 are on the top of the stack.

2. Pop the value v128.const 𝑐2 from the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. Let 𝑐 be the result of computing vvbinopv128(𝑐1, 𝑐2).

5. Push the value v128.const 𝑐 to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) v128.vvbinop →˓ (v128.const 𝑐) (if 𝑐 = vvbinopv128(𝑐1, 𝑐2))

4.6. Instructions 139

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

v128.vvternop

1. Assert: due to validation, three values of value type v128 are on the top of the stack.

2. Pop the value v128.const 𝑐3 from the stack.

3. Pop the value v128.const 𝑐2 from the stack.

4. Pop the value v128.const 𝑐1 from the stack.

5. Let 𝑐 be the result of computing vvternopv128(𝑐1, 𝑐2, 𝑐3).

6. Push the value v128.const 𝑐 to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (v128.const 𝑐3) v128.vvternop →˓ (v128.const 𝑐) (if 𝑐 = vvternopv128(𝑐1, 𝑐2, 𝑐3))

v128.any_true

1. Assert: due to validation, a value of value type v128 is on the top of the stack.

2. Pop the value v128.const 𝑐1 from the stack.

3. Let 𝑖 be the result of computing ine128(𝑐1, 0).

4. Push the value i32.const 𝑖 onto the stack.

(v128.const 𝑐1) v128.any_true →˓ (i32.const 𝑖) (if 𝑖 = ine128(𝑐1, 0))

i8x16.swizzle

1. Assert: due to validation, two values of value type v128 are on the top of the stack.

2. Pop the value v128.const 𝑐2 from the stack.

3. Let 𝑖* be the result of computing lanesi8x16(𝑐2).

4. Pop the value v128.const 𝑐1 from the stack.

5. Let 𝑗* be the result of computing lanesi8x16(𝑐1).

6. Let 𝑐* be the concatenation of the two sequences 𝑗* and 0240.

7. Let 𝑐′ be the result of computing lanes−1
i8x16(𝑐

[𝑖[0]] . . . 𝑐*[𝑖*[15]]).

8. Push the value v128.const 𝑐′ onto the stack.
(v128.const 𝑐1) (v128.const 𝑐2) i8x16.swizzle →˓ (v128.const 𝑐′)

(if 𝑖* = lanesi8x16(𝑐2)
∧ 𝑐* = lanesi8x16(𝑐1) 0

240

∧ 𝑐′ = lanes−1
i8x16(𝑐

[𝑖[0]] . . . 𝑐*[𝑖*[15]]))

i8x16.shuffle 𝑥*

1. Assert: due to validation, two values of value type v128 are on the top of the stack.

2. Assert: due to validation, for all 𝑥𝑖 in 𝑥* it holds that 𝑥𝑖 < 32.

3. Pop the value v128.const 𝑐2 from the stack.

4. Let 𝑖*2 be the result of computing lanesi8x16(𝑐2).

5. Pop the value v128.const 𝑐1 from the stack.

6. Let 𝑖*1 be the result of computing lanesi8x16(𝑐1).

7. Let 𝑖* be the concatenation of the two sequences 𝑖*1 and 𝑖*2.

8. Let 𝑐 be the result of computing lanes−1
i8x16(𝑖

[𝑥[0]] . . . 𝑖*[𝑥*[15]]).

140 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

9. Push the value v128.const 𝑐 onto the stack.
(v128.const 𝑐1) (v128.const 𝑐2) (i8x16.shuffle 𝑥*) →˓ (v128.const 𝑐)

(if 𝑖* = lanesi8x16(𝑐1) lanesi8x16(𝑐2)
∧ 𝑐 = lanes−1

i8x16(𝑖
[𝑥[0]] . . . 𝑖*[𝑥*[15]]))

shape.splat

1. Let 𝑡 be the type unpacked(shape).

2. Assert: due to validation, a value of value type 𝑡 is on the top of the stack.

3. Pop the value 𝑡.const 𝑐1 from the stack.

4. Let 𝑁 be the integer dim(shape).

5. Let 𝑐 be the result of computing lanes−1
shape(𝑐

𝑁
1).

6. Push the value v128.const 𝑐 to the stack.

(𝑡.const 𝑐1) shape.splat →˓ (v128.const 𝑐) (if 𝑡 = unpacked(shape) ∧ 𝑐 = lanes−1
shape(𝑐

dim(shape)
1))

𝑡1x𝑁.extract_lane_sx ? 𝑥

1. Assert: due to validation, 𝑥 < 𝑁 .

2. Assert: due to validation, a value of value type v128 is on the top of the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. Let 𝑖* be the result of computing lanes𝑡1x𝑁 (𝑐1).

5. Let 𝑡2 be the type unpacked(𝑡1x𝑁).

6. Let 𝑐2 be the result of computing extend𝑠𝑥
?

𝑡1,𝑡2(𝑖
*[𝑥]).

7. Push the value 𝑡2.const 𝑐2 to the stack.

(v128.const 𝑐1) (𝑡1x𝑁.extract_lane 𝑥) →˓ (𝑡2.const 𝑐2)
(if 𝑡2 = unpacked(𝑡1x𝑁)

∧ 𝑐2 = extend𝑠𝑥
?

𝑡1,𝑡2(lanes𝑡1x𝑁 (𝑐1)[𝑥]))

shape.replace_lane 𝑥

1. Assert: due to validation, 𝑥 < dim(shape).

2. Let 𝑡2 be the type unpacked(shape).

3. Assert: due to validation, a value of value type 𝑡1 is on the top of the stack.

4. Pop the value 𝑡2.const 𝑐2 from the stack.

5. Assert: due to validation, a value of value type v128 is on the top of the stack.

6. Pop the value v128.const 𝑐1 from the stack.

7. Let 𝑖* be the result of computing lanesshape(𝑐1).

8. Let 𝑐 be the result of computing lanes−1
shape(𝑖

* with [𝑥] = 𝑐2).

9. Push v128.const 𝑐 on the stack.
(v128.const 𝑐1) (𝑡2.const 𝑐2) (shape.replace_lane 𝑥) →˓ (v128.const 𝑐)

(if 𝑖* = lanesshape(𝑐1)
∧ 𝑐 = lanes−1

shape(𝑖
* with [𝑥] = 𝑐2))

4.6. Instructions 141

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

shape.vunop

1. Assert: due to validation, a value of value type v128 is on the top of the stack.

2. Pop the value v128.const 𝑐1 from the stack.

3. Let 𝑐 be the result of computing vunopshape(𝑐1).

4. Push the value v128.const 𝑐 to the stack.

(v128.const 𝑐1) shape.vunop →˓ (v128.const 𝑐) (if 𝑐 = vunopshape(𝑐1))

shape.vbinop

1. Assert: due to validation, two values of value type v128 are on the top of the stack.

2. Pop the value v128.const 𝑐2 from the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. If vbinopshape(𝑐1, 𝑐2) is defined:

a. Let 𝑐 be a possible result of computing vbinopshape(𝑐1, 𝑐2).

b. Push the value v128.const 𝑐 to the stack.

5. Else:

a. Trap.

(v128.const 𝑐1) (v128.const 𝑐2) shape.vbinop →˓ (v128.const 𝑐) (if 𝑐 ∈ vbinopshape(𝑐1, 𝑐2))
(v128.const 𝑐1) (v128.const 𝑐2) shape.vbinop →˓ trap (if vbinopshape(𝑐1, 𝑐2) = {})

𝑡x𝑁.vrelop

1. Assert: due to validation, two values of value type v128 are on the top of the stack.

2. Pop the value v128.const 𝑐2 from the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. Let 𝑖*1 be the result of computing lanes𝑡x𝑁 (𝑐1).

5. Let 𝑖*2 be the result of computing lanes𝑡x𝑁 (𝑐2).

6. Let 𝑖* be the result of computing vrelop𝑡(𝑖
*
1, 𝑖

*
2).

7. Let 𝑗* be the result of computing extends1,|𝑡|(𝑖
*).

8. Let 𝑐 be the result of computing lanes−1
𝑡x𝑁 (𝑗*).

9. Push the value v128.const 𝑐 to the stack.
(v128.const 𝑐1) (v128.const 𝑐2) 𝑡x𝑁.vrelop →˓ (v128.const 𝑐)

(if 𝑐 = lanes−1
𝑡x𝑁 (extends1,|𝑡|(vrelop𝑡(lanes𝑡x𝑁 (𝑐1), lanes𝑡x𝑁 (𝑐2)))))

142 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑡x𝑁.vishiftop

1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const 𝑠 from the stack.

3. Assert: due to validation, a value of value type v128 is on the top of the stack.

4. Pop the value v128.const 𝑐1 from the stack.

5. Let 𝑖* be the result of computing lanes𝑡x𝑁 (𝑐1).

6. Let 𝑗* be the result of computing vishiftop𝑡(𝑖
*, 𝑠𝑁).

7. Let 𝑐 be the result of computing lanes−1
𝑡x𝑁 (𝑗*).

8. Push the value v128.const 𝑐 to the stack.
(v128.const 𝑐1) (i32.const 𝑠) 𝑡x𝑁.vishiftop →˓ (v128.const 𝑐)

(if 𝑖* = lanes𝑡x𝑁 (𝑐1)
∧ 𝑐 = lanes−1

𝑡x𝑁 (vishiftop𝑡(𝑖
*, 𝑠𝑁)))

shape.all_true

1. Assert: due to validation, a value of value type v128 is on the top of the stack.

2. Pop the value v128.const 𝑐 from the stack.

3. Let 𝑖*1 be the result of computing lanesshape(𝑐).

4. Let 𝑖 be the result of computing bool(
⋀︀
(𝑖1 ̸= 0)*).

5. Push the value i32.const 𝑖 onto the stack.
(v128.const 𝑐) shape.all_true →˓ (i32.const 𝑖)

(if 𝑖*1 = lanesshape(𝑐)
∧ 𝑖 = bool(

⋀︀
(𝑖1 ̸= 0)*))

𝑡x𝑁.bitmask

1. Assert: due to validation, a value of value type v128 is on the top of the stack.

2. Pop the value v128.const 𝑐 from the stack.

3. Let 𝑖𝑁1 be the result of computing lanes𝑡x𝑁 (𝑐).

4. Let 𝐵 be the bit width |𝑡| of value type 𝑡.

5. Let 𝑖𝑁2 be the result of computing ilt_s𝐵(𝑖𝑁1 , 0𝑁).

6. Let 𝑗* be the concatenation of the two sequences 𝑖𝑁2 and 032−𝑁 .

7. Let 𝑖 be the result of computing ibits−1
32 (𝑗

*).

8. Push the value i32.const 𝑖 onto the stack.

(v128.const 𝑐) 𝑡x𝑁.bitmask →˓ (i32.const 𝑖) (if 𝑖 = ibits−1
32 (ilt_s|𝑡|(lanes𝑡x𝑁 (𝑐), 0𝑁)))

4.6. Instructions 143

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑡2x𝑁.narrow_𝑡1x𝑀_sx

1. Assert: due to syntax, 𝑁 = 2 ·𝑀 .

2. Assert: due to validation, two values of value type v128 are on the top of the stack.

3. Pop the value v128.const 𝑐2 from the stack.

4. Let 𝑖𝑀2 be the result of computing lanes𝑡1x𝑀 (𝑐2).

5. Let 𝑑𝑀2 be the result of computing narrowsx
|𝑡1|,|𝑡2|(𝑖

𝑀
2).

6. Pop the value v128.const 𝑐1 from the stack.

7. Let 𝑖𝑀1 be the result of computing lanes𝑡1x𝑀 (𝑐1).

8. Let 𝑑𝑀1 be the result of computing narrowsx
|𝑡1|,|𝑡2|(𝑖

𝑀
1).

9. Let 𝑗𝑁 be the concatenation of the two sequences 𝑑𝑀1 and 𝑑𝑀2 .

10. Let 𝑐 be the result of computing lanes−1
𝑡2x𝑁

(𝑗𝑁).

11. Push the value v128.const 𝑐 onto the stack.
(v128.const 𝑐1) (v128.const 𝑐2) 𝑡2x𝑁.narrow_𝑡1x𝑀_sx →˓ (v128.const 𝑐)

(if 𝑑𝑀1 = narrowsx
|𝑡1|,|𝑡2|(lanes𝑡1x𝑀 (𝑐1))

∧ 𝑑𝑀2 = narrowsx
|𝑡1|,|𝑡2|(lanes𝑡1x𝑀 (𝑐2))

∧ 𝑐 = lanes−1
𝑡2x𝑁

(𝑑𝑀1 𝑑𝑀2))

𝑡2x𝑁.vcvtop_𝑡1x𝑀_sx

1. Assert: due to syntax, 𝑁 = 𝑀 .

2. Assert: due to validation, a value of value type v128 is on the top of the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. Let 𝑖* be the result of computing lanes𝑡1x𝑀 (𝑐1).

5. Let 𝑗* be the result of computing vcvtopsx
|𝑡1|,|𝑡2|(𝑖

*).

6. Let 𝑐 be the result of computing lanes−1
𝑡2x𝑁

(𝑗*).

7. Push the value v128.const 𝑐 onto the stack.
(v128.const 𝑐1) 𝑡2x𝑁.vcvtop_𝑡1x𝑀_sx →˓ (v128.const 𝑐)

(if 𝑐 = lanes−1
𝑡2x𝑁

(vcvtopsx
|𝑡1|,|𝑡2|(lanes𝑡1x𝑀 (𝑐1))))

𝑡2x𝑁.vcvtop_half _𝑡1x𝑀_sx ?

1. Assert: due to syntax, 𝑁 = 𝑀/2.

2. Assert: due to validation, a value of value type v128 is on the top of the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. Let 𝑖* be the result of computing lanes𝑡1x𝑀 (𝑐1).

5. If half is low, then:

a. Let 𝑗* be the sequence 𝑖*[0 : 𝑁].

6. Else:

a. Let 𝑗* be the sequence 𝑖*[𝑁 : 𝑁].

7. Let 𝑘* be the result of computing vcvtopsx?

|𝑡1|,|𝑡2|(𝑗
*).

8. Let 𝑐 be the result of computing lanes−1
𝑡2x𝑁

(𝑘*).

144 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

9. Push the value v128.const 𝑐 onto the stack.
(v128.const 𝑐1) 𝑡2x𝑁.vcvtop_half _𝑡1x𝑀_sx ? →˓ (v128.const 𝑐)

(if 𝑐 = lanes−1
𝑡2x𝑁

(vcvtopsx?

|𝑡1|,|𝑡2|(lanes𝑡1x𝑀 (𝑐1)[half (0, 𝑁) : 𝑁])))

where:

low(𝑥, 𝑦) = 𝑥
high(𝑥, 𝑦) = 𝑦

𝑡2x𝑁.vcvtop_𝑡1x𝑀_sx ?_zero

1. Assert: due to syntax, 𝑁 = 2 ·𝑀 .

2. Assert: due to validation, a value of value type v128 is on the top of the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. Let 𝑖* be the result of computing lanes𝑡1x𝑀 (𝑐1).

5. Let 𝑗* be the result of computing vcvtopsx?

|𝑡1|,|𝑡2|(𝑖
*).

6. Let 𝑘* be the concatenation of the two sequences 𝑗* and 0𝑀 .

7. Let 𝑐 be the result of computing lanes−1
𝑡2x𝑁

(𝑘*).

8. Push the value v128.const 𝑐 onto the stack.
(v128.const 𝑐1) 𝑡2x𝑁.vcvtop_𝑡1x𝑀_sx ?_zero →˓ (v128.const 𝑐)

(if 𝑐 = lanes−1
𝑡2x𝑁

(vcvtopsx?

|𝑡1|,|𝑡2|(lanes𝑡1x𝑀 (𝑐1)) 0
𝑀))

i32x4.dot_i16x8_s

1. Assert: due to validation, two values of value type v128 are on the top of the stack.

2. Pop the value v128.const 𝑐2 from the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. Let 𝑖*1 be the result of computing lanesi16x8(𝑐1).

5. Let 𝑗*1 be the result of computing extends16,32(𝑖
*
1).

6. Let 𝑖*2 be the result of computing lanesi16x8(𝑐2).

7. Let 𝑗*2 be the result of computing extends16,32(𝑖
*
2).

8. Let (𝑘1 𝑘2)* be the result of computing imul32(𝑗
*
1 , 𝑗

*
2).

9. Let 𝑘* be the result of computing iadd32(𝑘1, 𝑘2)
*.

10. Let 𝑐 be the result of computing lanes−1
i32x4(𝑘

*).

11. Push the value v128.const 𝑐 onto the stack.
(v128.const 𝑐1) (v128.const 𝑐2) i32x4.dot_i16x8_s →˓ (v128.const 𝑐)

(if (𝑖1 𝑖2)* = imul32(extend
s
16,32(lanesi16x8(𝑐1)), extend

s
16,32(lanesi16x8(𝑐2)))

∧ 𝑗* = iadd32(𝑖1, 𝑖2)
*

∧ 𝑐 = lanes−1
i32x4(𝑗

*))

4.6. Instructions 145

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑡2x𝑁.extmul_half _𝑡1x𝑀_sx

1. Assert: due to syntax, 𝑁 = 𝑀/2.

2. Assert: due to validation, two values of value type v128 are on the top of the stack.

3. Pop the value v128.const 𝑐2 from the stack.

4. Pop the value v128.const 𝑐1 from the stack.

5. Let 𝑖*1 be the result of computing lanes𝑡1x𝑀 (𝑐1).

6. Let 𝑖*2 be the result of computing lanes𝑡1x𝑀 (𝑐2).

7. If half is low, then:

a. Let 𝑗*1 be the sequence 𝑖*1[0 : 𝑁].

b. Let 𝑗*2 be the sequence 𝑖*2[0 : 𝑁].

8. Else:

a. Let 𝑗*1 be the sequence 𝑖*1[𝑁 : 𝑁].

b. Let 𝑗*2 be the sequence 𝑖*2[𝑁 : 𝑁].

9. Let 𝑘*1 be the result of computing extendsx|𝑡1|,|𝑡2|(𝑗
*
1).

10. Let 𝑘*2 be the result of computing extendsx|𝑡1|,|𝑡2|(𝑗
*
2).

11. Let 𝑘* be the result of computing imul|𝑡2|(𝑘
*
1 , 𝑘

*
2).

12. Let 𝑐 be the result of computing lanes−1
𝑡2x𝑁

(𝑘*).

13. Push the value v128.const 𝑐 onto the stack.
(v128.const 𝑐1) (v128.const 𝑐2) 𝑡2x𝑁.extmul_half _𝑡1x𝑀_sx →˓ (v128.const 𝑐)

(if 𝑖* = lanes𝑡1x𝑀 (𝑐1)[half (0, 𝑁) : 𝑁]
∧ 𝑗* = lanes𝑡1x𝑀 (𝑐2)[half (0, 𝑁) : 𝑁]
∧ 𝑐 = lanes−1

𝑡2x𝑁
(imul|𝑡2|(extend

sx
|𝑡1|,|𝑡2|(𝑖

*), extendsx|𝑡1|,|𝑡2|(𝑗
*))))

where:

low(𝑥, 𝑦) = 𝑥
high(𝑥, 𝑦) = 𝑦

𝑡2x𝑁.extadd_pairwise_𝑡1x𝑀_sx

1. Assert: due to syntax, 𝑁 = 𝑀/2.

2. Assert: due to validation, a value of value type v128 is on the top of the stack.

3. Pop the value v128.const 𝑐1 from the stack.

4. Let 𝑖* be the result of computing lanes𝑡1x𝑀 (𝑐1).

5. Let (𝑗1 𝑗2)* be the result of computing extendsx|𝑡1|,|𝑡2|(𝑖
*).

6. Let 𝑘* be the result of computing iadd|𝑡2|(𝑗1, 𝑗2)
*.

7. Let 𝑐 be the result of computing lanes−1
𝑡2x𝑁

(𝑘*).

8. Push the value v128.const 𝑐 to the stack.
(v128.const 𝑐1) 𝑡2x𝑁.extadd_pairwise_𝑡1x𝑀_sx →˓ (v128.const 𝑐)

(if (𝑖1 𝑖2)* = extendsx|𝑡1|,|𝑡2|(lanes𝑡1x𝑀 (𝑐1))

∧ 𝑗* = iadd|𝑡2|(𝑖1, 𝑖2)
*

∧ 𝑐 = lanes−1
𝑡2x𝑁

(𝑗*))

146 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.6.4 Parametric Instructions

drop

1. Assert: due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

val drop →˓ 𝜖

select (𝑡*)?

1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const 𝑐 from the stack.

3. Assert: due to validation, two more values (of the same value type) are on the top of the stack.

4. Pop the value val2 from the stack.

5. Pop the value val1 from the stack.

6. If 𝑐 is not 0, then:

a. Push the value val1 back to the stack.

7. Else:

a. Push the value val2 back to the stack.

val1 val2 (i32.const 𝑐) (select 𝑡
?) →˓ val1 (if 𝑐 ̸= 0)

val1 val2 (i32.const 𝑐) (select 𝑡
?) →˓ val2 (if 𝑐 = 0)

Note: In future versions of WebAssembly, select may allow more than one value per choice.

4.6.5 Variable Instructions

local.get 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.locals[𝑥] exists and is non-empty.

3. Let val be the value 𝐹.locals[𝑥].

4. Push the value val to the stack.

𝐹 ; (local.get 𝑥) →˓ 𝐹 ; val (if 𝐹.locals[𝑥] = val)

local.set 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.locals[𝑥] exists.

3. Assert: due to validation, a value is on the top of the stack.

4. Pop the value val from the stack.

5. Replace 𝐹.locals[𝑥] with the value val .

𝐹 ; val (local.set 𝑥) →˓ 𝐹 ′; 𝜖 (if 𝐹 ′ = 𝐹 with locals[𝑥] = val)

4.6. Instructions 147

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

local.tee 𝑥

1. Assert: due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. Push the value val to the stack.

4. Push the value val to the stack.

5. Execute the instruction local.set 𝑥.

val (local.tee 𝑥) →˓ val val (local.set 𝑥)

global.get 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.globaladdrs[𝑥] exists.

3. Let 𝑎 be the global address 𝐹.module.globaladdrs[𝑥].

4. Assert: due to validation, 𝑆.globals[𝑎] exists.

5. Let glob be the global instance 𝑆.globals[𝑎].

6. Let val be the value glob.value.

7. Push the value val to the stack.
𝑆;𝐹 ; (global.get 𝑥) →˓ 𝑆;𝐹 ; val

(if 𝑆.globals[𝐹.module.globaladdrs[𝑥]].value = val)

global.set 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.globaladdrs[𝑥] exists.

3. Let 𝑎 be the global address 𝐹.module.globaladdrs[𝑥].

4. Assert: due to validation, 𝑆.globals[𝑎] exists.

5. Let glob be the global instance 𝑆.globals[𝑎].

6. Assert: due to validation, a value is on the top of the stack.

7. Pop the value val from the stack.

8. Replace glob.value with the value val .

𝑆;𝐹 ; val (global.set 𝑥) →˓ 𝑆′;𝐹 ; 𝜖
(if 𝑆′ = 𝑆 with globals[𝐹.module.globaladdrs[𝑥]].value = val)

Note: Validation ensures that the global is, in fact, marked as mutable.

148 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.6.6 Table Instructions

table.get 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let 𝑎 be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[𝑎] exists.

5. Let tab be the table instance 𝑆.tables[𝑎].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑖 from the stack.

8. If 𝑖 is not smaller than the length of tab.elem, then:

a. Trap.

9. Let val be the value tab.elem[𝑖].

10. Push the value val to the stack.

𝑆;𝐹 ; (i32.const 𝑖) (table.get 𝑥) →˓ 𝑆;𝐹 ; val
(if 𝑆.tables[𝐹.module.tableaddrs[𝑥]].elem[𝑖] = val)

𝑆;𝐹 ; (i32.const 𝑖) (table.get 𝑥) →˓ 𝑆;𝐹 ; trap
(otherwise)

table.set 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let 𝑎 be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[𝑎] exists.

5. Let tab be the table instance 𝑆.tables[𝑎].

6. Assert: due to validation, a reference value is on the top of the stack.

7. Pop the value val from the stack.

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. If 𝑖 is not smaller than the length of tab.elem, then:

a. Trap.

11. Replace the element tab.elem[𝑖] with val .

𝑆;𝐹 ; (i32.const 𝑖) val (table.set 𝑥) →˓ 𝑆′;𝐹 ; 𝜖
(if 𝑆′ = 𝑆 with tables[𝐹.module.tableaddrs[𝑥]].elem[𝑖] = val)

𝑆;𝐹 ; (i32.const 𝑖) val (table.set 𝑥) →˓ 𝑆;𝐹 ; trap
(otherwise)

4.6. Instructions 149

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

table.size 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let 𝑎 be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[𝑎] exists.

5. Let tab be the table instance 𝑆.tables[𝑎].

6. Let sz be the length of tab.elem.

7. Push the value i32.const sz to the stack.
𝑆;𝐹 ; (table.size 𝑥) →˓ 𝑆;𝐹 ; (i32.const sz)

(if |𝑆.tables[𝐹.module.tableaddrs[𝑥]].elem| = sz)

table.grow 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let 𝑎 be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[𝑎] exists.

5. Let tab be the table instance 𝑆.tables[𝑎].

6. Let sz be the length of 𝑆.tables[𝑎].

7. Assert: due to validation, a value of value type i32 is on the top of the stack.

8. Pop the value i32.const 𝑛 from the stack.

9. Assert: due to validation, a reference value is on the top of the stack.

10. Pop the value val from the stack.

11. Let err be the i32 value 232 − 1, for which signed32(err) is −1.

12. Either:

a. If growing tab by 𝑛 entries with initialization value val succeeds, then:

i. Push the value i32.const sz to the stack.

b. Else:

i. Push the value i32.const err to the stack.

13. Or:

a. push the value i32.const err to the stack.

𝑆;𝐹 ; val (i32.const 𝑛) (table.grow 𝑥) →˓ 𝑆′;𝐹 ; (i32.const sz)
(if 𝐹.module.tableaddrs[𝑥] = 𝑎
∧ sz = |𝑆.tables[𝑎].elem|
∧ 𝑆′ = 𝑆 with tables[𝑎] = growtable(𝑆.tables[𝑎], 𝑛, val))

𝑆;𝐹 ; val (i32.const 𝑛) (table.grow 𝑥) →˓ 𝑆;𝐹 ; (i32.const signed−1
32 (−1))

Note: The table.grow instruction is non-deterministic. It may either succeed, returning the old table size sz ,
or fail, returning −1. Failure must occur if the referenced table instance has a maximum size defined that would
be exceeded. However, failure can occur in other cases as well. In practice, the choice depends on the resources
available to the embedder.

150 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

table.fill 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑛 from the stack.

8. Assert: due to validation, a reference value is on the top of the stack.

9. Pop the value val from the stack.

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑖 from the stack.

12. If 𝑖+ 𝑛 is larger than the length of tab.elem, then:

a. Trap.

12. If 𝑛 is 0, then:

a. Return.

13. Push the value i32.const 𝑖 to the stack.

14. Push the value val to the stack.

15. Execute the instruction table.set 𝑥.

16. Push the value i32.const (𝑖+ 1) to the stack.

17. Push the value val to the stack.

18. Push the value i32.const (𝑛− 1) to the stack.

19. Execute the instruction table.fill 𝑥.
𝑆;𝐹 ; (i32.const 𝑖) val (i32.const 𝑛) (table.fill 𝑥) →˓ 𝑆;𝐹 ; trap

(if 𝑖+ 𝑛 > |𝑆.tables[𝐹.module.tableaddrs[𝑥]].elem|)
𝑆;𝐹 ; (i32.const 𝑖) val (i32.const 0) (table.fill 𝑥) →˓ 𝑆;𝐹 ; 𝜖

(otherwise)
𝑆;𝐹 ; (i32.const 𝑖) val (i32.const 𝑛+ 1) (table.fill 𝑥) →˓

𝑆;𝐹 ; (i32.const 𝑖) val (table.set 𝑥)
(i32.const 𝑖+ 1) val (i32.const 𝑛) (table.fill 𝑥)

(otherwise)

table.copy 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let ta𝑥 be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[ta𝑥] exists.

5. Let tab𝑥 be the table instance 𝑆.tables[ta𝑥].

6. Assert: due to validation, 𝐹.module.tableaddrs[𝑦] exists.

7. Let ta𝑦 be the table address 𝐹.module.tableaddrs[𝑦].

4.6. Instructions 151

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

8. Assert: due to validation, 𝑆.tables[ta𝑦] exists.

9. Let tab𝑦 be the table instance 𝑆.tables[ta𝑦].

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑛 from the stack.

12. Assert: due to validation, a value of value type i32 is on the top of the stack.

13. Pop the value i32.const 𝑠 from the stack.

14. Assert: due to validation, a value of value type i32 is on the top of the stack.

15. Pop the value i32.const 𝑑 from the stack.

16. If 𝑠+ 𝑛 is larger than the length of tab𝑦.elem or 𝑑+ 𝑛 is larger than the length of tab𝑥.elem, then:

a. Trap.

17. If 𝑛 = 0, then:

a. Return.

18. If 𝑑 ≤ 𝑠, then:

a. Push the value i32.const 𝑑 to the stack.

b. Push the value i32.const 𝑠 to the stack.

c. Execute the instruction table.get 𝑦.

d. Execute the instruction table.set 𝑥.

e. Assert: due to the earlier check against the table size, 𝑑+ 1 < 232.

f. Push the value i32.const (𝑑+ 1) to the stack.

g. Assert: due to the earlier check against the table size, 𝑠+ 1 < 232.

h. Push the value i32.const (𝑠+ 1) to the stack.

19. Else:

a. Assert: due to the earlier check against the table size, 𝑑+ 𝑛− 1 < 232.

b. Push the value i32.const (𝑑+ 𝑛− 1) to the stack.

c. Assert: due to the earlier check against the table size, 𝑠+ 𝑛− 1 < 232.

d. Push the value i32.const (𝑠+ 𝑛− 1) to the stack.

c. Execute the instruction table.get 𝑦.

f. Execute the instruction table.set 𝑥.

g. Push the value i32.const 𝑑 to the stack.

h. Push the value i32.const 𝑠 to the stack.

20. Push the value i32.const (𝑛− 1) to the stack.

21. Execute the instruction table.copy 𝑥 𝑦.

152 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (table.copy 𝑥 𝑦) →˓ 𝑆;𝐹 ; trap
(if 𝑠+ 𝑛 > |𝑆.tables[𝐹.module.tableaddrs[𝑦]].elem|
∨ 𝑑+ 𝑛 > |𝑆.tables[𝐹.module.tableaddrs[𝑥]].elem|)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) (table.copy 𝑥 𝑦) →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛+ 1) (table.copy 𝑥 𝑦) →˓
𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (table.get 𝑦) (table.set 𝑥)

(i32.const 𝑑+ 1) (i32.const 𝑠+ 1) (i32.const 𝑛) (table.copy 𝑥 𝑦)
(otherwise, if 𝑑 ≤ 𝑠)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛+ 1) (table.copy 𝑥 𝑦) →˓
𝑆;𝐹 ; (i32.const 𝑑+ 𝑛) (i32.const 𝑠+ 𝑛) (table.get 𝑦) (table.set 𝑥)

(i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (table.copy 𝑥 𝑦)
(otherwise, if 𝑑 > 𝑠)

table.init 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: due to validation, 𝐹.module.elemaddrs[𝑦] exists.

7. Let ea be the element address 𝐹.module.elemaddrs[𝑦].

8. Assert: due to validation, 𝑆.elems[ea] exists.

9. Let elem be the element instance 𝑆.elems[ea].

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑛 from the stack.

12. Assert: due to validation, a value of value type i32 is on the top of the stack.

13. Pop the value i32.const 𝑠 from the stack.

14. Assert: due to validation, a value of value type i32 is on the top of the stack.

15. Pop the value i32.const 𝑑 from the stack.

16. If 𝑠+ 𝑛 is larger than the length of elem.elem or 𝑑+ 𝑛 is larger than the length of tab.elem, then:

a. Trap.

17. If 𝑛 = 0, then:

a. Return.

18. Let val be the reference value elem.elem[𝑠].

19. Push the value i32.const 𝑑 to the stack.

20. Push the value val to the stack.

21. Execute the instruction table.set 𝑥.

22. Assert: due to the earlier check against the table size, 𝑑+ 1 < 232.

23. Push the value i32.const (𝑑+ 1) to the stack.

24. Assert: due to the earlier check against the segment size, 𝑠+ 1 < 232.

25. Push the value i32.const (𝑠+ 1) to the stack.

4.6. Instructions 153

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

26. Push the value i32.const (𝑛− 1) to the stack.

27. Execute the instruction table.init 𝑥 𝑦.

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (table.init 𝑥 𝑦) →˓ 𝑆;𝐹 ; trap
(if 𝑠+ 𝑛 > |𝑆.elems[𝐹.module.elemaddrs[𝑦]].elem|
∨ 𝑑+ 𝑛 > |𝑆.tables[𝐹.module.tableaddrs[𝑥]].elem|)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) (table.init 𝑥 𝑦) →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛+ 1) (table.init 𝑥 𝑦) →˓
𝑆;𝐹 ; (i32.const 𝑑) val (table.set 𝑥)

(i32.const 𝑑+ 1) (i32.const 𝑠+ 1) (i32.const 𝑛) (table.init 𝑥 𝑦)
(otherwise, if val = 𝑆.elems[𝐹.module.elemaddrs[𝑦]].elem[𝑠])

elem.drop 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.elemaddrs[𝑥] exists.

3. Let 𝑎 be the element address 𝐹.module.elemaddrs[𝑥].

4. Assert: due to validation, 𝑆.elems[𝑎] exists.

5. Replace 𝑆.elems[𝑎].elem with 𝜖.

𝑆;𝐹 ; (elem.drop 𝑥) →˓ 𝑆′;𝐹 ; 𝜖
(if 𝑆′ = 𝑆 with elems[𝐹.module.elemaddrs[𝑥]].elem = 𝜖)

4.6.7 Memory Instructions

Note: The alignment memarg .align in load and store instructions does not affect the semantics. It is an indication
that the offset ea at which the memory is accessed is intended to satisfy the property ea mod 2memarg.align = 0. A
WebAssembly implementation can use this hint to optimize for the intended use. Unaligned access violating that
property is still allowed and must succeed regardless of the annotation. However, it may be substantially slower on
some hardware.

𝑡.load 𝑥 memarg and 𝑡.load𝑁_sx 𝑥 memarg

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑖 from the stack.

8. Let ea be the integer 𝑖+memarg .offset.

9. If 𝑁 is not part of the instruction, then:

a. Let 𝑁 be the bit width |𝑡| of number type 𝑡.

154 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

10. If ea +𝑁/8 is larger than the length of mem.data, then:

a. Trap.

11. Let 𝑏* be the byte sequence mem.data[ea : 𝑁/8].

12. If 𝑁 and sx are part of the instruction, then:

a. Let 𝑛 be the integer for which bytesi𝑁 (𝑛) = 𝑏*.

b. Let 𝑐 be the result of computing extendsx𝑁,|𝑡|(𝑛).

13. Else:

a. Let 𝑐 be the constant for which bytes𝑡(𝑐) = 𝑏*.

14. Push the value 𝑡.const 𝑐 to the stack.

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.load 𝑥 memarg) →˓ 𝑆;𝐹 ; (𝑡.const 𝑐)
(if ea = 𝑖+memarg .offset
∧ ea + |𝑡|/8 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ bytes𝑡(𝑐) = 𝑆.mems[𝐹.module.memaddrs[𝑥]].data[ea : |𝑡|/8])

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.load𝑁_sx 𝑥 memarg) →˓ 𝑆;𝐹 ; (𝑡.const extendsx𝑁,|𝑡|(𝑛))

(if ea = 𝑖+memarg .offset
∧ ea +𝑁/8 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ bytesi𝑁 (𝑛) = 𝑆.mems[𝐹.module.memaddrs[𝑥]].data[ea : 𝑁/8])

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.load(𝑁_sx)? 𝑥 memarg) →˓ 𝑆;𝐹 ; trap
(otherwise)

v128.load𝑀x𝑁_sx 𝑥 memarg

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑖 from the stack.

8. Let ea be the integer 𝑖+memarg .offset.

9. If ea +𝑀 ·𝑁/8 is larger than the length of mem.data, then:

a. Trap.

10. Let 𝑏* be the byte sequence mem.data[ea : 𝑀 ·𝑁/8].

11. Let 𝑚𝑘 be the integer for which bytesi𝑀 (𝑚𝑘) = 𝑏*[𝑘 ·𝑀/8 : 𝑀/8].

12. Let 𝑊 be the integer 𝑀 · 2.

13. Let 𝑛𝑘 be the result of computing extendsx𝑀,𝑊 (𝑚𝑘).

14. Let 𝑐 be the result of computing lanes−1
i𝑊 x𝑁 (𝑛0 . . . 𝑛𝑁−1).

15. Push the value v128.const 𝑐 to the stack.

4.6. Instructions 155

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑆;𝐹 ; (i32.const 𝑖) (v128.load𝑀x𝑁_sx 𝑥 memarg) →˓ 𝑆;𝐹 ; (v128.const 𝑐)
(if ea = 𝑖+memarg .offset
∧ ea +𝑀 ·𝑁/8 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ bytesi𝑀 (𝑚𝑘) = 𝑆.mems[𝐹.module.memaddrs[𝑥]].data[ea + 𝑘 ·𝑀/8 : 𝑀/8])
∧𝑊 = 𝑀 · 2
∧ 𝑐 = lanes−1

i𝑊 x𝑁 (extendsx𝑀,𝑊 (𝑚0) . . . extend
sx
𝑀,𝑊 (𝑚𝑁−1)))

𝑆;𝐹 ; (i32.const 𝑖) (v128.load𝑀x𝑁_sx 𝑥 memarg) →˓ 𝑆;𝐹 ; trap
(otherwise)

v128.load𝑁_splat 𝑥 memarg

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑖 from the stack.

8. Let ea be the integer 𝑖+memarg .offset.

9. If ea +𝑁/8 is larger than the length of mem.data, then:

a. Trap.

10. Let 𝑏* be the byte sequence mem.data[ea : 𝑁/8].

11. Let 𝑛 be the integer for which bytesi𝑁 (𝑛) = 𝑏*.

12. Let 𝐿 be the integer 128/𝑁 .

13. Let 𝑐 be the result of computing lanes−1
i𝑁x𝐿(𝑛

𝐿).

14. Push the value v128.const 𝑐 to the stack.

𝑆;𝐹 ; (i32.const 𝑖) (v128.load𝑁_splat 𝑥 memarg) →˓ 𝑆;𝐹 ; (v128.const 𝑐)
(if ea = 𝑖+memarg .offset
∧ ea +𝑁/8 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ bytesi𝑁 (𝑛) = 𝑆.mems[𝐹.module.memaddrs[𝑥]].data[ea : 𝑁/8]
∧ 𝑐 = lanes−1

i𝑁x𝐿(𝑛
𝐿))

𝑆;𝐹 ; (i32.const 𝑖) (v128.load𝑁_splat 𝑥 memarg) →˓ 𝑆;𝐹 ; trap
(otherwise)

v128.load𝑁_zero 𝑥 memarg

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑖 from the stack.

8. Let ea be the integer 𝑖+memarg .offset.

156 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

9. If ea +𝑁/8 is larger than the length of mem.data, then:

a. Trap.

10. Let 𝑏* be the byte sequence mem.data[ea : 𝑁/8].

11. Let 𝑛 be the integer for which bytesi𝑁 (𝑛) = 𝑏*.

12. Let 𝑐 be the result of computing extendu𝑁,128(𝑛).

13. Push the value v128.const 𝑐 to the stack.

𝑆;𝐹 ; (i32.const 𝑖) (v128.load𝑁_zero 𝑥 memarg) →˓ 𝑆;𝐹 ; (v128.const 𝑐)
(if ea = 𝑖+memarg .offset
∧ ea +𝑁/8 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ bytesi𝑁 (𝑛) = 𝑆.mems[𝐹.module.memaddrs[𝑥]].data[ea : 𝑁/8])
∧ 𝑐 = extendu𝑁,128(𝑛)

𝑆;𝐹 ; (i32.const 𝑖) (v128.load𝑁_zero 𝑥 memarg) →˓ 𝑆;𝐹 ; trap
(otherwise)

v128.load𝑁_lane 𝑥 memarg 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type v128 is on the top of the stack.

7. Pop the value v128.const 𝑣 from the stack.

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. Let ea be the integer 𝑖+memarg .offset.

11. If ea +𝑁/8 is larger than the length of mem.data, then:

a. Trap.

12. Let 𝑏* be the byte sequence mem.data[ea : 𝑁/8].

13. Let 𝑟 be the constant for which bytesi𝑁 (𝑟) = 𝑏*.

14. Let 𝐿 be 128/𝑁 .

15. Let 𝑗* be the result of computing lanesi𝑁x𝐿(𝑣).

16. Let 𝑐 be the result of computing lanes−1
i𝑁x𝐿(𝑗

* with [𝑦] = 𝑟).

17. Push the value v128.const 𝑐 to the stack.

𝑆;𝐹 ; (i32.const 𝑖) (v128.const 𝑣) (v128.load𝑁_lane 𝑥 memarg 𝑦) →˓ 𝑆;𝐹 ; (v128.const 𝑐)
(if ea = 𝑖+memarg .offset
∧ ea +𝑁/8 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ bytesi𝑁 (𝑟) = 𝑆.mems[𝐹.module.memaddrs[𝑥]].data[ea : 𝑁/8])
∧ 𝐿 = 128/𝑁
∧ 𝑐 = lanes−1

i𝑁x𝐿(lanesi𝑁x𝐿(𝑣) with [𝑦] = 𝑟))
𝑆;𝐹 ; (i32.const 𝑖) (v128.const 𝑣) (v128.load𝑁_lane 𝑥 memarg 𝑦) →˓ 𝑆;𝐹 ; trap

(otherwise)

4.6. Instructions 157

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑡.store 𝑥 memarg and 𝑡.store𝑁 𝑥 memarg

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type 𝑡 is on the top of the stack.

7. Pop the value 𝑡.const 𝑐 from the stack.

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. Let ea be the integer 𝑖+memarg .offset.

11. If 𝑁 is not part of the instruction, then:

a. Let 𝑁 be the bit width |𝑡| of number type 𝑡.

12. If ea +𝑁/8 is larger than the length of mem.data, then:

a. Trap.

13. If 𝑁 is part of the instruction, then:

a. Let 𝑛 be the result of computing wrap|𝑡|,𝑁 (𝑐).

b. Let 𝑏* be the byte sequence bytesi𝑁 (𝑛).

14. Else:

a. Let 𝑏* be the byte sequence bytes𝑡(𝑐).

15. Replace the bytes mem.data[ea : 𝑁/8] with 𝑏*.

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.const 𝑐) (𝑡.store 𝑥 memarg) →˓ 𝑆′;𝐹 ; 𝜖
(if ea = 𝑖+memarg .offset
∧ ea + |𝑡|/8 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ 𝑆′ = 𝑆 with mems[𝐹.module.memaddrs[𝑥]].data[ea : |𝑡|/8] = bytes𝑡(𝑐))

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.const 𝑐) (𝑡.store𝑁 𝑥 memarg) →˓ 𝑆′;𝐹 ; 𝜖
(if ea = 𝑖+memarg .offset
∧ ea +𝑁/8 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ 𝑆′ = 𝑆 with mems[𝐹.module.memaddrs[𝑥]].data[ea : 𝑁/8] = bytesi𝑁 (wrap|𝑡|,𝑁 (𝑐))

𝑆;𝐹 ; (i32.const 𝑖) (𝑡.const 𝑐) (𝑡.store𝑁? 𝑥 memarg) →˓ 𝑆;𝐹 ; trap
(otherwise)

v128.store𝑁_lane 𝑥 memarg 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Assert: due to validation, a value of value type v128 is on the top of the stack.

7. Pop the value v128.const 𝑐 from the stack.

158 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. Let ea be the integer 𝑖+memarg .offset.

11. If ea +𝑁/8 is larger than the length of mem.data, then:

a. Trap.

12. Let 𝐿 be 128/𝑁 .

13. Let 𝑗* be the result of computing lanesi𝑁x𝐿(𝑐).

14. Let 𝑏* be the result of computing bytesi𝑁 (𝑗*[𝑦]).

15. Replace the bytes mem.data[ea : 𝑁/8] with 𝑏*.

𝑆;𝐹 ; (i32.const 𝑖) (v128.const 𝑐) (v128.store𝑁_lane 𝑥 memarg 𝑦) →˓ 𝑆′;𝐹 ; 𝜖
(if ea = 𝑖+memarg .offset
∧ ea +𝑁 ≤ |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∧ 𝐿 = 128/𝑁
∧ 𝑆′ = 𝑆 with mems[𝐹.module.memaddrs[𝑥]].data[ea : 𝑁/8] = bytesi𝑁 (lanesi𝑁x𝐿(𝑐)[𝑦]))

𝑆;𝐹 ; (i32.const 𝑖) (v128.const 𝑐) (v128.store𝑁_lane 𝑥 memarg 𝑦) →˓ 𝑆;𝐹 ; trap
(otherwise)

memory.size 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Let sz be the length of mem.data divided by the page size.

7. Push the value i32.const sz to the stack.
𝑆;𝐹 ; (memory.size 𝑥) →˓ 𝑆;𝐹 ; (i32.const sz)

(if |𝑆.mems[𝐹.module.memaddrs[𝑥]].data| = sz · 64Ki)

memory.grow 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let 𝑎 be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[𝑎] exists.

5. Let mem be the memory instance 𝑆.mems[𝑎].

6. Let sz be the length of 𝑆.mems[𝑎] divided by the page size.

7. Assert: due to validation, a value of value type i32 is on the top of the stack.

8. Pop the value i32.const 𝑛 from the stack.

9. Let err be the i32 value 232 − 1, for which signed32(err) is −1.

10. Either:

a. If growing mem by 𝑛 pages succeeds, then:

4.6. Instructions 159

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

i. Push the value i32.const sz to the stack.

b. Else:

i. Push the value i32.const err to the stack.

11. Or:

a. Push the value i32.const err to the stack.

𝑆;𝐹 ; (i32.const 𝑛) (memory.grow 𝑥) →˓ 𝑆′;𝐹 ; (i32.const sz)
(if 𝐹.module.memaddrs[𝑥] = 𝑎
∧ sz = |𝑆.mems[𝑎].data|/64Ki
∧ 𝑆′ = 𝑆 with mems[𝑎] = growmem(𝑆.mems[𝑎], 𝑛))

𝑆;𝐹 ; (i32.const 𝑛) (memory.grow 𝑥) →˓ 𝑆;𝐹 ; (i32.const signed−1
32 (−1))

Note: The memory.grow instruction is non-deterministic. It may either succeed, returning the old memory size
sz , or fail, returning −1. Failure must occur if the referenced memory instance has a maximum size defined that
would be exceeded. However, failure can occur in other cases as well. In practice, the choice depends on the
resources available to the embedder.

memory.fill 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let ma be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[ma] exists.

5. Let mem be the memory instance 𝑆.mems[ma].

6. Assert: due to validation, a value of value type i32 is on the top of the stack.

7. Pop the value i32.const 𝑛 from the stack.

8. Assert: due to validation, a value of value type i32 is on the top of the stack.

9. Pop the value val from the stack.

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑑 from the stack.

12. If 𝑑+ 𝑛 is larger than the length of mem.data, then:

a. Trap.

13. If 𝑛 = 0, then:

a. Return.

14. Push the value i32.const 𝑑 to the stack.

15. Push the value val to the stack.

16. Execute the instruction i32.store8 {offset 0, align 0}.

17. Assert: due to the earlier check against the memory size, 𝑑+ 1 < 232.

18. Push the value i32.const (𝑑+ 1) to the stack.

19. Push the value val to the stack.

20. Push the value i32.const (𝑛− 1) to the stack.

21. Execute the instruction memory.fill 𝑥.

160 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

𝑆;𝐹 ; (i32.const 𝑑) val (i32.const 𝑛) memory.fill 𝑥 →˓ 𝑆;𝐹 ; trap
(if 𝑑+ 𝑛 > |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|)

𝑆;𝐹 ; (i32.const 𝑑) val (i32.const 0) memory.fill 𝑥 →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) val (i32.const 𝑛+ 1) memory.fill 𝑥 →˓
𝑆;𝐹 ; (i32.const 𝑑) val (i32.store8 𝑥 {offset 0, align 0})

(i32.const 𝑑+ 1) val (i32.const 𝑛) memory.fill 𝑥
(otherwise)

memory.copy 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Assert: due to validation, 𝐹.module.memaddrs[𝑦] exists.

4. Let da be the memory address 𝐹.module.memaddrs[𝑥].

5. Let sa be the memory address 𝐹.module.memaddrs[𝑦].

6. Assert: due to validation, 𝑆.mems[da] exists.

7. Assert: due to validation, 𝑆.mems[sa] exists.

8. Let mem𝑑 be the memory instance 𝑆.mems[da].

9. Let mem𝑠 be the memory instance 𝑆.mems[sa].

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑛 from the stack.

12. Assert: due to validation, a value of value type i32 is on the top of the stack.

13. Pop the value i32.const 𝑠 from the stack.

14. Assert: due to validation, a value of value type i32 is on the top of the stack.

15. Pop the value i32.const 𝑑 from the stack.

16. If 𝑠+ 𝑛 is larger than the length of mem𝑠.data or 𝑑+ 𝑛 is larger than the length of mem𝑑.data, then:

a. Trap.

17. If 𝑛 = 0, then:

a. Return.

18. If 𝑑 ≤ 𝑠, then:

a. Push the value i32.const 𝑑 to the stack.

b. Push the value i32.const 𝑠 to the stack.

c. Execute the instruction i32.load8_u 𝑦 {offset 0, align 0}.

d. Execute the instruction i32.store8 𝑥 {offset 0, align 0}.

e. Assert: due to the earlier check against the memory size, 𝑑+ 1 < 232.

f. Push the value i32.const (𝑑+ 1) to the stack.

g. Assert: due to the earlier check against the memory size, 𝑠+ 1 < 232.

h. Push the value i32.const (𝑠+ 1) to the stack.

19. Else:

a. Assert: due to the earlier check against the memory size, 𝑑+ 𝑛− 1 < 232.

4.6. Instructions 161

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

b. Push the value i32.const (𝑑+ 𝑛− 1) to the stack.

c. Assert: due to the earlier check against the memory size, 𝑠+ 𝑛− 1 < 232.

d. Push the value i32.const (𝑠+ 𝑛− 1) to the stack.

e. Execute the instruction i32.load8_u 𝑦 {offset 0, align 0}.

f. Execute the instruction i32.store8 𝑥 {offset 0, align 0}.

g. Push the value i32.const 𝑑 to the stack.

h. Push the value i32.const 𝑠 to the stack.

20. Push the value i32.const (𝑛− 1) to the stack.

21. Execute the instruction memory.copy 𝑥 𝑦.

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) memory.copy 𝑥 𝑦 →˓ 𝑆;𝐹 ; trap
(if 𝑑+ 𝑛 > |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∨ 𝑠+ 𝑛 > |𝑆.mems[𝐹.module.memaddrs[𝑦]].data|)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) memory.copy 𝑥 𝑦 →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛+ 1) memory.copy 𝑥 𝑦 →˓
𝑆;𝐹 ; (i32.const 𝑑)

(i32.const 𝑠) (i32.load8_u 𝑦 {offset 0, align 0})
(i32.store8 𝑥 {offset 0, align 0})
(i32.const 𝑑+ 1) (i32.const 𝑠+ 1) (i32.const 𝑛) memory.copy 𝑥 𝑦

(otherwise, if 𝑑 ≤ 𝑠)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛+ 1) memory.copy 𝑥 𝑦 →˓
𝑆;𝐹 ; (i32.const 𝑑+ 𝑛)

(i32.const 𝑠+ 𝑛) (i32.load8_u 𝑦 {offset 0, align 0})
(i32.store8 𝑥 {offset 0, align 0})
(i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) memory.copy 𝑥 𝑦

(otherwise, if 𝑑 > 𝑠)

memory.init 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.memaddrs[𝑥] exists.

3. Let ma be the memory address 𝐹.module.memaddrs[𝑥].

4. Assert: due to validation, 𝑆.mems[ma] exists.

5. Let mem be the memory instance 𝑆.mems[ma].

6. Assert: due to validation, 𝐹.module.dataaddrs[𝑦] exists.

7. Let da be the data address 𝐹.module.dataaddrs[𝑦].

8. Assert: due to validation, 𝑆.datas[da] exists.

9. Let data be the data instance 𝑆.datas[da].

10. Assert: due to validation, a value of value type i32 is on the top of the stack.

11. Pop the value i32.const 𝑛 from the stack.

12. Assert: due to validation, a value of value type i32 is on the top of the stack.

13. Pop the value i32.const 𝑠 from the stack.

14. Assert: due to validation, a value of value type i32 is on the top of the stack.

15. Pop the value i32.const 𝑑 from the stack.

162 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

16. If 𝑠+ 𝑛 is larger than the length of data.data or 𝑑+ 𝑛 is larger than the length of mem.data, then:

a. Trap.

17. If 𝑛 = 0, then:

a. Return.

18. Let 𝑏 be the byte data.data[𝑠].

19. Push the value i32.const 𝑑 to the stack.

20. Push the value i32.const 𝑏 to the stack.

21. Execute the instruction i32.store8 {offset 0, align 0}.

22. Assert: due to the earlier check against the memory size, 𝑑+ 1 < 232.

23. Push the value i32.const (𝑑+ 1) to the stack.

24. Assert: due to the earlier check against the memory size, 𝑠+ 1 < 232.

25. Push the value i32.const (𝑠+ 1) to the stack.

26. Push the value i32.const (𝑛− 1) to the stack.

27. Execute the instruction memory.init 𝑥 𝑦.

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛) (memory.init 𝑥 𝑦) →˓ 𝑆;𝐹 ; trap
(if 𝑑+ 𝑛 > |𝑆.mems[𝐹.module.memaddrs[𝑥]].data|
∨ 𝑠+ 𝑛 > |𝑆.datas[𝐹.module.dataaddrs[𝑦]].data|)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 0) (memory.init 𝑥 𝑦) →˓ 𝑆;𝐹 ; 𝜖
(otherwise)

𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑠) (i32.const 𝑛+ 1) (memory.init 𝑥 𝑦) →˓
𝑆;𝐹 ; (i32.const 𝑑) (i32.const 𝑏) (i32.store8 𝑥 {offset 0, align 0})

(i32.const 𝑑+ 1) (i32.const 𝑠+ 1) (i32.const 𝑛) (memory.init 𝑥 𝑦)
(otherwise, if 𝑏 = 𝑆.datas[𝐹.module.dataaddrs[𝑦]].data[𝑠])

data.drop 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.dataaddrs[𝑥] exists.

3. Let 𝑎 be the data address 𝐹.module.dataaddrs[𝑥].

4. Assert: due to validation, 𝑆.datas[𝑎] exists.

5. Replace 𝑆.datas[𝑎] with the data instance {data 𝜖}.

𝑆;𝐹 ; (data.drop 𝑥) →˓ 𝑆′;𝐹 ; 𝜖
(if 𝑆′ = 𝑆 with datas[𝐹.module.dataaddrs[𝑥]] = {data 𝜖})

4.6. Instructions 163

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.6.8 Control Instructions

nop

1. Do nothing.

nop →˓ 𝜖

unreachable

1. Trap.

unreachable →˓ trap

block blocktype instr* end

1. Let 𝐹 be the current frame.

2. Assert: due to validation, instrtype𝑆;𝐹 (blocktype) is defined.

3. Let [𝑡𝑚1] → [𝑡𝑛2] be the instruction type instrtype𝑆;𝐹 (blocktype).

4. Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the end of the block.

5. Assert: due to validation, there are at least 𝑚 values on the top of the stack.

6. Pop the values val𝑚 from the stack.

7. Enter the block val𝑚 instr* with label 𝐿.

𝑆;𝐹 ; val𝑚 block bt instr* end →˓ 𝑆;𝐹 ; label𝑛{𝜖} val𝑚 instr* end
(if instrtype𝑆;𝐹 (bt) = [𝑡𝑚1] → [𝑡𝑛2])

loop blocktype instr* end

1. Let 𝐹 be the current frame.

2. Assert: due to validation, instrtype𝑆;𝐹 (blocktype) is defined.

3. Let [𝑡𝑚1] → [𝑡𝑛2] be the instruction type instrtype𝑆;𝐹 (blocktype).

4. Let 𝐿 be the label whose arity is 𝑚 and whose continuation is the start of the loop.

5. Assert: due to validation, there are at least 𝑚 values on the top of the stack.

6. Pop the values val𝑚 from the stack.

7. Enter the block val𝑚 instr* with label 𝐿.

𝑆;𝐹 ; val𝑚 loop bt instr* end →˓ 𝑆;𝐹 ; label𝑚{loop bt instr* end} val𝑚 instr* end
(if instrtype𝑆;𝐹 (bt) = [𝑡𝑚1] → [𝑡𝑛2])

164 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

if blocktype instr*1 else instr*2 end

1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const 𝑐 from the stack.

3. If 𝑐 is non-zero, then:

a. Execute the block instruction block blocktype instr*1 end.

4. Else:

a. Execute the block instruction block blocktype instr*2 end.

(i32.const 𝑐) if bt instr*1 else instr
*
2 end →˓ block bt instr*1 end

(if 𝑐 ̸= 0)
(i32.const 𝑐) if bt instr*1 else instr

*
2 end →˓ block bt instr*2 end

(if 𝑐 = 0)

throw 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tagaddrs[𝑥] exists.

3. Let 𝑎 be the tag address 𝐹.module.tagaddrs[𝑥].

4. Assert: due to validation, 𝑆.tags[𝑎] exists.

5. Let ti be the tag instance 𝑆.tags[𝑎].

6. Let [𝑡𝑛] → [𝑡′
*
] be the tag type ti .type.

7. Assert: due to validation, there are at least 𝑛 values on the top of the stack.

8. Pop the 𝑛 values val𝑛 from the stack.

9. Let exn be the exception instance {tag 𝑎, fields val𝑛}.

10. Let ea be the length of 𝑆.exns.

11. Append exn to 𝑆.exns.

12. Push the value ref.exn ea to the stack.

13. Execute the instruction throw_ref.

𝑆;𝐹 ; val𝑛 (throw 𝑥) →˓ 𝑆′;𝐹 ; (ref.exn |𝑆.exns|) throw_ref (if 𝐹.module.tagaddrs[𝑥] = 𝑎
∧ 𝑆.tags[𝑎].type = [𝑡𝑛] → []
∧ exn = {tag 𝑎, fields val𝑛}
∧ 𝑆′ = 𝑆 with exns = 𝑆.exns exn)

throw_ref

1. Let 𝐹 be the current frame.

2. Assert: due to validation, a reference is on the top of the stack.

3. Pop the reference ref from the stack.

4. If ref is ref.null ht , then:

a. Trap.

5. Assert: due to validation, ref is an exception reference.

6. Let ref.exn ea be ref .

4.6. Instructions 165

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7. Assert: due to validation, 𝑆.exns[ea] exists.

8. Let exn be the exception instance 𝑆.exns[ea].

9. Let 𝑎 be the tag address exn.tag.

10. While the stack is not empty and the top of the stack is not an exception handler, do:

a. Pop the top element from the stack.

11. Assert: the stack is now either empty, or there is an exception handler on the top of the stack.

12. If the stack is empty, then:

a. Return the exception (ref.exn 𝑎) as a result.

13. Assert: there is an exception handler on the top of the stack.

14. Pop the exception handler handler𝑛{catch*} from the stack.

15. If catch* is empty, then:

a. Push the exception reference ref.exn ea back to the stack.

b. Execute the instruction throw_ref again.

16. Else:

a. Let catch1 be the first catch clause in catch* and catch ′* the remaining clauses.

b. If catch1 is of the form catch 𝑥 𝑙 and the exception address 𝑎 equals 𝐹.module.tagaddrs[𝑥], then:

i. Push the values exn.fields to the stack.

ii. Execute the instruction br 𝑙.

c. Else if catch1 is of the form catch_ref 𝑥 𝑙 and the exception address 𝑎 equals 𝐹.module.tagaddrs[𝑥],
then:

i. Push the values exn.fields to the stack.

ii. Push the exception reference ref.exn ea to the stack.

iii. Execute the instruction br 𝑙.

d. Else if catch1 is of the form catch_all 𝑙, then:

i. Execute the instruction br 𝑙.

e. Else if catch1 is of the form catch_all_ref 𝑙, then:

i. Push the exception reference ref.exn ea to the stack.

ii. Execute the instruction br 𝑙.

f. Else:

1. Push the modified handler handler𝑛{catch ′*} back to the stack.

2. Push the exception reference ref.exn ea back to the stack.

3. Execute the instruction throw_ref again.

166 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

(ref.null ht) throw_ref →˓ trap
handler𝑛{} 𝑇 [(ref.exn 𝑎) throw_ref] end →˓ (ref.exn 𝑎) throw_ref

𝑆;𝐹 ; handler𝑛{(catch 𝑥 𝑙) catch*} 𝑇 [(ref.exn 𝑎) throw_ref] end →˓ exn.fields (br 𝑙)
(if exn = 𝑆.exns[𝑎]
∧ exn.tag = 𝐹.module.tagaddrs[𝑥])

𝑆;𝐹 ; handler𝑛{(catch_ref 𝑥 𝑙) catch*} 𝑇 [(ref.exn 𝑎) throw_ref] end →˓ exn.fields (ref.exn 𝑎) (br 𝑙)
(if exn = 𝑆.exns[𝑎]
∧ exn.tag = 𝐹.module.tagaddrs[𝑥])

handler𝑛{(catch_all 𝑙) catch*} 𝑇 [(ref.exn 𝑎) throw_ref] end →˓ (br 𝑙)
handler𝑛{(catch_all_ref 𝑙) catch*} 𝑇 [(ref.exn 𝑎) throw_ref] end →˓ (ref.exn 𝑎) (br 𝑙)

handler𝑛{catch1 catch
} 𝑇 [(ref.exn 𝑎) throw_ref] end →˓ handler𝑛{catch} 𝑇 [(ref.exn 𝑎) throw_ref] end

(otherwise)

try_table blocktype catch* instr* end

1. Assert: due to validation, instrtype𝑆;𝐹 (blocktype) is defined.

2. Let [𝑡𝑚1] → [𝑡𝑛2] be the instruction type instrtype𝑆;𝐹 (blocktype).

3. Assert: due to validation, there are at least 𝑚 values on the top of the stack.

4. Pop the values val𝑚 from the stack.

5. Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the end of the try_table instruction.

6. Enter the block val𝑚 instr*1 with label 𝐿 and exception handler handler𝑛{catch*}.

𝐹 ; val𝑚 (try_table bt catch* instr* end →˓ 𝐹 ; handler𝑛{catch*} (label𝑛{𝜖} val𝑚 instr* end) end
(if instrtype𝑆;𝐹 (bt) = [𝑡𝑚1] → [𝑡𝑛2] ∧ (𝐹.module.tagaddrs[𝑥] = 𝑎𝑥)

*)

br 𝑙

1. Assert: due to validation, the stack contains at least 𝑙 + 1 labels.

2. Let 𝐿 be the 𝑙-th label appearing on the stack, starting from the top and counting from zero.

3. Let 𝑛 be the arity of 𝐿.

4. Assert: due to validation, there are at least 𝑛 values on the top of the stack.

5. Pop the values val𝑛 from the stack.

6. Repeat 𝑙 + 1 times:

a. While the top of the stack is a value or a handler, do:

i. Pop the value or handler from the stack.

b. Assert: due to validation, the top of the stack now is a label.

c. Pop the label from the stack.

7. Push the values val𝑛 to the stack.

8. Jump to the continuation of 𝐿.

label𝑛{instr*} 𝐵𝑙[val𝑛 (br 𝑙)] end →˓ val𝑛 instr*

4.6. Instructions 167

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

br_if 𝑙

1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const 𝑐 from the stack.

3. If 𝑐 is non-zero, then:

a. Execute the instruction br 𝑙.

4. Else:

a. Do nothing.

(i32.const 𝑐) (br_if 𝑙) →˓ (br 𝑙) (if 𝑐 ̸= 0)
(i32.const 𝑐) (br_if 𝑙) →˓ 𝜖 (if 𝑐 = 0)

br_table 𝑙* 𝑙𝑁

1. Assert: due to validation, a value of value type i32 is on the top of the stack.

2. Pop the value i32.const 𝑖 from the stack.

3. If 𝑖 is smaller than the length of 𝑙*, then:

a. Let 𝑙𝑖 be the label 𝑙*[𝑖].

b. Execute the instruction br 𝑙𝑖.

4. Else:

a. Execute the instruction br 𝑙𝑁 .

(i32.const 𝑖) (br_table 𝑙* 𝑙𝑁) →˓ (br 𝑙𝑖) (if 𝑙*[𝑖] = 𝑙𝑖)
(i32.const 𝑖) (br_table 𝑙* 𝑙𝑁) →˓ (br 𝑙𝑁) (if |𝑙*| ≤ 𝑖)

br_on_null 𝑙

1. Assert: due to validation, a reference value is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is ref.null ht , then:

a. Execute the instruction (br 𝑙).

4. Else:

a. Push the value ref back to the stack.

ref (br_on_null 𝑙) →˓ (br 𝑙) (if ref = ref.null ht)
ref (br_on_null 𝑙) →˓ ref (otherwise)

168 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

br_on_non_null 𝑙

1. Assert: due to validation, a reference value is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is ref.null ht , then:

a. Do nothing.

4. Else:

a. Push the value ref back to the stack.

b. Execute the instruction (br 𝑙).

ref (br_on_non_null 𝑙) →˓ 𝜖 (if ref = ref.null ht)
ref (br_on_non_null 𝑙) →˓ ref (br 𝑙) (otherwise)

br_on_cast 𝑙 rt1 rt2

1. Let 𝐹 be the current frame.

2. Let rt ′2 be the reference type clos𝐹.module(rt2).

3. Assert: due to validation, rt ′2 is closed.

4. Assert: due to validation, a reference value is on the top of the stack.

5. Pop the value ref from the stack.

6. Assert: due to validation, the reference value is valid with some reference type.

7. Let rt be the reference type of ref .

8. Push the value ref back to the stack.

9. If the reference type rt matches rt ′2, then:

a. Execute the instruction (br 𝑙).

𝑆;𝐹 ; ref (br_on_cast 𝑙 rt1 rt2) →˓ ref (br 𝑙) (if 𝑆 ⊢ ref : rt∧ ⊢ rt ≤ clos𝐹.module(rt2))
𝑆;𝐹 ; ref (br_on_cast 𝑙 rt1 rt2) →˓ ref (otherwise)

br_on_cast_fail 𝑙 rt1 rt2

1. Let 𝐹 be the current frame.

2. Let rt ′2 be the reference type clos𝐹.module(rt2).

3. Assert: due to validation, rt ′2 is closed.

4. Assert: due to validation, a reference value is on the top of the stack.

5. Pop the value ref from the stack.

6. Assert: due to validation, the reference value is valid with some reference type.

7. Let rt be the reference type of ref .

8. Push the value ref back to the stack.

9. If the reference type rt does not match rt ′2, then:

a. Execute the instruction (br 𝑙).

𝑆;𝐹 ; ref (br_on_cast_fail 𝑙 rt1 rt2) →˓ ref (if 𝑆 ⊢ ref : rt∧ ⊢ rt ≤ clos𝐹.module(rt2))
𝑆;𝐹 ; ref (br_on_cast_fail 𝑙 rt1 rt2) →˓ ref (br 𝑙) (otherwise)

4.6. Instructions 169

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

return

1. Let 𝐹 be the current frame.

2. Let 𝑛 be the arity of 𝐹 .

3. Assert: due to validation, there are at least 𝑛 values on the top of the stack.

4. Pop the results val𝑛 from the stack.

5. Assert: due to validation, the stack contains at least one frame.

6. While the top of the stack is not a frame, do:

a. Pop the top element from the stack.

7. Assert: the top of the stack is the frame 𝐹 .

8. Pop the frame from the stack.

9. Push val𝑛 to the stack.

10. Jump to the instruction after the original call that pushed the frame.

frame𝑛{𝐹} 𝐵*[val𝑛 return] end →˓ val𝑛

call 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.funcaddrs[𝑥] exists.

3. Let 𝑎 be the function address 𝐹.module.funcaddrs[𝑥].

4. Invoke the function instance at address 𝑎.

𝐹 ; (call 𝑥) →˓ 𝐹 ; (invoke 𝑎) (if 𝐹.module.funcaddrs[𝑥] = 𝑎)

call_ref 𝑥

1. Assert: due to validation, a null or function reference is on the top of the stack.

2. Pop the reference value 𝑟 from the stack.

3. If 𝑟 is ref.null ht , then:

a. Trap.

4. Assert: due to validation, 𝑟 is a function reference.

5. Let ref.func 𝑎 be the reference 𝑟.

6. Invoke the function instance at address 𝑎.
𝐹 ; (ref.func 𝑎) (call_ref 𝑥) →˓ 𝐹 ; (invoke 𝑎)
𝐹 ; (ref.null ht) (call_ref 𝑥) →˓ 𝐹 ; trap

170 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

call_indirect 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: due to validation, 𝐹.module.types[𝑦] is defined.

7. Let dtexpect be the defined type 𝐹.module.types[𝑦].

8. Assert: due to validation, a value with value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. If 𝑖 is not smaller than the length of tab.elem, then:

a. Trap.

11. Let 𝑟 be the reference tab.elem[𝑖].

12. If 𝑟 is ref.null ht , then:

a. Trap.

13. Assert: due to validation of table mutation, 𝑟 is a function reference.

14. Let ref.func 𝑎 be the function reference 𝑟.

15. Assert: due to validation of table mutation, 𝑆.funcs[𝑎] exists.

16. Let f be the function instance 𝑆.funcs[𝑎].

17. Let dtactual be the defined type f .type.

18. If dtactual does not match dtexpect, then:

a. Trap.

19. Invoke the function instance at address 𝑎.

𝑆;𝐹 ; (i32.const 𝑖) (call_indirect 𝑥 𝑦) →˓ 𝑆;𝐹 ; (invoke 𝑎)
(if 𝑆.tables[𝐹.module.tableaddrs[𝑥]].elem[𝑖] = ref.func 𝑎
∧ 𝑆.funcs[𝑎] = 𝑓
∧ 𝑆 ⊢ 𝐹.module.types[𝑦] ≤ 𝑓.type)

𝑆;𝐹 ; (i32.const 𝑖) (call_indirect 𝑥 𝑦) →˓ 𝑆;𝐹 ; trap
(otherwise)

return_call 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.funcaddrs[𝑥] exists.

3. Let 𝑎 be the function address 𝐹.module.funcaddrs[𝑥].

4. Tail-invoke the function instance at address 𝑎.

(return_call 𝑥) →˓ (return_invoke 𝑎) (if (call 𝑥) →˓ (invoke 𝑎))

4.6. Instructions 171

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

return_call_ref 𝑥

1. Assert: due to validation, a function reference is on the top of the stack.

2. Pop the reference value 𝑟 from the stack.

3. If 𝑟 is ref.null ht , then:

a. Trap.

4. Assert: due to validation, 𝑟 is a function reference.

5. Let ref.func 𝑎 be the reference 𝑟.

6. Tail-invoke the function instance at address 𝑎.
val (return_call_ref 𝑥) →˓ (return_invoke 𝑎) (if val (call_ref 𝑥) →˓ (invoke 𝑎))
val (return_call_ref 𝑥) →˓ trap (if val (call_ref 𝑥) →˓ trap)

return_call_indirect 𝑥 𝑦

1. Let 𝐹 be the current frame.

2. Assert: due to validation, 𝐹.module.tableaddrs[𝑥] exists.

3. Let ta be the table address 𝐹.module.tableaddrs[𝑥].

4. Assert: due to validation, 𝑆.tables[ta] exists.

5. Let tab be the table instance 𝑆.tables[ta].

6. Assert: due to validation, 𝐹.module.types[𝑦] exists.

7. Let dtexpect be the defined type 𝐹.module.types[𝑦].

8. Assert: due to validation, a value with value type i32 is on the top of the stack.

9. Pop the value i32.const 𝑖 from the stack.

10. If 𝑖 is not smaller than the length of tab.elem, then:

a. Trap.

11. If tab.elem[𝑖] is uninitialized, then:

a. Trap.

12. Let 𝑎 be the function address tab.elem[𝑖].

13. Assert: due to validation, 𝑆.funcs[𝑎] exists.

14. Let f be the function instance 𝑆.funcs[𝑎].

15. Let dtactual be the defined type f .type.

16. If dtactual does not match dtexpect, then:

a. Trap.

17. Tail-invoke the function instance at address 𝑎.
val (return_call_indirect 𝑥 𝑦) →˓ (return_invoke 𝑎) (if val (call_indirect 𝑥 𝑦) →˓ (invoke 𝑎))
val (return_call_indirect 𝑥 𝑦) →˓ trap (if val (call_indirect 𝑥 𝑦) →˓ trap)

172 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.6.9 Blocks

The following auxiliary rules define the semantics of executing an instruction sequence that forms a block.

Entering instr* with label 𝐿

1. Push 𝐿 to the stack.

2. Jump to the start of the instruction sequence instr*.

Note: No formal reduction rule is needed for entering an instruction sequence, because the label 𝐿 is embedded
in the administrative instruction that structured control instructions reduce to directly.

Exiting instr* with label 𝐿

When the end of a block is reached without a jump, exception, or trap aborting it, then the following steps are
performed.

1. Pop all values val* from the top of the stack.

2. Assert: due to validation, the label 𝐿 is now on the top of the stack.

3. Pop the label from the stack.

4. Push val* back to the stack.

5. Jump to the position after the end of the structured control instruction associated with the label 𝐿.

label𝑛{instr*} val* end →˓ val*

Note: This semantics also applies to the instruction sequence contained in a loop instruction. Therefore, execution
of a loop falls off the end, unless a backwards branch is performed explicitly.

4.6.10 Exception Handling

The following auxiliary rules define the semantics of entering and exiting try_table blocks.

Entering instr* with label 𝐿 and exception handler 𝐻

1. Push 𝐿 to the stack.

2. Push 𝐻 onto the stack.

3. Jump to the start of the instruction sequence instr*.

Note: No formal reduction rule is needed for entering an exception handler because it is an administrative instruc-
tion that the try_table instruction reduces to directly.

4.6. Instructions 173

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Exiting an exception handler

When the end of a try_table block is reached without a jump, exception, or trap, then the following steps are
performed.

1. Let 𝑚 be the number of values on the top of the stack.

2. Pop the values val𝑚 from the stack.

3. Assert: due to validation, a handler and a label are now on the top of the stack.

4. Pop the label from the stack.

5. Pop the handler 𝐻 from the stack.

6. Push val𝑚 back to the stack.

7. Jump to the position after the end of the administrative instruction associated with the handler 𝐻 .

handler𝑚{catch*} val𝑚 end →˓ val𝑚

4.6.11 Function Calls

The following auxiliary rules define the semantics of invoking a function instance through one of the call instruc-
tions and returning from it.

Invocation of function address 𝑎

1. Assert: due to validation, 𝑆.funcs[𝑎] exists.

2. Let 𝑓 be the function instance, 𝑆.funcs[𝑎].

3. Let func [𝑡𝑛1] → [𝑡𝑚2] be the composite type expand(f .type).

4. Let local* be the list of locals 𝑓.code.locals.

5. Let instr* end be the expression 𝑓.code.body.

6. Assert: due to validation, 𝑛 values are on the top of the stack.

7. Pop the values val𝑛 from the stack.

8. Let 𝐹 be the frame {module 𝑓.module, locals val𝑛 (default𝑡)
*}.

9. Push the activation of 𝐹 with arity 𝑚 to the stack.

10. Let 𝐿 be the label whose arity is 𝑚 and whose continuation is the end of the function.

11. Enter the instruction sequence instr* with label 𝐿.

𝑆; val𝑛 (invoke 𝑎) →˓ 𝑆; frame𝑚{𝐹} label𝑚{} instr* end end
(if 𝑆.funcs[𝑎] = 𝑓
∧ expand(𝑓.type) = func [𝑡𝑛1] → [𝑡𝑚2]
∧ 𝑓.code = {type 𝑥, locals {type 𝑡}𝑘, body instr* end}
∧ 𝐹 = {module 𝑓.module, locals val𝑛 (default𝑡)

𝑘})

Note: For non-defaultable types, the respective local is left uninitialized by these rules.

174 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Tail-invocation of function address 𝑎

1. Assert: due to validation, 𝑆.funcs[𝑎] exists.

2. Let func [𝑡𝑛1] → [𝑡𝑚2] be the composite type expand(𝑆.funcs[𝑎].type).

3. Assert: due to validation, there are at least 𝑛 values on the top of the stack.

4. Pop the results val𝑛 from the stack.

5. Assert: due to validation, the stack contains at least one frame.

6. While the top of the stack is not a frame, do:

a. Pop the top element from the stack.

7. Assert: the top of the stack is a frame.

8. Pop the frame from the stack.

9. Push val𝑛 to the stack.

10. Invoke the function instance at address 𝑎.

𝑆; frame𝑚{𝐹} 𝐵*[val𝑛 (return_invoke 𝑎)] end →˓ val𝑛 (invoke 𝑎) (if expand(𝑆.funcs[𝑎].type) = func [𝑡𝑛1] → [𝑡𝑚2])

Returning from a function

When the end of a function is reached without a jump (including through return), or an exception or trap aborting
it, then the following steps are performed.

1. Let 𝐹 be the current frame.

2. Let 𝑛 be the arity of the activation of 𝐹 .

3. Assert: due to validation, there are 𝑛 values on the top of the stack.

4. Pop the results val𝑛 from the stack.

5. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

6. Pop the frame from the stack.

7. Push val𝑛 back to the stack.

8. Jump to the instruction after the original call.

frame𝑛{𝐹} val𝑛 end →˓ val𝑛

Host Functions

Invoking a host function has non-deterministic behavior. It may either terminate with a trap, an exception, or return
regularly. However, in the latter case, it must consume and produce the right number and types of WebAssembly
values on the stack, according to its function type.

A host function may also modify the store. However, all store modifications must result in an extension of the
original store, i.e., they must only modify mutable contents and must not have instances removed. Furthermore,

4.6. Instructions 175

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

the resulting store must be valid, i.e., all data and code in it is well-typed.

𝑆; val𝑛 (invoke 𝑎) →˓ 𝑆′; result
(if 𝑆.funcs[𝑎] = {type deftype, hostcode hf }
∧ expand(deftype) = func [𝑡𝑛1] → [𝑡𝑚2]
∧ (𝑆′; result) ∈ hf (𝑆; val𝑛))

𝑆; val𝑛 (invoke 𝑎) →˓ 𝑆; val𝑛 (invoke 𝑎)
(if 𝑆.funcs[𝑎] = {type deftype, hostcode hf }
∧ expand(deftype) = func [𝑡𝑛1] → [𝑡𝑚2]
∧ ⊥ ∈ hf (𝑆; val𝑛))

Here, hf (𝑆; val𝑛) denotes the implementation-defined execution of host function hf in current store 𝑆 with argu-
ments val𝑛. It yields a set of possible outcomes, where each element is either a pair of a modified store 𝑆′ and
a result or the special value ⊥ indicating divergence. A host function is non-deterministic if there is at least one
argument for which the set of outcomes is not singular.

For a WebAssembly implementation to be sound in the presence of host functions, every host function instance
must be valid, which means that it adheres to suitable pre- and post-conditions: under a valid store 𝑆, and given
arguments val𝑛 matching the ascribed parameter types 𝑡𝑛1 , executing the host function must yield a non-empty set
of possible outcomes each of which is either divergence or consists of a valid store 𝑆′ that is an extension of 𝑆 and
a result matching the ascribed return types 𝑡𝑚2 . All these notions are made precise in the Appendix.

Note: A host function can call back into WebAssembly by invoking a function exported from a module. However,
the effects of any such call are subsumed by the non-deterministic behavior allowed for the host function.

4.6.12 Expressions

An expression is evaluated relative to a current frame pointing to its containing module instance.

1. Jump to the start of the instruction sequence instr* of the expression.

2. Execute the instruction sequence.

3. Assert: due to validation, the top of the stack contains a value.

4. Pop the value val from the stack.

The value val is the result of the evaluation.

𝑆;𝐹 ; instr* →˓ 𝑆′;𝐹 ′; instr ′* (if 𝑆;𝐹 ; instr* end →˓ 𝑆′;𝐹 ′; instr ′* end)

Note: Evaluation iterates this reduction rule until reaching a value. Expressions constituting function bodies are
executed during function invocation.

4.7 Modules

For modules, the execution semantics primarily defines instantiation, which allocates instances for a module and
its contained definitions, initializes tables and memories from contained element and data segments, and invokes
the start function if present. It also includes invocation of exported functions.

176 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

4.7.1 Allocation

New instances of functions, tables, memories, globals, tags, element segments, and data segments, as well as
dynamic data types like structures, arrays, or exceptions, are allocated in a store 𝑆, as defined by the following
auxiliary functions.

Functions

1. Let func be the function to allocate and moduleinst its module instance.

2. Let deftype be the defined type moduleinst .types[func.type].

3. Let 𝑎 be the first free function address in 𝑆.

4. Let funcinst be the function instance {type deftype,module moduleinst , code func}.

6. Append funcinst to the funcs of 𝑆.

7. Return 𝑎.

allocfunc(𝑆, func,moduleinst) = 𝑆′, funcaddr

where:
deftype = moduleinst .types[func.type]

funcaddr = |𝑆.funcs|
funcinst = {type deftype,module moduleinst , code func}

𝑆′ = 𝑆 ⊕ {funcs funcinst}

Host Functions

1. Let hostfunc be the host function to allocate and deftype its defined type.

2. Let 𝑎 be the first free function address in 𝑆.

3. Let funcinst be the function instance {type deftype, hostcode hostfunc}.

4. Append funcinst to the funcs of 𝑆.

5. Return 𝑎.

allochostfunc(𝑆, deftype, hostfunc) = 𝑆′, funcaddr

where:
funcaddr = |𝑆.funcs|
funcinst = {type deftype, hostcode hostfunc}

𝑆′ = 𝑆 ⊕ {funcs funcinst}

Note: Host functions are never allocated by the WebAssembly semantics itself, but may be allocated by the
embedder.

4.7. Modules 177

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Tables

1. Let tabletype be the table type of the table to allocate and ref the initialization value.

2. Let ({min 𝑛,max 𝑚?} reftype) be the structure of table type tabletype .

3. Let 𝑎 be the first free table address in 𝑆.

4. Let tableinst be the table instance {type tabletype ′, elem ref 𝑛} with 𝑛 elements set to ref .

5. Append tableinst to the tables of 𝑆.

6. Return 𝑎.
alloctable(𝑆, tabletype, ref) = 𝑆′, tableaddr

where:
tabletype = {min 𝑛,max 𝑚?} reftype
tableaddr = |𝑆.tables|
tableinst = {type tabletype, elem ref 𝑛}

𝑆′ = 𝑆 ⊕ {tables tableinst}

Memories

1. Let memtype be the memory type of the memory to allocate.

2. Let {min 𝑛,max 𝑚?} be the structure of memory type memtype.

3. Let 𝑎 be the first free memory address in 𝑆.

4. Let meminst be the memory instance {typememtype, data (0x00)𝑛·64Ki} that contains 𝑛 pages of zeroed
bytes.

5. Append meminst to the mems of 𝑆.

6. Return 𝑎.
allocmem(𝑆,memtype) = 𝑆′,memaddr

where:
memtype = {min 𝑛,max 𝑚?}
memaddr = |𝑆.mems|
meminst = {type memtype, data (0x00)𝑛·64Ki}

𝑆′ = 𝑆 ⊕ {mems meminst}

Tags

1. Let tagtype be the tag type to allocate.

2. Let 𝑎 be the first free tag address in 𝑆.

3. Let taginst be the tag instance {type tagtype}.

4. Append taginst to the tags of 𝑆.

5. Return 𝑎.
alloctag(𝑆, tagtype) = 𝑆′, tagaddr

where:
tagaddr = |𝑆.tags|
taginst = {type tagtype}

𝑆′ = 𝑆 ⊕ {tags taginst}

178 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Globals

1. Let globaltype be the global type of the global to allocate and val its initialization value.

2. Let 𝑎 be the first free global address in 𝑆.

3. Let globalinst be the global instance {type globaltype, value val}.

4. Append globalinst to the globals of 𝑆.

5. Return 𝑎.
allocglobal(𝑆, globaltype, val) = 𝑆′, globaladdr

where:
globaladdr = |𝑆.globals|
globalinst = {type globaltype, value val}

𝑆′ = 𝑆 ⊕ {globals globalinst}

Element segments

1. Let reftype be the elements’ type and ref * the vector of references to allocate.

2. Let 𝑎 be the first free element address in 𝑆.

3. Let eleminst be the element instance {type reftype, elem ref *}.

4. Append eleminst to the elems of 𝑆.

5. Return 𝑎.
allocelem(𝑆, reftype, ref *) = 𝑆′, elemaddr

where:
elemaddr = |𝑆.elems|
eleminst = {type reftype, elem ref *}

𝑆′ = 𝑆 ⊕ {elems eleminst}

Data segments

1. Let 𝑏* be the vector of bytes to allocate.

2. Let 𝑎 be the first free data address in 𝑆.

3. Let datainst be the data instance {data 𝑏*}.

4. Append datainst to the datas of 𝑆.

5. Return 𝑎.
allocdata(𝑆, 𝑏*) = 𝑆′, dataaddr

where:
dataaddr = |𝑆.datas|
datainst = {data 𝑏*}

𝑆′ = 𝑆 ⊕ {datas datainst}

4.7. Modules 179

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Growing tables

1. Let tableinst be the table instance to grow, 𝑛 the number of elements by which to grow it, and ref the
initialization value.

2. Let len be 𝑛 added to the length of tableinst .elem.

3. If len is larger than or equal to 232, then fail.

4. Let limits 𝑡 be the structure of table type tableinst .type.

5. Let limits ′ be limits with min updated to len .

6. If limits ′ is not valid, then fail.

7. Append ref 𝑛 to tableinst .elem.

8. Set tableinst .type to the table type limits ′ 𝑡.

growtable(tableinst , 𝑛, ref) = tableinst with type = limits ′ 𝑡 with elem = tableinst .elem ref 𝑛

(if len = 𝑛+ |tableinst .elem|
∧ len < 232

∧ limits 𝑡 = tableinst .type
∧ limits ′ = limits with min = len
∧ ⊢ limits ′ ok)

Growing memories

1. Let meminst be the memory instance to grow and 𝑛 the number of pages by which to grow it.

2. Assert: The length of meminst .data is divisible by the page size 64Ki.

3. Let len be 𝑛 added to the length of meminst .data divided by the page size 64Ki.

4. If len is larger than 216, then fail.

5. Let limits be the structure of memory type meminst .type.

6. Let limits ′ be limits with min updated to len .

7. If limits ′ is not valid, then fail.

8. Append 𝑛 times 64Ki bytes with value 0x00 to meminst .data.

9. Set meminst .type to the memory type limits ′.

growmem(meminst , 𝑛) = meminst with type = limits ′ with data = meminst .data (0x00)𝑛·64Ki

(if len = 𝑛+ |meminst .data|/64Ki
∧ len ≤ 216

∧ limits = meminst .type
∧ limits ′ = limits with min = len
∧ ⊢ limits ′ ok)

Modules

Todo: update prose for types

The allocation function for modules requires a suitable list of external values that are assumed to match the import
vector of the module, a list of initialization values for the module’s globals, and list of reference vectors for the
module’s element segments.

180 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

1. Let module be the module to allocate and externval*im the vector of external values providing the module’s
imports, val*g the initialization values of the module’s globals, ref *t the initializer reference of the module’s
tables, and (ref *e)

* the reference vectors of the module’s element segments.

2. For each defined type deftype ′𝑖 in module.types, do:

a. Let deftype𝑖 be the instantiation deftype ′𝑖 in moduleinst defined below.

3. For each function func𝑖 in module.funcs, do:

a. Let funcaddr 𝑖 be the function address resulting from allocating func𝑖 for the module instance
moduleinst defined below.

4. For each table table𝑖 in module.tables, do:

a. Let limits𝑖 𝑡𝑖 be the table type obtained by instantiating table𝑖.type in moduleinst defined below.

b. Let tableaddr 𝑖 be the table address resulting from allocating table𝑖.type with initialization value
ref *t [𝑖].

5. For each memory mem𝑖 in module.mems, do:

a. Let memtype𝑖 be the memory type obtained by insantiating mem𝑖.type in moduleinst defined below.

b. Let memaddr 𝑖 be the memory address resulting from allocating memtype𝑖.

6. For each global global 𝑖 in module.globals, do:

a. Let globaltype𝑖 be the global type obtained by instantiating global 𝑖.type in moduleinst defined below.

b. Let globaladdr 𝑖 be the global address resulting from allocating globaltype𝑖 with initializer value val*g[𝑖].

7. For each tag tag 𝑖 in module.tags, do:

a. Let tagtype be the tag type module.types[tag 𝑖.type].

b. Let tagaddr 𝑖 be the tag address resulting from allocating tagtype .

8. For each element segment elem𝑖 in module.elems, do:

a. Let reftype𝑖 be the element reference type obtained by instantiating <type-inst> elem𝑖.type in
moduleinst defined below.

b. Let elemaddr 𝑖 be the element address resulting from allocating a element instance of reference type
reftype𝑖 with contents (ref *e)*[𝑖].

9. For each data segment data𝑖 in module.datas, do:

a. Let dataaddr 𝑖 be the data address resulting from allocating a data instance with contents data𝑖.init.

10. Let deftype* be the concatenation of the defined types deftype𝑖 in index order.

11. Let funcaddr* be the concatenation of the function addresses funcaddr 𝑖 in index order.

12. Let tableaddr* be the concatenation of the table addresses tableaddr 𝑖 in index order.

13. Let memaddr* be the concatenation of the memory addresses memaddr 𝑖 in index order.

14. Let globaladdr* be the concatenation of the global addresses globaladdr 𝑖 in index order.

15. Let tagaddr* be the concatenation of the tag addresses tagaddr 𝑖 in index order.

16. Let elemaddr* be the concatenation of the element addresses elemaddr 𝑖 in index order.

17. Let dataaddr* be the concatenation of the data addresses dataaddr 𝑖 in index order.

18. Let funcaddr*mod be the list of function addresses extracted from externval*im, concatenated with funcaddr*.

19. Let tableaddr*mod be the list of table addresses extracted from externval*im, concatenated with tableaddr*.

20. Let memaddr*mod be the list of memory addresses extracted from externval*im, concatenated with
memaddr*.

21. Let globaladdr*mod be the list of global addresses extracted from externval*im, concatenated with
globaladdr*.

4.7. Modules 181

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

22. Let tagaddr*mod be the list of tag addresses extracted from externval*im, concatenated with tagaddr*.

23. For each export export 𝑖 in module.exports, do:

a. If export 𝑖 is a function export for function index 𝑥, then let externval 𝑖 be the external value
func (funcaddr*mod[𝑥]).

b. Else, if export 𝑖 is a table export for table index 𝑥, then let externval 𝑖 be the external value
table (tableaddr*mod[𝑥]).

c. Else, if export 𝑖 is a memory export for memory index 𝑥, then let externval 𝑖 be the external value
mem (memaddr*mod[𝑥]).

d. Else, if export 𝑖 is a global export for global index 𝑥, then let externval 𝑖 be the external value
global (globaladdr*mod[𝑥]).

e. Else, if export 𝑖 is a tag export for tag index 𝑥, then let externval 𝑖 be the external value
tag (tagaddr*mod[𝑥]).

f. Let exportinst 𝑖 be the export instance {name (export 𝑖.name), value externval 𝑖}.

24. Let exportinst* be the concatenation of the export instances exportinst 𝑖 in index order.

25. Letmoduleinst be the module instance {types deftype*, funcaddrs funcaddr*mod, tableaddrs tableaddr
*
mod,

memaddrs memaddr*mod, globaladdrs globaladdr
*
mod, tagaddrs tagaddr

*
mod, exports exportinst*}.

26. Return moduleinst .

allocmodule(𝑆,module, externval*im, val
*
g, ref

*
t , (ref

*
e)

*) = 𝑆′,moduleinst

where:

table* = module.tables
mem* = module.mems
global* = module.globals
elem* = module.elems
data* = module.datas

export* = module.exports

moduleinst = { types deftype*,
funcaddrs funcs(externval*im) funcaddr

*,
tableaddrs tables(externval*im) tableaddr

*,
memaddrs mems(externval*im) memaddr*,
globaladdrs globals(externval*im) globaladdr

*,
tagaddrs tags(externval*im) tagaddr

*,
elemaddrs elemaddr*,
dataaddrs dataaddr*,
exports exportinst* }

deftype* = alloctype*(module.types)
𝑆1, funcaddr

* = allocfunc*(𝑆,module.funcs,moduleinst)
𝑆2, tableaddr

* = alloctable*(𝑆1, closmoduleinst(table.type)
*, ref *t) (where (table.type)* = (limits 𝑡)*)

𝑆3,memaddr* = allocmem*(𝑆2, closmoduleinst(mem.type)*)
𝑆4, globaladdr

* = allocglobal*(𝑆3, closmoduleinst(global .type)
*, val*g)

𝑆5, tagaddr
* = alloctag*(𝑆4, closmoduleinst(tag)

) (where tag = module.tags)
𝑆6, elemaddr* = allocelem*(𝑆5, closmoduleinst(elem.type)*, (ref *e)

*)
𝑆′, dataaddr* = allocdata*(𝑆6, data.init

*)
exportinst* = {name (export .name), value externvalex}*

funcs(externval*ex) = (moduleinst .funcaddrs[𝑥])* (where 𝑥* = funcs(export*))
tables(externval*ex) = (moduleinst .tableaddrs[𝑥])* (where 𝑥* = tables(export*))
mems(externval*ex) = (moduleinst .memaddrs[𝑥])* (where 𝑥* = mems(export*))
globals(externval*ex) = (moduleinst .globaladdrs[𝑥])* (where 𝑥* = globals(export*))

tags(externval*ex) = (moduleinst .tagaddrs[𝑥])* (where 𝑥* = tags(export*))

182 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Here, the notation allocx* is shorthand for multiple allocations of object kind 𝑋 , defined as follows:

allocx*(𝑆0, 𝑋
𝑛, . . .) = 𝑆𝑛, 𝑎

𝑛

where for all 𝑖 < 𝑛:
𝑆𝑖+1, 𝑎

𝑛[𝑖] = allocx(𝑆𝑖, 𝑋
𝑛[𝑖], . . .)

Moreover, if the dots . . . are a sequence 𝐴𝑛 (as for globals or tables), then the elements of this sequence are passed
to the allocation function pointwise.

For types, however, allocation is defined in terms of rolling and substitution of all preceding types to produce a list
of closed defined types:

alloctype*(rectype𝑛) = deftype*

where for all 𝑖 < 𝑛:
rectype𝑛[𝑖] = rec subtype𝑚𝑖

𝑖

deftype*[𝑥𝑖 : 𝑚𝑖] = roll*𝑥𝑖
(rec subtype𝑚𝑖

𝑖)[:= deftype*[0 : 𝑥𝑖]]
𝑥𝑖+1 = 𝑥𝑖 +𝑚𝑖

𝑥𝑛 = |deftype*|

Note: The definition of module allocation is mutually recursive with the allocation of its associated functions,
because the resulting module instance moduleinst is passed to the allocators as an argument, in order to form
the necessary closures. In an implementation, this recursion is easily unraveled by mutating one or the other in a
secondary step.

4.7.2 Instantiation

Given a store 𝑆, a module module is instantiated with a list of external values externval𝑛 supplying the required
imports as follows.

Instantiation checks that the module is valid and the provided imports match the declared types, and may fail with
an error otherwise. Instantiation can also result in an exception or trap when initializing a table or memory from
an active segment or when executing the start function. It is up to the embedder to define how such conditions are
reported.

1. If module is not valid, then:

a. Fail.

2. Assert: module is valid with external types externtype𝑚im classifying its imports.

3. If the number 𝑚 of imports is not equal to the number 𝑛 of provided external values, then:

a. Fail.

4. For each external value externval 𝑖 in externval𝑛 and external type externtype ′𝑖 in externtype𝑛im, do:

a. If externval 𝑖 is not valid with an external type externtype𝑖 in store 𝑆, then:

i. Fail.

b. Let externtype ′′𝑖 be the external type obtained by instantiating externtype ′𝑖 in moduleinst defined
below.

c. If externtype𝑖 does not match externtype ′′𝑖 , then:

i. Fail.

6. Let 𝐹 be the auxiliary frame {module moduleinst , locals 𝜖}, that consists of the final module instance
moduleinst , defined below.

7. Push the frame 𝐹 to the stack.

4.7. Modules 183

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

8. Let val*g be the vector of global initialization values determined by module and externval𝑛. These may be
calculated as follows.

a. For each global global 𝑖 in module.globals, do:

i. Let valg𝑖 be the result of evaluating the initializer expression global 𝑖.init.

b. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

c. Let val*g be the concatenation of valg𝑖 in index order.

9. Let ref *t be the vector of table initialization references determined by module and externval𝑛. These may
be calculated as follows.

a. For each table table𝑖 in module.tables, do:

i. Let val t𝑖 be the result of evaluating the initializer expression table𝑖.init.

ii. Assert: due to validation, val t𝑖 is a reference.

iii. Let ref t𝑖 be the reference val t𝑖.

b. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

c. Let ref *t be the concatenation of ref 𝑡𝑖 in index order.

10. Let (ref *e)* be the list of reference vectors determined by the element segments in module. These may be
calculated as follows.

a. For each element segment elem𝑖 in module.elems, and for each element expression expr 𝑖𝑗 in
elem𝑖.init, do:

i. Let ref 𝑖𝑗 be the result of evaluating the initializer expression expr 𝑖𝑗 .

b. Let ref *𝑖 be the concatenation of function elements ref 𝑖𝑗 in order of index 𝑗.

c. Let (ref *e)* be the concatenation of function element vectors ref *𝑖 in order of index 𝑖.

11. Let moduleinst be a new module instance allocated from module in store 𝑆 with imports externval𝑛, global
initializer values val*g, table initializer values ref *t , and element segment contents (ref *e)*, and let 𝑆′ be the
extended store produced by module allocation.

12. For each element segment elem𝑖 in module.elems whose mode is of the form
active {table tableidx 𝑖, offset einstr

*
𝑖 end}, do:

a. Let 𝑛 be the length of the vector elem𝑖.init.

b. Execute the instruction sequence einstr*𝑖 .

c. Execute the instruction i32.const 0.

d. Execute the instruction i32.const 𝑛.

e. Execute the instruction table.init tableidx 𝑖 𝑖.

f. Execute the instruction elem.drop 𝑖.

13. For each element segment elem𝑖 in module.elems whose mode is of the form declarative, do:

a. Execute the instruction elem.drop 𝑖.

14. For each data segment data𝑖 in module.datas whose mode is of the form
active {memory memidx 𝑖, offset dinstr

*
𝑖 end}, do:

a. Assert: memidx 𝑖 is 0.

b. Let 𝑛 be the length of the vector data𝑖.init.

c. Execute the instruction sequence dinstr*𝑖 .

d. Execute the instruction i32.const 0.

e. Execute the instruction i32.const 𝑛.

f. Execute the instruction memory.init 𝑖.

184 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

g. Execute the instruction data.drop 𝑖.

15. If the start function module.start is not empty, then:

a. Let start be the start function module.start.

b. Execute the instruction call start .func.

16. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

17. Pop the frame 𝐹 from the stack.

instantiate(𝑆,module, externval𝑘) = 𝑆′;𝐹 ; runelem0(elem
𝑛[0]) . . . runelem𝑛−1(elem

𝑛[𝑛− 1])
rundata0(data

𝑚[0]) . . . rundata𝑚−1(data
𝑚[𝑚− 1])

(call start .func)?

(if ⊢ module : externtype𝑘im → externtype*ex
∧ (𝑆′ ⊢ externval : externtype)𝑘

∧ (𝑆′ ⊢ externtype ≤ closmoduleinst(externtype im))
𝑘

∧ module.globals = global*

∧ module.elems = elem𝑛

∧ module.datas = data𝑚

∧ module.start = start?

∧ (exprg = global .init)*

∧ (expr t = table.init)*

∧ (expr*e = elem.init)𝑛

∧ 𝑆′,moduleinst = allocmodule(𝑆,module, externval𝑘, val*, (ref *)𝑛)
∧ 𝐹 = {module moduleinst , locals 𝜖}
∧ (𝑆′;𝐹 ; exprg →˓ *𝑆′;𝐹 ; valg end)

*

∧ (𝑆′;𝐹 ; expr t →˓ *𝑆′;𝐹 ; ref t end)
*

∧ ((𝑆′;𝐹 ; expr e →˓ *𝑆′;𝐹 ; ref e end)
*)𝑛)

where:

runelem𝑖({type et , init expr𝑛,mode passive}) = 𝜖
runelem𝑖({type et , init expr𝑛,mode active{table 𝑥, offset instr* end}}) =

instr* (i32.const 0) (i32.const 𝑛) (table.init 𝑥 𝑖) (elem.drop 𝑖)
runelem𝑖({type et , init expr𝑛,mode declarative}) =

(elem.drop 𝑖)

rundata𝑖({init 𝑏𝑛,mode passive}) =
𝜖

rundata𝑖({init 𝑏𝑛,mode active{memory 0, offset instr* end}}) =
instr* (i32.const 0) (i32.const 𝑛) (memory.init 𝑖) (data.drop 𝑖)

Note: Checking import types assumes that the module instance has already been allocated to compute the respec-
tive closed defined types. However, this forward reference merely is a way to simplify the specification. In practice,
implementations will likely allocate or canonicalize types beforehand, when compiling a module, in a stage before
instantiation and before imports are checked.

Similarly, module allocation and the evaluation of global and table initializers as well as element segments are
mutually recursive because the global initialization values val*g, ref t, and element segment contents (ref *)* are
passed to the module allocator while depending on the module instance moduleinst and store 𝑆′ returned by allo-
cation. Again, this recursion is just a specification device. In practice, the initialization values can be determined
beforehand by staging module allocation such that first, the module’s own function instances are pre-allocated in
the store, then the initializer expressions are evaluated in order, allocating globals on the way, then the rest of the
module instance is allocated, and finally the new function instances’ module fields are set to that module instance.
This is possible because validation ensures that initialization expressions cannot actually call a function, only take
their reference.

All failure conditions are checked before any observable mutation of the store takes place. Store mutation is not
atomic; it happens in individual steps that may be interleaved with other threads.

4.7. Modules 185

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Evaluation of constant expressions does not affect the store.

4.7.3 Invocation

Once a module has been instantiated, any exported function can be invoked externally via its function address
funcaddr in the store 𝑆 and an appropriate list val* of argument values.

Invocation may fail with an error if the arguments do not fit the function type. Invocation can also result in an
exception or trap. It is up to the embedder to define how such conditions are reported.

Note: If the embedder API performs type checks itself, either statically or dynamically, before performing an
invocation, then no failure other than traps or exceptions can occur.

The following steps are performed:

1. Assert: 𝑆.funcs[funcaddr] exists.

2. Let funcinst be the function instance 𝑆.funcs[funcaddr].

3. Let func [𝑡𝑛1] → [𝑡𝑚2] be the composite type expand(funcinst .type).

4. If the length |val*| of the provided argument values is different from the number 𝑛 of expected arguments,
then:

a. Fail.

5. For each value type 𝑡𝑖 in 𝑡𝑛1 and corresponding value 𝑣𝑎𝑙𝑖 in val*, do:

a. If val 𝑖 is not valid with value type 𝑡𝑖, then:

i. Fail.

6. Let 𝐹 be the dummy frame {module {}, locals 𝜖}.

7. Push the frame 𝐹 to the stack.

8. Push the values val* to the stack.

9. Invoke the function instance at address funcaddr .

Once the function has returned, the following steps are executed:

1. Assert: due to validation, 𝑚 values are on the top of the stack.

2. Pop val𝑚res from the stack.

3. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

4. Pop the frame 𝐹 from the stack.

The values val𝑚res are returned as the results of the invocation.

invoke(𝑆, funcaddr , val𝑛) = 𝑆;𝐹 ; val𝑛 (invoke funcaddr)
(if expand(𝑆.funcs[funcaddr].type) = func [𝑡𝑛1] → [𝑡𝑚2]
∧ (𝑆 ⊢ val : 𝑡1)

𝑛

∧ 𝐹 = {module {}, locals 𝜖})

186 Chapter 4. Execution

CHAPTER 5

Binary Format

5.1 Conventions

The binary format for WebAssembly modules is a dense linear encoding of their abstract syntax.28

The format is defined by an attribute grammar whose only terminal symbols are bytes. A byte sequence is a
well-formed encoding of a module if and only if it is generated by the grammar.

Each production of this grammar has exactly one synthesized attribute: the abstract syntax that the respective byte
sequence encodes. Thus, the attribute grammar implicitly defines a decoding function (i.e., a parsing function for
the binary format).

Except for a few exceptions, the binary grammar closely mirrors the grammar of the abstract syntax.

Note: Some phrases of abstract syntax have multiple possible encodings in the binary format. For example,
numbers may be encoded as if they had optional leading zeros. Implementations of decoders must support all
possible alternatives; implementations of encoders can pick any allowed encoding.

The recommended extension for files containing WebAssembly modules in binary format is “.wasm” and the rec-
ommended Media Type27 is “application/wasm”.

5.1.1 Grammar

The following conventions are adopted in defining grammar rules for the binary format. They mirror the conven-
tions used for abstract syntax. In order to distinguish symbols of the binary syntax from symbols of the abstract
syntax, typewriter font is adopted for the former.

• Terminal symbols are bytes expressed in hexadecimal notation: 0x0F.

• Nonterminal symbols are written in typewriter font: valtype, instr.

• 𝐵𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝐵.

• 𝐵* is a possibly empty sequence of iterations of 𝐵. (This is a shorthand for 𝐵𝑛 used where 𝑛 is not relevant.)
28 Additional encoding layers – for example, introducing compression – may be defined on top of the basic representation defined here.

However, such layers are outside the scope of the current specification.
27 https://www.iana.org/assignments/media-types/media-types.xhtml

187

https://www.iana.org/assignments/media-types/media-types.xhtml

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

• 𝐵? is an optional occurrence of 𝐵. (This is a shorthand for 𝐵𝑛 where 𝑛 ≤ 1.)

• 𝑥:𝐵 denotes the same language as the nonterminal𝐵, but also binds the variable 𝑥 to the attribute synthesized
for 𝐵. A pattern may also be used instead of a variable, e.g., 7:𝐵.

• Productions are written sym ::= 𝐵1 ⇒ 𝐴1 | . . . | 𝐵𝑛 ⇒ 𝐴𝑛, where each 𝐴𝑖 is the attribute that is
synthesized for sym in the given case, usually from attribute variables bound in 𝐵𝑖.

• Some productions are augmented by side conditions in parentheses, which restrict the applicability of the
production. They provide a shorthand for a combinatorial expansion of the production into many separate
cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production (in the syntax or
in an attribute), then all those occurrences must have the same instantiation. (This is a shorthand for a side
condition requiring multiple different variables to be equal.)

Note: For example, the binary grammar for number types is given as follows:

numtype ::= 0x7F ⇒ i32
| 0x7E ⇒ i64
| 0x7D ⇒ f32
| 0x7C ⇒ f64

Consequently, the byte 0x7F encodes the type i32, 0x7E encodes the type i64, and so forth. No other byte value is
allowed as the encoding of a number type.

The binary grammar for limits is defined as follows:

limits ::= 0x00 𝑛:u32 ⇒ {min 𝑛,max 𝜖}
| 0x01 𝑛:u32 𝑚:u32 ⇒ {min 𝑛,max 𝑚}

That is, a limits pair is encoded as either the byte 0x00 followed by the encoding of a u32 value, or the byte 0x01
followed by two such encodings. The variables 𝑛 and 𝑚 name the attributes of the respective u32 nonterminals,
which in this case are the actual unsigned integers those decode into. The attribute of the complete production then
is the abstract syntax for the limit, expressed in terms of the former values.

5.1.2 Auxiliary Notation

When dealing with binary encodings the following notation is also used:

• 𝜖 denotes the empty byte sequence.

• ||𝐵|| is the length of the byte sequence generated from the production 𝐵 in a derivation.

5.1.3 Vectors

Vectors are encoded with their u32 length followed by the encoding of their element sequence.

vec(B) ::= 𝑛:u32 (𝑥:B)𝑛 ⇒ 𝑥𝑛

188 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.2 Values

5.2.1 Bytes

Bytes encode themselves.

byte ::= 0x00 ⇒ 0x00

| . . .
| 0xFF ⇒ 0xFF

5.2.2 Integers

All integers are encoded using the LEB12829 variable-length integer encoding, in either unsigned or signed variant.

Unsigned integers are encoded in unsigned LEB12830 format. As an additional constraint, the total number of
bytes encoding a value of type u𝑁 must not exceed ceil(𝑁/7) bytes.

u𝑁 ::= 𝑛:byte ⇒ 𝑛 (if 𝑛 < 27 ∧ 𝑛 < 2𝑁)
| 𝑛:byte 𝑚:u(𝑁−7) ⇒ 27 ·𝑚+ (𝑛− 27) (if 𝑛 ≥ 27 ∧𝑁 > 7)

Signed integers are encoded in signed LEB12831 format, which uses a two’s complement representation. As an
additional constraint, the total number of bytes encoding a value of type s𝑁 must not exceed ceil(𝑁/7) bytes.

s𝑁 ::= 𝑛:byte ⇒ 𝑛 (if 𝑛 < 26 ∧ 𝑛 < 2𝑁−1)
| 𝑛:byte ⇒ 𝑛− 27 (if 26 ≤ 𝑛 < 27 ∧ 𝑛 ≥ 27 − 2𝑁−1)
| 𝑛:byte 𝑚:s(𝑁−7) ⇒ 27 ·𝑚+ (𝑛− 27) (if 𝑛 ≥ 27 ∧𝑁 > 7)

Uninterpreted integers are encoded as signed integers.

i𝑁 ::= 𝑛:s𝑁 ⇒ 𝑖 (if 𝑛 = signed𝑁 (𝑖))

Note: The side conditions 𝑁 > 7 in the productions for non-terminal bytes of the u and s encodings restrict
the encoding’s length. However, “trailing zeros” are still allowed within these bounds. For example, 0x03 and
0x83 0x00 are both well-formed encodings for the value 3 as a u8 . Similarly, either of 0x7e and 0xFE 0x7F and
0xFE 0xFF 0x7F are well-formed encodings of the value −2 as a s16 .

The side conditions on the value 𝑛 of terminal bytes further enforce that any unused bits in these bytes must be 0
for positive values and 1 for negative ones. For example, 0x83 0x10 is malformed as a u8 encoding. Similarly,
both 0x83 0x3E and 0xFF 0x7B are malformed as s8 encodings.

5.2.3 Floating-Point

Floating-point values are encoded directly by their IEEE 75432 (Section 3.4) bit pattern in little endian33 byte order:

f𝑁 ::= 𝑏*: byte𝑁/8 ⇒ bytes−1
f𝑁 (𝑏*)

29 https://en.wikipedia.org/wiki/LEB128
30 https://en.wikipedia.org/wiki/LEB128#Unsigned_LEB128
31 https://en.wikipedia.org/wiki/LEB128#Signed_LEB128
32 https://ieeexplore.ieee.org/document/8766229
33 https://en.wikipedia.org/wiki/Endianness#Little-endian

5.2. Values 189

https://en.wikipedia.org/wiki/LEB128
https://en.wikipedia.org/wiki/LEB128#Unsigned_LEB128
https://en.wikipedia.org/wiki/LEB128#Signed_LEB128
https://ieeexplore.ieee.org/document/8766229
https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.2.4 Names

Names are encoded as a vector of bytes containing the Unicode34 (Section 3.9) UTF-8 encoding of the name’s
character sequence.

name ::= 𝑏*:vec(byte) ⇒ name (if utf8(name) = 𝑏*)

The auxiliary utf8 function expressing this encoding is defined as follows:

utf8(𝑐*) = (utf8(𝑐))*

utf8(𝑐) = 𝑏 (if 𝑐 < U+80
∧ 𝑐 = 𝑏)

utf8(𝑐) = 𝑏1 𝑏2 (if U+80 ≤ 𝑐 < U+800
∧ 𝑐 = 26(𝑏1 − 0xC0) + (𝑏2 − 0x80))

utf8(𝑐) = 𝑏1 𝑏2 𝑏3 (if U+800 ≤ 𝑐 < U+D800 ∨U+E000 ≤ 𝑐 < U+10000
∧ 𝑐 = 212(𝑏1 − 0xE0) + 26(𝑏2 − 0x80) + (𝑏3 − 0x80))

utf8(𝑐) = 𝑏1 𝑏2 𝑏3 𝑏4 (if U+10000 ≤ 𝑐 < U+110000
∧ 𝑐 = 218(𝑏1 − 0xF0) + 212(𝑏2 − 0x80) + 26(𝑏3 − 0x80) + (𝑏4 − 0x80))

where 𝑏2, 𝑏3, 𝑏4 < 0xC0

Note: Unlike in some other formats, name strings are not 0-terminated.

5.3 Types

Note: In some places, possible types include both type constructors or types denoted by type indices. Thus, the
binary format for type constructors corresponds to the encodings of small negative s𝑁 values, such that they can
unambiguously occur in the same place as (positive) type indices.

5.3.1 Number Types

Number types are encoded by a single byte.

numtype ::= 0x7F ⇒ i32
| 0x7E ⇒ i64
| 0x7D ⇒ f32
| 0x7C ⇒ f64

5.3.2 Vector Types

Vector types are also encoded by a single byte.

vectype ::= 0x7B ⇒ v128

34 https://www.unicode.org/versions/latest/

190 Chapter 5. Binary Format

https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.3.3 Heap Types

Heap types are encoded as either a single byte, or as a type index encoded as a positive signed integer.

absheaptype ::= 0x74 ⇒ noexn
| 0x73 ⇒ nofunc
| 0x72 ⇒ noextern
| 0x71 ⇒ none
| 0x70 ⇒ func
| 0x6F ⇒ extern
| 0x6E ⇒ any
| 0x6D ⇒ eq
| 0x6C ⇒ i31
| 0x6B ⇒ struct
| 0x6A ⇒ array
| 0x69 ⇒ exn

heaptype ::= ht :absheaptype ⇒ ht
| 𝑥:s33 ⇒ 𝑥 (if 𝑥 ≥ 0)

5.3.4 Reference Types

Reference types are either encoded by a single byte followed by a heap type, or, as a short form, directly as an
abstract heap type.

reftype ::= 0x64 ht :heaptype ⇒ ref ht
| 0x63 ht :heaptype ⇒ ref null ht
| ht :absheaptype ⇒ ref null ht

5.3.5 Value Types

Value types are encoded with their respective encoding as a number type, vector type, or reference type.

valtype ::= 𝑡:numtype ⇒ 𝑡
| 𝑡:vectype ⇒ 𝑡
| 𝑡:reftype ⇒ 𝑡

Note: The type bot cannot occur in a module.

Value types can occur in contexts where type indices are also allowed, such as in the case of block types. Thus, the
binary format for types corresponds to the signed LEB12835 encoding of small negative s𝑁 values, so that they
can coexist with (positive) type indices in the future.

5.3.6 Result Types

Result types are encoded by the respective vectors of value types.

resulttype ::= 𝑡*: vec(valtype) ⇒ [𝑡*]

35 https://en.wikipedia.org/wiki/LEB128#Signed_LEB128

5.3. Types 191

https://en.wikipedia.org/wiki/LEB128#Signed_LEB128

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.3.7 Function Types

Function types are encoded by the respective vectors of parameter and result types.

functype ::= rt1: resulttype rt2: resulttype ⇒ rt1 → rt2

5.3.8 Aggregate Types

Aggregate types are encoded with their respective field types.

arraytype ::= ft : fieldtype ⇒ ft
structtype ::= ft*: vec(fieldtype) ⇒ ft*

fieldtype ::= st :storagetype 𝑚:mut ⇒ 𝑚 st
storagetype ::= 𝑡:valtype ⇒ 𝑡

| 𝑡:packedtype ⇒ 𝑡
packedtype ::= 0x78 ⇒ i8

| 0x77 ⇒ i16

5.3.9 Composite Types

Composite types are encoded by a distinct byte followed by a type encoding of the respective form.

comptype ::= 0x5E at :arraytype ⇒ array at
| 0x5F st :structtype ⇒ struct st
| 0x60 ft :functype ⇒ func ft

5.3.10 Recursive Types

Recursive types are encoded by the byte 0x4E followed by a vector of sub types. Additional shorthands are recog-
nized for unary recursions and sub types without super types.

rectype ::= 0x4E st*: vec(subtype) ⇒ rec st*

| st :subtype ⇒ rec st
subtype ::= 0x50 𝑥*: vec(typeidx) ct :comptype ⇒ sub 𝑥* ct

| 0x4F 𝑥*: vec(typeidx) ct :comptype ⇒ sub final 𝑥* ct
| ct :comptype ⇒ sub final 𝜖 ct

5.3.11 Limits

Limits are encoded with a preceding flag indicating whether a maximum is present.

limits ::= 0x00 𝑛:u32 ⇒ {min 𝑛,max 𝜖}
| 0x01 𝑛:u32 𝑚:u32 ⇒ {min 𝑛,max 𝑚}

192 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.3.12 Memory Types

Memory types are encoded with their limits.

memtype ::= lim:limits ⇒ lim

5.3.13 Table Types

Table types are encoded with their limits and the encoding of their element reference type.

tabletype ::= et :reftype lim:limits ⇒ lim et

5.3.14 Global Types

Global types are encoded by their value type and a flag for their mutability.

globaltype ::= 𝑡:valtype 𝑚:mut ⇒ 𝑚 𝑡
mut ::= 0x00 ⇒ const

| 0x01 ⇒ var

5.3.15 Tag Types

Tag types are encoded by their function type.

tagtype ::= 0x00 𝑓𝑡:functype ⇒ 𝑓𝑡

The functype of a tag is used to characterise exceptions. The 0x00 bit signifies an exception and is currently the
only allowed value.

Note: In future versions of WebAssembly, the preceding zero byte may encode additional flags.

5.4 Instructions

Instructions are encoded by opcodes. Each opcode is represented by a single byte, and is followed by the instruc-
tion’s immediate arguments, where present. The only exception are structured control instructions, which consist
of several opcodes bracketing their nested instruction sequences.

Note: Gaps in the byte code ranges for encoding instructions are reserved for future extensions.

5.4. Instructions 193

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.4.1 Control Instructions

Control instructions have varying encodings. For structured instructions, the instruction sequences forming nested
blocks are delimited with explicit opcodes for end and else.

Block types are encoded in special compressed form, by either the byte 0x40 indicating the empty type, as a single
value type, or as a type index encoded as a positive signed integer.

blocktype ::= 0x40 ⇒ 𝜖
| 𝑡:valtype ⇒ 𝑡
| 𝑥:s33 ⇒ 𝑥 (if 𝑥 ≥ 0)

instr ::= 0x00 ⇒ unreachable
| 0x01 ⇒ nop
| 0x02 bt :blocktype (in:instr)* 0x0B ⇒ block bt in* end
| 0x03 bt :blocktype (in:instr)* 0x0B ⇒ loop bt in* end
| 0x04 bt :blocktype (in:instr)* 0x0B ⇒ if bt in* else 𝜖 end
| 0x04 bt :blocktype (in1:instr)

*

0x05 (in2:instr)
* 0x0B ⇒ if bt in*

1 else in
*
2 end

| 0x08 𝑥:tagidx ⇒ throw 𝑥
| 0x0A ⇒ throw_ref
| 0x0C 𝑙:labelidx ⇒ br 𝑙
| 0x0D 𝑙:labelidx ⇒ br_if 𝑙
| 0x0E 𝑙*:vec(labelidx) 𝑙𝑁 :labelidx ⇒ br_table 𝑙* 𝑙𝑁
| 0x0F ⇒ return
| 0x10 𝑥:funcidx ⇒ call 𝑥
| 0x11 𝑦:typeidx 𝑥:tableidx ⇒ call_indirect 𝑥 𝑦
| 0x12 𝑥:funcidx ⇒ return_call 𝑥
| 0x13 𝑦:typeidx 𝑥:tableidx ⇒ return_call_indirect 𝑥 𝑦
| 0x14 𝑥:typeidx ⇒ call_ref 𝑥
| 0x15 𝑥:typeidx ⇒ return_call_ref 𝑥
| 0x1F bt :blocktype 𝑐*:vec(catch) (in:instr)* 0x0B ⇒ try_table bt 𝑐* in* end

0xD5 𝑙:labelidx ⇒ br_on_null 𝑙
| 0xD6 𝑙:labelidx ⇒ br_on_non_null 𝑙
| 0xFB 24:u32 (null?1, null

?
2):castflags

𝑙:labelidx ht1:heaptype ht2:heaptype ⇒ br_on_cast 𝑙 (ref null?1 ht1) (ref null?2 ht2)
| 0xFB 25:u32 (null?1, null

?
2):castflags

𝑙:labelidx ht1:heaptype ht2:heaptype ⇒ br_on_cast_fail 𝑙 (ref null?1 ht1) (ref null?2 ht2)
catch ::= 0x00 𝑥:tagidx 𝑙:labelidx ⇒ catch 𝑥 𝑙

| 0x01 𝑥:tagidx 𝑙:labelidx ⇒ catch_ref 𝑥 𝑙
| 0x02 𝑙:labelidx ⇒ catch_all 𝑙
| 0x03 𝑙:labelidx ⇒ catch_all_ref 𝑙

castflags ::= 0:u8 ⇒ (𝜖, 𝜖)
| 1:u8 ⇒ (null, 𝜖)
| 2:u8 ⇒ (𝜖, null)
| 3:u8 ⇒ (null, null)

Note: The else opcode 0x05 in the encoding of an if instruction can be omitted if the following instruction
sequence is empty.

Unlike any other occurrence, the type index in a block type is encoded as a positive signed integer, so that its signed
LEB128 bit pattern cannot collide with the encoding of value types or the special code 0x40, which correspond to
the LEB128 encoding of negative integers. To avoid any loss in the range of allowed indices, it is treated as a 33
bit signed integer.

194 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.4.2 Reference Instructions

Generic reference instructions are represented by single byte codes, others use prefixes and type operands.

instr ::= . . .
| 0xD0 𝑡:heaptype ⇒ ref.null 𝑡
| 0xD1 ⇒ ref.is_null
| 0xD2 𝑥:funcidx ⇒ ref.func 𝑥
| 0xD3 ⇒ ref.eq
| 0xD4 ⇒ ref.as_non_null
| 0xFB 0:u32 𝑥:typeidx ⇒ struct.new 𝑥
| 0xFB 1:u32 𝑥:typeidx ⇒ struct.new_default 𝑥
| 0xFB 2:u32 𝑥:typeidx 𝑦:fieldidx ⇒ struct.get 𝑥 𝑦
| 0xFB 3:u32 𝑥:typeidx 𝑦:fieldidx ⇒ struct.get_s 𝑥 𝑦
| 0xFB 4:u32 𝑥:typeidx 𝑦:fieldidx ⇒ struct.get_u 𝑥 𝑦
| 0xFB 5:u32 𝑥:typeidx 𝑦:fieldidx ⇒ struct.set 𝑥 𝑦
| 0xFB 6:u32 𝑥:typeidx ⇒ array.new 𝑥
| 0xFB 7:u32 𝑥:typeidx ⇒ array.new_default 𝑥
| 0xFB 8:u32 𝑥:typeidx 𝑛:u32 ⇒ array.new_fixed 𝑥 𝑛
| 0xFB 9:u32 𝑥:typeidx 𝑦:dataidx ⇒ array.new_data 𝑥 𝑦
| 0xFB 10:u32 𝑥:typeidx 𝑦:elemidx ⇒ array.new_elem 𝑥 𝑦
| 0xFB 11:u32 𝑥:typeidx ⇒ array.get 𝑥
| 0xFB 12:u32 𝑥:typeidx ⇒ array.get_s 𝑥
| 0xFB 13:u32 𝑥:typeidx ⇒ array.get_u 𝑥
| 0xFB 14:u32 𝑥:typeidx ⇒ array.set 𝑥
| 0xFB 15:u32 ⇒ array.len
| 0xFB 16:u32 𝑥:typeidx ⇒ array.fill 𝑥
| 0xFB 17:u32 𝑥:typeidx 𝑦:typeidx ⇒ array.copy 𝑥 𝑦
| 0xFB 18:u32 𝑥:typeidx 𝑦:dataidx ⇒ array.init_data 𝑥 𝑦
| 0xFB 19:u32 𝑥:typeidx 𝑦:elemidx ⇒ array.init_elem 𝑥 𝑦
| 0xFB 20:u32 ht :heaptype ⇒ ref.test (ref ht)
| 0xFB 21:u32 ht :heaptype ⇒ ref.test (ref null ht)
| 0xFB 22:u32 ht :heaptype ⇒ ref.cast (ref ht)
| 0xFB 23:u32 ht :heaptype ⇒ ref.cast (ref null ht)
| 0xFB 26:u32 ⇒ any.convert_extern
| 0xFB 27:u32 ⇒ extern.convert_any
| 0xFB 28:u32 ⇒ ref.i31
| 0xFB 29:u32 ⇒ i31.get_s
| 0xFB 30:u32 ⇒ i31.get_u

5.4.3 Parametric Instructions

Parametric instructions are represented by single byte codes, possibly followed by a type annotation.

instr ::= . . .
| 0x1A ⇒ drop
| 0x1B ⇒ select
| 0x1C 𝑡*:vec(valtype) ⇒ select 𝑡*

5.4. Instructions 195

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.4.4 Variable Instructions

Variable instructions are represented by byte codes followed by the encoding of the respective index.

instr ::= . . .
| 0x20 𝑥:localidx ⇒ local.get 𝑥
| 0x21 𝑥:localidx ⇒ local.set 𝑥
| 0x22 𝑥:localidx ⇒ local.tee 𝑥
| 0x23 𝑥:globalidx ⇒ global.get 𝑥
| 0x24 𝑥:globalidx ⇒ global.set 𝑥

5.4.5 Table Instructions

Table instructions are represented either by a single byte or a one byte prefix followed by a variable-length unsigned
integer.

instr ::= . . .
| 0x25 𝑥:tableidx ⇒ table.get 𝑥
| 0x26 𝑥:tableidx ⇒ table.set 𝑥
| 0xFC 12:u32 𝑦:elemidx 𝑥:tableidx ⇒ table.init 𝑥 𝑦
| 0xFC 13:u32 𝑥:elemidx ⇒ elem.drop 𝑥
| 0xFC 14:u32 𝑥:tableidx 𝑦:tableidx ⇒ table.copy 𝑥 𝑦
| 0xFC 15:u32 𝑥:tableidx ⇒ table.grow 𝑥
| 0xFC 16:u32 𝑥:tableidx ⇒ table.size 𝑥
| 0xFC 17:u32 𝑥:tableidx ⇒ table.fill 𝑥

5.4.6 Memory Instructions

Each variant of memory instruction is encoded with a different byte code. Loads and stores are followed by the
encoding of their memarg immediate, which includes the memory index if bit 6 of the flags field containing
alignment is set; the memory index defaults to 0 otherwise.

196 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

memarg ::= 𝑎:u32 𝑜:u32 ⇒ 0 {align 𝑎, offset 𝑜} (if 𝑎 < 26)
| 𝑎:u32 𝑥:memidx 𝑜:u32 ⇒ 𝑥 {align (𝑎− 26), offset 𝑜} (if 26 ≤ 𝑎 < 27)

instr ::= . . .
| 0x28 𝑚:memarg ⇒ i32.load𝑚
| 0x29 𝑚:memarg ⇒ i64.load𝑚
| 0x2A 𝑚:memarg ⇒ f32.load𝑚
| 0x2B 𝑚:memarg ⇒ f64.load𝑚
| 0x2C 𝑚:memarg ⇒ i32.load8_s 𝑚
| 0x2D 𝑚:memarg ⇒ i32.load8_u𝑚
| 0x2E 𝑚:memarg ⇒ i32.load16_s 𝑚
| 0x2F 𝑚:memarg ⇒ i32.load16_u𝑚
| 0x30 𝑚:memarg ⇒ i64.load8_s 𝑚
| 0x31 𝑚:memarg ⇒ i64.load8_u𝑚
| 0x32 𝑚:memarg ⇒ i64.load16_s 𝑚
| 0x33 𝑚:memarg ⇒ i64.load16_u𝑚
| 0x34 𝑚:memarg ⇒ i64.load32_s 𝑚
| 0x35 𝑚:memarg ⇒ i64.load32_u𝑚
| 0x36 𝑚:memarg ⇒ i32.store 𝑚
| 0x37 𝑚:memarg ⇒ i64.store 𝑚
| 0x38 𝑚:memarg ⇒ f32.store 𝑚
| 0x39 𝑚:memarg ⇒ f64.store 𝑚
| 0x3A 𝑚:memarg ⇒ i32.store8 𝑚
| 0x3B 𝑚:memarg ⇒ i32.store16 𝑚
| 0x3C 𝑚:memarg ⇒ i64.store8 𝑚
| 0x3D 𝑚:memarg ⇒ i64.store16 𝑚
| 0x3E 𝑚:memarg ⇒ i64.store32 𝑚
| 0x3F 𝑥:memidx ⇒ memory.size 𝑥
| 0x40 𝑥:memidx ⇒ memory.grow 𝑥
| 0xFC 8:u32 𝑦:dataidx 𝑥:memidx ⇒ memory.init 𝑥 𝑦
| 0xFC 9:u32 𝑥:dataidx ⇒ data.drop 𝑥
| 0xFC 10:u32 𝑥:memidx 𝑦:memidx ⇒ memory.copy 𝑥 𝑦
| 0xFC 11:u32 𝑥:memidx ⇒ memory.fill 𝑥

5.4.7 Numeric Instructions

All variants of numeric instructions are represented by separate byte codes.

The const instructions are followed by the respective literal.

instr ::= . . .
| 0x41 𝑛:i32 ⇒ i32.const 𝑛
| 0x42 𝑛:i64 ⇒ i64.const 𝑛
| 0x43 𝑧:f32 ⇒ f32.const 𝑧
| 0x44 𝑧:f64 ⇒ f64.const 𝑧

All other numeric instructions are plain opcodes without any immediates.

5.4. Instructions 197

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

instr ::= . . .
| 0x45 ⇒ i32.eqz
| 0x46 ⇒ i32.eq
| 0x47 ⇒ i32.ne
| 0x48 ⇒ i32.lt_s
| 0x49 ⇒ i32.lt_u
| 0x4A ⇒ i32.gt_s
| 0x4B ⇒ i32.gt_u
| 0x4C ⇒ i32.le_s
| 0x4D ⇒ i32.le_u
| 0x4E ⇒ i32.ge_s
| 0x4F ⇒ i32.ge_u

| 0x50 ⇒ i64.eqz
| 0x51 ⇒ i64.eq
| 0x52 ⇒ i64.ne
| 0x53 ⇒ i64.lt_s
| 0x54 ⇒ i64.lt_u
| 0x55 ⇒ i64.gt_s
| 0x56 ⇒ i64.gt_u
| 0x57 ⇒ i64.le_s
| 0x58 ⇒ i64.le_u
| 0x59 ⇒ i64.ge_s
| 0x5A ⇒ i64.ge_u

| 0x5B ⇒ f32.eq
| 0x5C ⇒ f32.ne
| 0x5D ⇒ f32.lt
| 0x5E ⇒ f32.gt
| 0x5F ⇒ f32.le
| 0x60 ⇒ f32.ge

| 0x61 ⇒ f64.eq
| 0x62 ⇒ f64.ne
| 0x63 ⇒ f64.lt
| 0x64 ⇒ f64.gt
| 0x65 ⇒ f64.le
| 0x66 ⇒ f64.ge

| 0x67 ⇒ i32.clz
| 0x68 ⇒ i32.ctz
| 0x69 ⇒ i32.popcnt
| 0x6A ⇒ i32.add
| 0x6B ⇒ i32.sub
| 0x6C ⇒ i32.mul
| 0x6D ⇒ i32.div_s
| 0x6E ⇒ i32.div_u
| 0x6F ⇒ i32.rem_s
| 0x70 ⇒ i32.rem_u
| 0x71 ⇒ i32.and
| 0x72 ⇒ i32.or
| 0x73 ⇒ i32.xor
| 0x74 ⇒ i32.shl
| 0x75 ⇒ i32.shr_s
| 0x76 ⇒ i32.shr_u
| 0x77 ⇒ i32.rotl
| 0x78 ⇒ i32.rotr

198 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| 0x79 ⇒ i64.clz
| 0x7A ⇒ i64.ctz
| 0x7B ⇒ i64.popcnt
| 0x7C ⇒ i64.add
| 0x7D ⇒ i64.sub
| 0x7E ⇒ i64.mul
| 0x7F ⇒ i64.div_s
| 0x80 ⇒ i64.div_u
| 0x81 ⇒ i64.rem_s
| 0x82 ⇒ i64.rem_u
| 0x83 ⇒ i64.and
| 0x84 ⇒ i64.or
| 0x85 ⇒ i64.xor
| 0x86 ⇒ i64.shl
| 0x87 ⇒ i64.shr_s
| 0x88 ⇒ i64.shr_u
| 0x89 ⇒ i64.rotl
| 0x8A ⇒ i64.rotr

| 0x8B ⇒ f32.abs
| 0x8C ⇒ f32.neg
| 0x8D ⇒ f32.ceil
| 0x8E ⇒ f32.floor
| 0x8F ⇒ f32.trunc
| 0x90 ⇒ f32.nearest
| 0x91 ⇒ f32.sqrt
| 0x92 ⇒ f32.add
| 0x93 ⇒ f32.sub
| 0x94 ⇒ f32.mul
| 0x95 ⇒ f32.div
| 0x96 ⇒ f32.min
| 0x97 ⇒ f32.max
| 0x98 ⇒ f32.copysign

| 0x99 ⇒ f64.abs
| 0x9A ⇒ f64.neg
| 0x9B ⇒ f64.ceil
| 0x9C ⇒ f64.floor
| 0x9D ⇒ f64.trunc
| 0x9E ⇒ f64.nearest
| 0x9F ⇒ f64.sqrt
| 0xA0 ⇒ f64.add
| 0xA1 ⇒ f64.sub
| 0xA2 ⇒ f64.mul
| 0xA3 ⇒ f64.div
| 0xA4 ⇒ f64.min
| 0xA5 ⇒ f64.max
| 0xA6 ⇒ f64.copysign

5.4. Instructions 199

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| 0xA7 ⇒ i32.wrap_i64
| 0xA8 ⇒ i32.trunc_f32_s
| 0xA9 ⇒ i32.trunc_f32_u
| 0xAA ⇒ i32.trunc_f64_s
| 0xAB ⇒ i32.trunc_f64_u
| 0xAC ⇒ i64.extend_i32_s
| 0xAD ⇒ i64.extend_i32_u
| 0xAE ⇒ i64.trunc_f32_s
| 0xAF ⇒ i64.trunc_f32_u
| 0xB0 ⇒ i64.trunc_f64_s
| 0xB1 ⇒ i64.trunc_f64_u
| 0xB2 ⇒ f32.convert_i32_s
| 0xB3 ⇒ f32.convert_i32_u
| 0xB4 ⇒ f32.convert_i64_s
| 0xB5 ⇒ f32.convert_i64_u
| 0xB6 ⇒ f32.demote_f64
| 0xB7 ⇒ f64.convert_i32_s
| 0xB8 ⇒ f64.convert_i32_u
| 0xB9 ⇒ f64.convert_i64_s
| 0xBA ⇒ f64.convert_i64_u
| 0xBB ⇒ f64.promote_f32
| 0xBC ⇒ i32.reinterpret_f32
| 0xBD ⇒ i64.reinterpret_f64
| 0xBE ⇒ f32.reinterpret_i32
| 0xBF ⇒ f64.reinterpret_i64

| 0xC0 ⇒ i32.extend8_s
| 0xC1 ⇒ i32.extend16_s
| 0xC2 ⇒ i64.extend8_s
| 0xC3 ⇒ i64.extend16_s
| 0xC4 ⇒ i64.extend32_s

The saturating truncation instructions all have a one byte prefix, whereas the actual opcode is encoded by a variable-
length unsigned integer.

instr ::= . . .
| 0xFC 0:u32 ⇒ i32.trunc_sat_f32_s
| 0xFC 1:u32 ⇒ i32.trunc_sat_f32_u
| 0xFC 2:u32 ⇒ i32.trunc_sat_f64_s
| 0xFC 3:u32 ⇒ i32.trunc_sat_f64_u
| 0xFC 4:u32 ⇒ i64.trunc_sat_f32_s
| 0xFC 5:u32 ⇒ i64.trunc_sat_f32_u
| 0xFC 6:u32 ⇒ i64.trunc_sat_f64_s
| 0xFC 7:u32 ⇒ i64.trunc_sat_f64_u

5.4.8 Vector Instructions

All variants of vector instructions are represented by separate byte codes. They all have a one byte prefix, whereas
the actual opcode is encoded by a variable-length unsigned integer.

Vector loads and stores are followed by the encoding of their memarg immediate.

200 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

laneidx ::= 𝑙:byte ⇒ 𝑙
instr ::= . . .

| 0xFD 0:u32 𝑚:memarg ⇒ v128.load𝑚
| 0xFD 1:u32 𝑚:memarg ⇒ v128.load8x8_s 𝑚
| 0xFD 2:u32 𝑚:memarg ⇒ v128.load8x8_u 𝑚
| 0xFD 3:u32 𝑚:memarg ⇒ v128.load16x4_s𝑚
| 0xFD 4:u32 𝑚:memarg ⇒ v128.load16x4_u𝑚
| 0xFD 5:u32 𝑚:memarg ⇒ v128.load32x2_s𝑚
| 0xFD 6:u32 𝑚:memarg ⇒ v128.load32x2_u𝑚
| 0xFD 7:u32 𝑚:memarg ⇒ v128.load8_splat𝑚
| 0xFD 8:u32 𝑚:memarg ⇒ v128.load16_splat𝑚
| 0xFD 9:u32 𝑚:memarg ⇒ v128.load32_splat𝑚
| 0xFD 10:u32 𝑚:memarg ⇒ v128.load64_splat𝑚
| 0xFD 92:u32 𝑚:memarg ⇒ v128.load32_zero𝑚
| 0xFD 93:u32 𝑚:memarg ⇒ v128.load64_zero𝑚
| 0xFD 11:u32 𝑚:memarg ⇒ v128.store 𝑚
| 0xFD 84:u32 𝑚:memarg 𝑙:laneidx ⇒ v128.load8_lane 𝑚 𝑙
| 0xFD 85:u32 𝑚:memarg 𝑙:laneidx ⇒ v128.load16_lane𝑚 𝑙
| 0xFD 86:u32 𝑚:memarg 𝑙:laneidx ⇒ v128.load32_lane𝑚 𝑙
| 0xFD 87:u32 𝑚:memarg 𝑙:laneidx ⇒ v128.load64_lane𝑚 𝑙
| 0xFD 88:u32 𝑚:memarg 𝑙:laneidx ⇒ v128.store8_lane 𝑚 𝑙
| 0xFD 89:u32 𝑚:memarg 𝑙:laneidx ⇒ v128.store16_lane 𝑚 𝑙
| 0xFD 90:u32 𝑚:memarg 𝑙:laneidx ⇒ v128.store32_lane 𝑚 𝑙
| 0xFD 91:u32 𝑚:memarg 𝑙:laneidx ⇒ v128.store64_lane 𝑚 𝑙

The const instruction is followed by 16 immediate bytes, which are converted into a i128 in littleendian byte
order:

instr ::= . . .
| 0xFD 12:u32 (𝑏:byte)16 ⇒ v128.const bytes−1

i128(𝑏0 . . . 𝑏15)

The shuffle instruction is also followed by the encoding of 16 laneidx immediates.

instr ::= . . .
| 0xFD 13:u32 (𝑙:laneidx)16 ⇒ i8x16.shuffle 𝑙16

extract_lane and replace_lane instructions are followed by the encoding of a laneidx immediate.

instr ::= . . .
| 0xFD 21:u32 𝑙:laneidx ⇒ i8x16.extract_lane_s 𝑙
| 0xFD 22:u32 𝑙:laneidx ⇒ i8x16.extract_lane_u 𝑙
| 0xFD 23:u32 𝑙:laneidx ⇒ i8x16.replace_lane 𝑙
| 0xFD 24:u32 𝑙:laneidx ⇒ i16x8.extract_lane_s 𝑙
| 0xFD 25:u32 𝑙:laneidx ⇒ i16x8.extract_lane_u 𝑙
| 0xFD 26:u32 𝑙:laneidx ⇒ i16x8.replace_lane 𝑙
| 0xFD 27:u32 𝑙:laneidx ⇒ i32x4.extract_lane 𝑙
| 0xFD 28:u32 𝑙:laneidx ⇒ i32x4.replace_lane 𝑙
| 0xFD 29:u32 𝑙:laneidx ⇒ i64x2.extract_lane 𝑙
| 0xFD 30:u32 𝑙:laneidx ⇒ i64x2.replace_lane 𝑙
| 0xFD 31:u32 𝑙:laneidx ⇒ f32x4.extract_lane 𝑙
| 0xFD 32:u32 𝑙:laneidx ⇒ f32x4.replace_lane 𝑙
| 0xFD 33:u32 𝑙:laneidx ⇒ f64x2.extract_lane 𝑙
| 0xFD 34:u32 𝑙:laneidx ⇒ f64x2.replace_lane 𝑙

5.4. Instructions 201

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

All other vector instructions are plain opcodes without any immediates.

instr ::= . . .
| 0xFD 14:u32 ⇒ i8x16.swizzle
| 0xFD 15:u32 ⇒ i8x16.splat
| 0xFD 16:u32 ⇒ i16x8.splat
| 0xFD 17:u32 ⇒ i32x4.splat
| 0xFD 18:u32 ⇒ i64x2.splat
| 0xFD 19:u32 ⇒ f32x4.splat
| 0xFD 20:u32 ⇒ f64x2.splat

| 0xFD 35:u32 ⇒ i8x16.eq
| 0xFD 36:u32 ⇒ i8x16.ne
| 0xFD 37:u32 ⇒ i8x16.lt_s
| 0xFD 38:u32 ⇒ i8x16.lt_u
| 0xFD 39:u32 ⇒ i8x16.gt_s
| 0xFD 40:u32 ⇒ i8x16.gt_u
| 0xFD 41:u32 ⇒ i8x16.le_s
| 0xFD 42:u32 ⇒ i8x16.le_u
| 0xFD 43:u32 ⇒ i8x16.ge_s
| 0xFD 44:u32 ⇒ i8x16.ge_u

| 0xFD 45:u32 ⇒ i16x8.eq
| 0xFD 46:u32 ⇒ i16x8.ne
| 0xFD 47:u32 ⇒ i16x8.lt_s
| 0xFD 48:u32 ⇒ i16x8.lt_u
| 0xFD 49:u32 ⇒ i16x8.gt_s
| 0xFD 50:u32 ⇒ i16x8.gt_u
| 0xFD 51:u32 ⇒ i16x8.le_s
| 0xFD 52:u32 ⇒ i16x8.le_u
| 0xFD 53:u32 ⇒ i16x8.ge_s
| 0xFD 54:u32 ⇒ i16x8.ge_u

| 0xFD 55:u32 ⇒ i32x4.eq
| 0xFD 56:u32 ⇒ i32x4.ne
| 0xFD 57:u32 ⇒ i32x4.lt_s
| 0xFD 58:u32 ⇒ i32x4.lt_u
| 0xFD 59:u32 ⇒ i32x4.gt_s
| 0xFD 60:u32 ⇒ i32x4.gt_u
| 0xFD 61:u32 ⇒ i32x4.le_s
| 0xFD 62:u32 ⇒ i32x4.le_u
| 0xFD 63:u32 ⇒ i32x4.ge_s
| 0xFD 64:u32 ⇒ i32x4.ge_u

| 0xFD 214:u32 ⇒ i64x2.eq
| 0xFD 215:u32 ⇒ i64x2.ne
| 0xFD 216:u32 ⇒ i64x2.lt_s
| 0xFD 217:u32 ⇒ i64x2.gt_s
| 0xFD 218:u32 ⇒ i64x2.le_s
| 0xFD 219:u32 ⇒ i64x2.ge_s

| 0xFD 65:u32 ⇒ f32x4.eq
| 0xFD 66:u32 ⇒ f32x4.ne
| 0xFD 67:u32 ⇒ f32x4.lt
| 0xFD 68:u32 ⇒ f32x4.gt
| 0xFD 69:u32 ⇒ f32x4.le
| 0xFD 70:u32 ⇒ f32x4.ge

202 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| 0xFD 71:u32 ⇒ f64x2.eq
| 0xFD 72:u32 ⇒ f64x2.ne
| 0xFD 73:u32 ⇒ f64x2.lt
| 0xFD 74:u32 ⇒ f64x2.gt
| 0xFD 75:u32 ⇒ f64x2.le
| 0xFD 76:u32 ⇒ f64x2.ge

| 0xFD 77:u32 ⇒ v128.not
| 0xFD 78:u32 ⇒ v128.and
| 0xFD 79:u32 ⇒ v128.andnot
| 0xFD 80:u32 ⇒ v128.or
| 0xFD 81:u32 ⇒ v128.xor
| 0xFD 82:u32 ⇒ v128.bitselect
| 0xFD 83:u32 ⇒ v128.any_true

| 0xFD 96:u32 ⇒ i8x16.abs
| 0xFD 97:u32 ⇒ i8x16.neg
| 0xFD 98:u32 ⇒ i8x16.popcnt
| 0xFD 99:u32 ⇒ i8x16.all_true
| 0xFD 100:u32 ⇒ i8x16.bitmask
| 0xFD 101:u32 ⇒ i8x16.narrow_i16x8_s
| 0xFD 102:u32 ⇒ i8x16.narrow_i16x8_u
| 0xFD 107:u32 ⇒ i8x16.shl
| 0xFD 108:u32 ⇒ i8x16.shr_s
| 0xFD 109:u32 ⇒ i8x16.shr_u
| 0xFD 110:u32 ⇒ i8x16.add
| 0xFD 111:u32 ⇒ i8x16.add_sat_s
| 0xFD 112:u32 ⇒ i8x16.add_sat_u
| 0xFD 113:u32 ⇒ i8x16.sub
| 0xFD 114:u32 ⇒ i8x16.sub_sat_s
| 0xFD 115:u32 ⇒ i8x16.sub_sat_u
| 0xFD 118:u32 ⇒ i8x16.min_s
| 0xFD 119:u32 ⇒ i8x16.min_u
| 0xFD 120:u32 ⇒ i8x16.max_s
| 0xFD 121:u32 ⇒ i8x16.max_u
| 0xFD 123:u32 ⇒ i8x16.avgr_u

5.4. Instructions 203

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| 0xFD 124:u32 ⇒ i16x8.extadd_pairwise_i8x16_s
| 0xFD 125:u32 ⇒ i16x8.extadd_pairwise_i8x16_u
| 0xFD 128:u32 ⇒ i16x8.abs
| 0xFD 129:u32 ⇒ i16x8.neg
| 0xFD 130:u32 ⇒ i16x8.q15mulr_sat_s
| 0xFD 131:u32 ⇒ i16x8.all_true
| 0xFD 132:u32 ⇒ i16x8.bitmask
| 0xFD 133:u32 ⇒ i16x8.narrow_i32x4_s
| 0xFD 134:u32 ⇒ i16x8.narrow_i32x4_u
| 0xFD 135:u32 ⇒ i16x8.extend_low_i8x16_s
| 0xFD 136:u32 ⇒ i16x8.extend_high_i8x16_s
| 0xFD 137:u32 ⇒ i16x8.extend_low_i8x16_u
| 0xFD 138:u32 ⇒ i16x8.extend_high_i8x16_u
| 0xFD 139:u32 ⇒ i16x8.shl
| 0xFD 140:u32 ⇒ i16x8.shr_s
| 0xFD 141:u32 ⇒ i16x8.shr_u
| 0xFD 142:u32 ⇒ i16x8.add
| 0xFD 143:u32 ⇒ i16x8.add_sat_s
| 0xFD 144:u32 ⇒ i16x8.add_sat_u
| 0xFD 145:u32 ⇒ i16x8.sub
| 0xFD 146:u32 ⇒ i16x8.sub_sat_s
| 0xFD 147:u32 ⇒ i16x8.sub_sat_u
| 0xFD 149:u32 ⇒ i16x8.mul
| 0xFD 150:u32 ⇒ i16x8.min_s
| 0xFD 151:u32 ⇒ i16x8.min_u
| 0xFD 152:u32 ⇒ i16x8.max_s
| 0xFD 153:u32 ⇒ i16x8.max_u
| 0xFD 155:u32 ⇒ i16x8.avgr_u
| 0xFD 156:u32 ⇒ i16x8.extmul_low_i8x16_s
| 0xFD 157:u32 ⇒ i16x8.extmul_high_i8x16_s
| 0xFD 158:u32 ⇒ i16x8.extmul_low_i8x16_u
| 0xFD 159:u32 ⇒ i16x8.extmul_high_i8x16_u

| 0xFD 126:u32 ⇒ i32x4.extadd_pairwise_i16x8_s
| 0xFD 127:u32 ⇒ i32x4.extadd_pairwise_i16x8_u
| 0xFD 160:u32 ⇒ i32x4.abs
| 0xFD 161:u32 ⇒ i32x4.neg
| 0xFD 163:u32 ⇒ i32x4.all_true
| 0xFD 164:u32 ⇒ i32x4.bitmask
| 0xFD 167:u32 ⇒ i32x4.extend_low_i16x8_s
| 0xFD 168:u32 ⇒ i32x4.extend_high_i16x8_s
| 0xFD 169:u32 ⇒ i32x4.extend_low_i16x8_u
| 0xFD 170:u32 ⇒ i32x4.extend_high_i16x8_u
| 0xFD 171:u32 ⇒ i32x4.shl
| 0xFD 172:u32 ⇒ i32x4.shr_s
| 0xFD 173:u32 ⇒ i32x4.shr_u
| 0xFD 174:u32 ⇒ i32x4.add
| 0xFD 177:u32 ⇒ i32x4.sub
| 0xFD 181:u32 ⇒ i32x4.mul
| 0xFD 182:u32 ⇒ i32x4.min_s
| 0xFD 183:u32 ⇒ i32x4.min_u
| 0xFD 184:u32 ⇒ i32x4.max_s
| 0xFD 185:u32 ⇒ i32x4.max_u
| 0xFD 186:u32 ⇒ i32x4.dot_i16x8_s
| 0xFD 188:u32 ⇒ i32x4.extmul_low_i16x8_s
| 0xFD 189:u32 ⇒ i32x4.extmul_high_i16x8_s
| 0xFD 190:u32 ⇒ i32x4.extmul_low_i16x8_u
| 0xFD 191:u32 ⇒ i32x4.extmul_high_i16x8_u

204 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| 0xFD 192:u32 ⇒ i64x2.abs
| 0xFD 193:u32 ⇒ i64x2.neg
| 0xFD 195:u32 ⇒ i64x2.all_true
| 0xFD 196:u32 ⇒ i64x2.bitmask
| 0xFD 199:u32 ⇒ i64x2.extend_low_i32x4_s
| 0xFD 200:u32 ⇒ i64x2.extend_high_i32x4_s
| 0xFD 201:u32 ⇒ i64x2.extend_low_i32x4_u
| 0xFD 202:u32 ⇒ i64x2.extend_high_i32x4_u
| 0xFD 203:u32 ⇒ i64x2.shl
| 0xFD 204:u32 ⇒ i64x2.shr_s
| 0xFD 205:u32 ⇒ i64x2.shr_u
| 0xFD 206:u32 ⇒ i64x2.add
| 0xFD 209:u32 ⇒ i64x2.sub
| 0xFD 213:u32 ⇒ i64x2.mul
| 0xFD 220:u32 ⇒ i64x2.extmul_low_i32x4_s
| 0xFD 221:u32 ⇒ i64x2.extmul_high_i32x4_s
| 0xFD 222:u32 ⇒ i64x2.extmul_low_i32x4_u
| 0xFD 223:u32 ⇒ i64x2.extmul_high_i32x4_u

| 0xFD 103:u32 ⇒ f32x4.ceil
| 0xFD 104:u32 ⇒ f32x4.floor
| 0xFD 105:u32 ⇒ f32x4.trunc
| 0xFD 106:u32 ⇒ f32x4.nearest
| 0xFD 224:u32 ⇒ f32x4.abs
| 0xFD 225:u32 ⇒ f32x4.neg
| 0xFD 227:u32 ⇒ f32x4.sqrt
| 0xFD 228:u32 ⇒ f32x4.add
| 0xFD 229:u32 ⇒ f32x4.sub
| 0xFD 230:u32 ⇒ f32x4.mul
| 0xFD 231:u32 ⇒ f32x4.div
| 0xFD 232:u32 ⇒ f32x4.min
| 0xFD 233:u32 ⇒ f32x4.max
| 0xFD 234:u32 ⇒ f32x4.pmin
| 0xFD 235:u32 ⇒ f32x4.pmax

| 0xFD 116:u32 ⇒ f64x2.ceil
| 0xFD 117:u32 ⇒ f64x2.floor
| 0xFD 122:u32 ⇒ f64x2.trunc
| 0xFD 148:u32 ⇒ f64x2.nearest
| 0xFD 236:u32 ⇒ f64x2.abs
| 0xFD 237:u32 ⇒ f64x2.neg
| 0xFD 239:u32 ⇒ f64x2.sqrt
| 0xFD 240:u32 ⇒ f64x2.add
| 0xFD 241:u32 ⇒ f64x2.sub
| 0xFD 242:u32 ⇒ f64x2.mul
| 0xFD 243:u32 ⇒ f64x2.div
| 0xFD 244:u32 ⇒ f64x2.min
| 0xFD 245:u32 ⇒ f64x2.max
| 0xFD 246:u32 ⇒ f64x2.pmin
| 0xFD 247:u32 ⇒ f64x2.pmax

5.4. Instructions 205

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| 0xFD 248:u32 ⇒ i32x4.trunc_sat_f32x4_s
| 0xFD 249:u32 ⇒ i32x4.trunc_sat_f32x4_u
| 0xFD 250:u32 ⇒ f32x4.convert_i32x4_s
| 0xFD 251:u32 ⇒ f32x4.convert_i32x4_u
| 0xFD 252:u32 ⇒ i32x4.trunc_sat_f64x2_s_zero
| 0xFD 253:u32 ⇒ i32x4.trunc_sat_f64x2_u_zero
| 0xFD 254:u32 ⇒ f64x2.convert_low_i32x4_s
| 0xFD 255:u32 ⇒ f64x2.convert_low_i32x4_u
| 0xFD 94:u32 ⇒ f32x4.demote_f64x2_zero
| 0xFD 95:u32 ⇒ f64x2.promote_low_f32x4

5.4.9 Expressions

Expressions are encoded by their instruction sequence terminated with an explicit 0x0B opcode for end.

expr ::= (in:instr)* 0x0B ⇒ in* end

5.5 Modules

The binary encoding of modules is organized into sections. Most sections correspond to one component of a
module record, except that function definitions are split into two sections, separating their type declarations in the
function section from their bodies in the code section.

Note: This separation enables parallel and streaming compilation of the functions in a module.

5.5.1 Indices

All indices are encoded with their respective value.

typeidx ::= 𝑥:u32 ⇒ 𝑥
funcidx ::= 𝑥:u32 ⇒ 𝑥
tableidx ::= 𝑥:u32 ⇒ 𝑥
memidx ::= 𝑥:u32 ⇒ 𝑥
globalidx ::= 𝑥:u32 ⇒ 𝑥
tagidx ::= 𝑥:u32 ⇒ 𝑥
elemidx ::= 𝑥:u32 ⇒ 𝑥
dataidx ::= 𝑥:u32 ⇒ 𝑥
localidx ::= 𝑥:u32 ⇒ 𝑥
labelidx ::= 𝑙:u32 ⇒ 𝑙
fieldidx ::= 𝑥:u32 ⇒ 𝑥

5.5.2 Sections

Each section consists of

• a one-byte section id,

• the u32 size of the contents, in bytes,

• the actual contents, whose structure is dependent on the section id.

206 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Every section is optional; an omitted section is equivalent to the section being present with empty contents.

The following parameterized grammar rule defines the generic structure of a section with id 𝑁 and contents de-
scribed by the grammar B.

section𝑁 (B) ::= 𝑁 :byte size:u32 cont :B ⇒ cont (if size = ||B||)
| 𝜖 ⇒ 𝜖

For most sections, the contents B encodes a vector. In these cases, the empty result 𝜖 is interpreted as the empty
vector.

Note: Other than for unknown custom sections, the size is not required for decoding, but can be used to skip
sections when navigating through a binary. The module is malformed if the size does not match the length of the
binary contents B.

The following section ids are used:

Id Section
0 custom section
1 type section
2 import section
3 function section
4 table section
5 memory section
6 global section
7 export section
8 start section
9 element section
10 code section
11 data section
12 data count section
13 tag section

Note: Section ids do not always correspond to the order of sections in the encoding of a module.

5.5.3 Custom Section

Custom sections have the id 0. They are intended to be used for debugging information or third-party extensions,
and are ignored by the WebAssembly semantics. Their contents consist of a name further identifying the custom
section, followed by an uninterpreted sequence of bytes for custom use.

customsec ::= section0(custom)
custom ::= name byte*

Note: If an implementation interprets the data of a custom section, then errors in that data, or the placement of
the section, must not invalidate the module.

5.5. Modules 207

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.5.4 Type Section

The type section has the id 1. It decodes into a vector of recursive types that represent the types component of a
module.

typesec ::= rt*: section1(vec(rectype)) ⇒ rt*

5.5.5 Import Section

The import section has the id 2. It decodes into a vector of imports that represent the imports component of a
module.

importsec ::= im*:section2(vec(import)) ⇒ im*

import ::= mod :name nm:name 𝑑:importdesc ⇒ {module mod , name nm, desc 𝑑}
importdesc ::= 0x00 𝑥:typeidx ⇒ func 𝑥

| 0x01 tt :tabletype ⇒ table tt
| 0x02 mt :memtype ⇒ mem mt
| 0x03 gt :globaltype ⇒ global gt
| 0x04 tt :tag ⇒ tag tt

5.5.6 Function Section

The function section has the id 3. It decodes into a vector of type indices that represent the type fields of the
functions in the funcs component of a module. The locals and body fields of the respective functions are encoded
separately in the code section.

funcsec ::= 𝑥*:section3(vec(typeidx)) ⇒ 𝑥*

5.5.7 Table Section

The table section has the id 4. It decodes into a vector of tables that represent the tables component of a module.

tablesec ::= tab*:section4(vec(table)) ⇒ tab*

table ::= tt :tabletype ⇒ {type tt , init (ref.null ht)} if tt = limits (ref null? ht)
| 0x40 0x00 tt :tabletype 𝑒:expr ⇒ {type tt , init 𝑒}

Note: The encoding of a table type cannot start with byte 0x40, hence decoding is unambiguous. The zero byte
following it is reserved for future extensions.

5.5.8 Memory Section

The memory section has the id 5. It decodes into a vector of memories that represent the mems component of a
module.

memsec ::= mem*:section5(vec(mem)) ⇒ mem*

mem ::= mt :memtype ⇒ {type mt}

208 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.5.9 Global Section

The global section has the id 6. It decodes into a vector of globals that represent the globals component of a module.

globalsec ::= glob*:section6(vec(global)) ⇒ glob*

global ::= gt :globaltype 𝑒:expr ⇒ {type gt , init 𝑒}

5.5.10 Export Section

The export section has the id 7. It decodes into a vector of exports that represent the exports component of a
module.

exportsec ::= ex*:section7(vec(export)) ⇒ ex*

export ::= nm:name 𝑑:exportdesc ⇒ {name nm, desc 𝑑}
exportdesc ::= 0x00 𝑥:funcidx ⇒ func 𝑥

| 0x01 𝑥:tableidx ⇒ table 𝑥
| 0x02 𝑥:memidx ⇒ mem 𝑥
| 0x03 𝑥:globalidx ⇒ global 𝑥
| 0x04 𝑥:tagidx ⇒ tag 𝑥

5.5.11 Start Section

The start section has the id 8. It decodes into an optional start function that represents the start component of a
module.

startsec ::= st?:section8(start) ⇒ st?

start ::= 𝑥:funcidx ⇒ {func 𝑥}

5.5.12 Element Section

The element section has the id 9. It decodes into a vector of element segments that represent the elems component
of a module.

elemsec ::= seg*:section9(vec(elem)) ⇒ seg*

elem ::= 0:u32 𝑒:expr 𝑦*:vec(funcidx) ⇒
{type (ref null func), init ((ref.func 𝑦) end)*,mode active {table 0, offset 𝑒}}

| 1:u32 et : elemkind 𝑦*:vec(funcidx) ⇒
{type et , init ((ref.func 𝑦) end)*,mode passive}

| 2:u32 𝑥:tableidx 𝑒:expr et : elemkind 𝑦*:vec(funcidx) ⇒
{type et , init ((ref.func 𝑦) end)*,mode active {table 𝑥, offset 𝑒}}

| 3:u32 et : elemkind 𝑦*:vec(funcidx) ⇒
{type et , init ((ref.func 𝑦) end)*,mode declarative}

| 4:u32 𝑒:expr el*:vec(expr) ⇒
{type (ref null func), init el*,mode active {table 0, offset 𝑒}}

| 5:u32 et : reftype el*:vec(expr) ⇒
{type 𝑒𝑡, init el*,mode passive}

| 6:u32 𝑥:tableidx 𝑒:expr et : reftype el*:vec(expr) ⇒
{type 𝑒𝑡, init el*,mode active {table 𝑥, offset 𝑒}}

| 7:u32 et : reftype el*:vec(expr) ⇒
{type 𝑒𝑡, init el*,mode declarative}

elemkind ::= 0x00 ⇒ funcref

Note: The initial integer can be interpreted as a bitfield. Bit 0 indicates a passive or declarative segment, bit 1
indicates the presence of an explicit table index for an active segment and otherwise distinguishes passive from

5.5. Modules 209

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

declarative segments, bit 2 indicates the use of element type and element expressions instead of element kind and
element indices.

Additional element kinds may be added in future versions of WebAssembly.

5.5.13 Code Section

The code section has the id 10. It decodes into a vector of code entries that are pairs of value type vectors and
expressions. They represent the locals and body field of the functions in the funcs component of a module. The
type fields of the respective functions are encoded separately in the function section.

The encoding of each code entry consists of

• the u32 size of the function code in bytes,

• the actual function code, which in turn consists of

– the declaration of locals,

– the function body as an expression.

Local declarations are compressed into a vector whose entries consist of

• a u32 count,

• a value type,

denoting count locals of the same value type.

codesec ::= code*:section10(vec(code)) ⇒ code*

code ::= size:u32 code:func ⇒ code (if size = ||func||)
func ::= (local*)*:vec(locals) 𝑒:expr ⇒ concat((local*)*), 𝑒 (if |concat((local*)*)| < 232)
locals ::= 𝑛:u32 𝑡:valtype ⇒ {type 𝑡}𝑛

Here, code ranges over pairs (valtype*, expr). The meta function concat((local*)*) concatenates all sequences
local*𝑖 in (local*)*. Any code for which the length of the resulting sequence is out of bounds of the maximum size
of a vector is malformed.

Note: Like with sections, the code size is not needed for decoding, but can be used to skip functions when
navigating through a binary. The module is malformed if a size does not match the length of the respective function
code.

5.5.14 Data Section

The data section has the id 11. It decodes into a vector of data segments that represent the datas component of a
module.

datasec ::= seg*:section11(vec(data)) ⇒ seg*

data ::= 0:u32 𝑒:expr 𝑏*:vec(byte) ⇒ {init 𝑏*,mode active {memory 0, offset 𝑒}}
| 1:u32 𝑏*:vec(byte) ⇒ {init 𝑏*,mode passive}
| 2:u32 𝑥:memidx 𝑒:expr 𝑏*:vec(byte) ⇒ {init 𝑏*,mode active {memory 𝑥, offset 𝑒}}

Note: The initial integer can be interpreted as a bitfield. Bit 0 indicates a passive segment, bit 1 indicates the
presence of an explicit memory index for an active segment.

In the current version of WebAssembly, at most one memory may be defined or imported in a single module, so
all valid active data segments have a memory value of 0.

210 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

5.5.15 Data Count Section

The data count section has the id 12. It decodes into an optional u32 that represents the number of data segments
in the data section. If this count does not match the length of the data segment vector, the module is malformed.

datacountsec ::= n?:section12(u32) ⇒ n?

Note: The data count section is used to simplify single-pass validation. Since the data section occurs after the
code section, the memory.init and data.drop instructions would not be able to check whether the data segment
index is valid until the data section is read. The data count section occurs before the code section, so a single-pass
validator can use this count instead of deferring validation.

5.5.16 Tag Section

The tag section has the id 13. It decodes into a vector of tags that represent the tags component of a module.

tagsec ::= tag*:section13(vec(tag)) ⇒ tag*

tag ::= 0x00 x :typeidx ⇒ {type x}

5.5.17 Modules

The encoding of a module starts with a preamble containing a 4-byte magic number (the string ‘∖0asm’) and a
version field. The current version of the WebAssembly binary format is 1.

The preamble is followed by a sequence of sections. Custom sections may be inserted at any place in this sequence,
while other sections must occur at most once and in the prescribed order. All sections can be empty.

The lengths of vectors produced by the (possibly empty) function and code section must match up.

Similarly, the optional data count must match the length of the data segment vector. Furthermore, it must be present

5.5. Modules 211

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

if any data index occurs in the code section.

magic ::= 0x00 0x61 0x73 0x6D

version ::= 0x01 0x00 0x00 0x00

module ::= magic

version

customsec*

rectype*: typesec
customsec*

import*: importsec
customsec*

typeidx𝑛: funcsec
customsec*

table*: tablesec
customsec*

mem*: memsec
customsec*

tag*: tagsec
customsec*

global*: globalsec
customsec*

export*: exportsec
customsec*

start?: startsec
customsec*

elem*: elemsec
customsec*

𝑚?: datacountsec
customsec*

code𝑛: codesec
customsec*

data𝑚: datasec
customsec* ⇒ { types rectype*,

funcs func𝑛,
tables table*,
mems mem*,
globals global*,
tags tag*,
elems elem*,
datas data𝑚,
start start?,
imports import*,
exports export* }

(if 𝑚? ̸= 𝜖 ∨ dataidx(code𝑛) = ∅)

where for each 𝑡*𝑖 , 𝑒𝑖 in code𝑛,

func𝑛[𝑖] = {type typeidx𝑛[𝑖], locals 𝑡*𝑖 , body 𝑒𝑖}

Note: The version of the WebAssembly binary format may increase in the future if backward-incompatible
changes have to be made to the format. However, such changes are expected to occur very infrequently, if ever. The
binary format is intended to be forward-compatible, such that future extensions can be made without incrementing
its version.

212 Chapter 5. Binary Format

CHAPTER 6

Text Format

6.1 Conventions

The textual format for WebAssembly modules is a rendering of their abstract syntax into S-expressions36.

Like the binary format, the text format is defined by an attribute grammar. A text string is a well-formed description
of a module if and only if it is generated by the grammar. Each production of this grammar has at most one
synthesized attribute: the abstract syntax that the respective character sequence expresses. Thus, the attribute
grammar implicitly defines a parsing function. Some productions also take a context as an inherited attribute that
records bound identifiers.

Except for a few exceptions, the core of the text grammar closely mirrors the grammar of the abstract syntax.
However, it also defines a number of abbreviations that are “syntactic sugar” over the core syntax.

The recommended extension for files containing WebAssembly modules in text format is “.wat”. Files with this
extension are assumed to be encoded in UTF-8, as per Unicode37 (Section 2.5).

6.1.1 Grammar

The following conventions are adopted in defining grammar rules of the text format. They mirror the conventions
used for abstract syntax and for the binary format. In order to distinguish symbols of the textual syntax from
symbols of the abstract syntax, typewriter font is adopted for the former.

• Terminal symbols are either literal strings of characters enclosed in quotes or expressed as Unicode38 scalar
values: ‘module’, U+0A. (All characters written literally are unambiguously drawn from the 7-bit ASCII39

subset of Unicode.)

• Nonterminal symbols are written in typewriter font: valtype, instr.

• 𝑇𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝑇 .

• 𝑇 * is a possibly empty sequence of iterations of 𝑇 . (This is a shorthand for 𝑇𝑛 used where 𝑛 is not relevant.)

• 𝑇+ is a sequence of one or more iterations of 𝑇 . (This is a shorthand for 𝑇𝑛 where 𝑛 ≥ 1.)

• 𝑇 ? is an optional occurrence of 𝑇 . (This is a shorthand for 𝑇𝑛 where 𝑛 ≤ 1.)
36 https://en.wikipedia.org/wiki/S-expression
37 https://www.unicode.org/versions/latest/
38 https://www.unicode.org/versions/latest/
39 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

213

https://en.wikipedia.org/wiki/S-expression
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

• 𝑥:𝑇 denotes the same language as the nonterminal 𝑇 , but also binds the variable 𝑥 to the attribute synthesized
for 𝑇 . A pattern may also be used instead of a variable, e.g., (𝑥, 𝑦):𝑇 .

• Productions are written sym ::= 𝑇1 ⇒ 𝐴1 | . . . | 𝑇𝑛 ⇒ 𝐴𝑛, where each𝐴𝑖 is the attribute that is synthesized
for sym in the given case, usually from attribute variables bound in 𝑇𝑖.

• Some productions are augmented by side conditions in parentheses, which restrict the applicability of the
production. They provide a shorthand for a combinatorial expansion of the production into many separate
cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production (in the syntax or in
an attribute), then all those occurrences must have the same instantiation.

• A distinction is made between lexical and syntactic productions. For the latter, arbitrary white space is
allowed in any place where the grammar contains spaces. The productions defining lexical syntax and the
syntax of values are considered lexical, all others are syntactic.

Note: For example, the textual grammar for number types is given as follows:

numtype ::= ‘i32’ ⇒ i32
| ‘i64’ ⇒ i64
| ‘f32’ ⇒ f32
| ‘f64’ ⇒ f64

The textual grammar for limits is defined as follows:

limits ::= 𝑛:u32 ⇒ {min 𝑛,max 𝜖}
| 𝑛:u32 𝑚:u32 ⇒ {min 𝑛,max 𝑚}

The variables 𝑛 and 𝑚 name the attributes of the respective u32 nonterminals, which in this case are the actual
unsigned integers those parse into. The attribute of the complete production then is the abstract syntax for the limit,
expressed in terms of the former values.

6.1.2 Abbreviations

In addition to the core grammar, which corresponds directly to the abstract syntax, the textual syntax also defines
a number of abbreviations that can be used for convenience and readability.

Abbreviations are defined by rewrite rules specifying their expansion into the core syntax:

abbreviation syntax ≡ expanded syntax

These expansions are assumed to be applied, recursively and in order of appearance, before applying the core
grammar rules to construct the abstract syntax.

6.1.3 Contexts

The text format allows the use of symbolic identifiers in place of indices. To resolve these identifiers into concrete
indices, some grammar productions are indexed by an identifier context 𝐼 as a synthesized attribute that records
the declared identifiers in each index space. In addition, the context records the types defined in the module, so
that parameter indices can be computed for functions.

214 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

It is convenient to define identifier contexts as records 𝐼 with abstract syntax as follows:

𝐼 ::= { types (id?)*,
funcs (id?)*,
tables (id?)*,
mems (id?)*,
tags (id?)*,
globals (id?)*,
elem (id?)*,
data (id?)*,
locals (id?)*,
labels (id?)*,
fields ((id?)*)* }
typedefs subtype* }

For each index space, such a context contains the list of identifiers assigned to the defined indices. Unnamed indices
are associated with empty (𝜖) entries in these lists. Fields have dependent name spaces, and hence a separate list
of field identifiers per type.

An identifier context is well-formed if no index space contains duplicate identifiers. For fields, names need only
be unique within a single type.

Conventions

To avoid unnecessary clutter, empty components are omitted when writing out identifier contexts. For example,
the record {} is shorthand for an identifier context whose components are all empty.

6.1.4 Vectors

Vectors are written as plain sequences, but with a restriction on the length of these sequence.

vec(A) ::= (𝑥:A)𝑛 ⇒ 𝑥𝑛 (if 𝑛 < 232)

6.2 Lexical Format

6.2.1 Characters

The text format assigns meaning to source text, which consists of a sequence of characters. Characters are assumed
to be represented as valid Unicode40 (Section 2.4) scalar values.

source ::= char*

char ::= U+00 | . . . | U+D7FF | U+E000 | . . . | U+10FFFF

Note: While source text may contain any Unicode character in comments or string literals, the rest of the grammar
is formed exclusively from the characters supported by the 7-bit ASCII41 subset of Unicode.

40 https://www.unicode.org/versions/latest/
41 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

6.2. Lexical Format 215

https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.2.2 Tokens

The character stream in the source text is divided, from left to right, into a sequence of tokens, as defined by the
following grammar.

token ::= keyword | u𝑁 | s𝑁 | f𝑁 | string | id | ‘(’ | ‘)’ | reserved
keyword ::= (‘a’ | . . . | ‘z’) idchar* (if occurring as a literal terminal in the grammar)
reserved ::= (idchar | string)+

Tokens are formed from the input character stream according to the longest match rule. That is, the next token
always consists of the longest possible sequence of characters that is recognized by the above lexical grammar.
Tokens can be separated by white space, but except for strings, they cannot themselves contain whitespace.

Keyword tokens are defined either implicitly by an occurrence of a terminal symbol in literal form, such as
‘keyword’, in a syntactic production of this chapter, or explicitly where they arise in this chapter.

Any token that does not fall into any of the other categories is considered reserved, and cannot occur in source text.

Note: The effect of defining the set of reserved tokens is that all tokens must be separated by either parentheses,
white space, or comments. For example, ‘0$x’ is a single reserved token, as is ‘”a””b”’. Consequently, they are
not recognized as two separate tokens ‘0’ and ‘$x’, or ”𝑎” and ”𝑏”, respectively, but instead disallowed. This
property of tokenization is not affected by the fact that the definition of reserved tokens overlaps with other token
classes.

6.2.3 White Space

White space is any sequence of literal space characters, formatting characters, or comments. The allowed formatting
characters correspond to a subset of the ASCII42 format effectors, namely, horizontal tabulation (U+09), line feed
(U+0A), and carriage return (U+0D).

space ::= (‘ ’ | format | comment)*
format ::= newline | U+09
newline ::= U+0A | U+0D | U+0D U+0A

The only relevance of white space is to separate tokens. It is otherwise ignored.

6.2.4 Comments

A comment can either be a line comment, started with a double semicolon ‘;;’ and extending to the end of the line,
or a block comment, enclosed in delimiters ‘(;’ . . . ‘;)’. Block comments can be nested.

comment ::= linecomment | blockcomment
linecomment ::= ‘;;’ linechar* (newline | eof)
linechar ::= 𝑐:char (if 𝑐 ̸= U+0A ∧ 𝑐 ̸= U+0D)
blockcomment ::= ‘(;’ blockchar* ‘;)’
blockchar ::= 𝑐:char (if 𝑐 ̸= ‘;’ ∧ 𝑐 ̸= ‘(’)

| ‘;’ (if the next character is not ‘)’)
| ‘(’ (if the next character is not ‘;’)
| blockcomment

Here, the pseudo token eof indicates the end of the input. The look-ahead restrictions on the productions for
blockchar disambiguate the grammar such that only well-bracketed uses of block comment delimiters are allowed.

Note: Any formatting and control characters are allowed inside comments.

42 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

216 Chapter 6. Text Format

https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.3 Values

The grammar productions in this section define lexical syntax, hence no white space is allowed.

6.3.1 Integers

All integers can be written in either decimal or hexadecimal notation. In both cases, digits can optionally be
separated by underscores.

sign ::= 𝜖 ⇒ + | ‘+’ ⇒ + | ‘−’ ⇒ −
digit ::= ‘0’ ⇒ 0 | . . . | ‘9’ ⇒ 9
hexdigit ::= 𝑑:digit ⇒ 𝑑

| ‘A’ ⇒ 10 | . . . | ‘F’ ⇒ 15
| ‘a’ ⇒ 10 | . . . | ‘f’ ⇒ 15

num ::= 𝑑:digit ⇒ 𝑑

| 𝑛:num ‘_’? 𝑑:digit ⇒ 10 · 𝑛+ 𝑑
hexnum ::= ℎ:hexdigit ⇒ ℎ

| 𝑛:hexnum ‘_’? ℎ:hexdigit ⇒ 16 · 𝑛+ ℎ

The allowed syntax for integer literals depends on size and signedness. Moreover, their value must lie within the
range of the respective type.

u𝑁 ::= 𝑛:num ⇒ 𝑛 (if 𝑛 < 2𝑁)
| ‘0x’ 𝑛:hexnum ⇒ 𝑛 (if 𝑛 < 2𝑁)

s𝑁 ::= ±:sign 𝑛:num ⇒ ±𝑛 (if −2𝑁−1 ≤ ±𝑛 < 2𝑁−1)
| ±:sign ‘0x’ 𝑛:hexnum ⇒ ±𝑛 (if −2𝑁−1 ≤ ±𝑛 < 2𝑁−1)

Uninterpreted integers can be written as either signed or unsigned, and are normalized to unsigned in the abstract
syntax.

i𝑁 ::= 𝑛:u𝑁 ⇒ 𝑛
| 𝑖:s𝑁 ⇒ 𝑛 (if 𝑖 = signed(𝑛))

6.3.2 Floating-Point

Floating-point values can be represented in either decimal or hexadecimal notation.

frac ::= 𝑑:digit ⇒ 𝑑/10

| 𝑑:digit ‘_’? 𝑝:frac ⇒ (𝑑+ 𝑝/10)/10
hexfrac ::= ℎ:hexdigit ⇒ ℎ/16

| ℎ:hexdigit ‘_’? 𝑝:hexfrac ⇒ (ℎ+ 𝑝/16)/16

float ::= 𝑝:num ‘.’? ⇒ 𝑝
| 𝑝:num ‘.’ 𝑞:frac ⇒ 𝑝+ 𝑞

| 𝑝:num ‘.’? (‘E’ | ‘e’) ±:sign 𝑒:num ⇒ 𝑝 · 10±𝑒

| 𝑝:num ‘.’ 𝑞:frac (‘E’ | ‘e’) ±:sign 𝑒:num ⇒ (𝑝+ 𝑞) · 10±𝑒

hexfloat ::= ‘0x’ 𝑝:hexnum ‘.’? ⇒ 𝑝
| ‘0x’ 𝑝:hexnum ‘.’ 𝑞:hexfrac ⇒ 𝑝+ 𝑞

| ‘0x’ 𝑝:hexnum ‘.’? (‘P’ | ‘p’) ±:sign 𝑒:num ⇒ 𝑝 · 2±𝑒

| ‘0x’ 𝑝:hexnum ‘.’ 𝑞:hexfrac (‘P’ | ‘p’) ±:sign 𝑒:num ⇒ (𝑝+ 𝑞) · 2±𝑒

The value of a literal must not lie outside the representable range of the corresponding IEEE 75443 type (that is, a
numeric value must not overflow to ±infinity), but it may be rounded to the nearest representable value.

43 https://ieeexplore.ieee.org/document/8766229

6.3. Values 217

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Note: Rounding can be prevented by using hexadecimal notation with no more significant bits than supported by
the required type.

Floating-point values may also be written as constants for infinity or canonical NaN (not a number). Furthermore,
arbitrary NaN values may be expressed by providing an explicit payload value.

f𝑁 ::= ±:sign 𝑧:f𝑁mag ⇒ ±𝑧
f𝑁mag ::= 𝑧:float ⇒ float𝑁 (𝑧) (if float𝑁 (𝑧) ̸= ±∞)

| 𝑧:hexfloat ⇒ float𝑁 (𝑧) (if float𝑁 (𝑧) ̸= ±∞)
| ‘inf’ ⇒ ∞
| ‘nan’ ⇒ nan(canon𝑁)
| ‘nan:0x’ 𝑛:hexnum ⇒ nan(𝑛) (if 1 ≤ 𝑛 < 2signif(𝑁))

6.3.3 Strings

Strings denote sequences of bytes that can represent both textual and binary data. They are enclosed in quotation
marks and may contain any character other than ASCII44 control characters, quotation marks (‘”’), or backslash
(‘∖’), except when expressed with an escape sequence.

string ::= ‘”’ (𝑏*:stringelem)* ‘”’ ⇒ concat((𝑏*)*) (if |concat((𝑏*)*)| < 232)
stringelem ::= 𝑐:stringchar ⇒ utf8(𝑐)

| ‘∖’ 𝑛:hexdigit𝑚:hexdigit ⇒ 16 · 𝑛+𝑚

Each character in a string literal represents the byte sequence corresponding to its UTF-8 Unicode45 (Section 2.5)
encoding, except for hexadecimal escape sequences ‘∖ℎℎ’, which represent raw bytes of the respective value.

stringchar ::= 𝑐:char ⇒ 𝑐 (if 𝑐 ≥ U+20 ∧ 𝑐 ̸= U+7F ∧ 𝑐 ̸= ‘”’ ∧ 𝑐 ̸= ‘∖’)
| ‘∖t’ ⇒ U+09
| ‘∖n’ ⇒ U+0A
| ‘∖r’ ⇒ U+0D
| ‘∖”’ ⇒ U+22
| ‘∖′’ ⇒ U+27
| ‘∖∖’ ⇒ U+5C
| ‘∖u{’ 𝑛:hexnum ‘}’ ⇒ U+(n) (if 𝑛 < 0xD800 ∨ 0xE000 ≤ 𝑛 < 0x110000)

6.3.4 Names

Names are strings denoting a literal character sequence. A name string must form a valid UTF-8 encoding as
defined by Unicode46 (Section 2.5) and is interpreted as a string of Unicode scalar values.

name ::= 𝑏*:string ⇒ 𝑐* (if 𝑏* = utf8(𝑐*))

Note: Presuming the source text is itself encoded correctly, strings that do not contain any uses of hexadecimal
byte escapes are always valid names.

44 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d
45 https://www.unicode.org/versions/latest/
46 https://www.unicode.org/versions/latest/

218 Chapter 6. Text Format

https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.3.5 Identifiers

Indices can be given in both numeric and symbolic form. Symbolic identifiers that stand in lieu of indices start
with ‘$’, followed by any sequence of printable ASCII47 characters that does not contain a space, quotation mark,
comma, semicolon, or bracket.

id ::= ‘$’ idchar+
idchar ::= ‘0’ | . . . | ‘9’

| ‘A’ | . . . | ‘Z’
| ‘a’ | . . . | ‘z’
| ‘!’ | ‘#’ | ‘$’ | ‘%’ | ‘&’ | ‘′’ | ‘*’ | ‘+’ | ‘−’ | ‘.’ | ‘/’
| ‘:’ | ‘<’ | ‘=’ | ‘>’ | ‘?’ | ‘@’ | ‘∖’ | ‘^’ | ‘_’ | ‘`’ | ‘|’ | ‘~’

Conventions

The expansion rules of some abbreviations require insertion of a fresh identifier. That may be any syntactically
valid identifier that does not already occur in the given source text.

6.4 Types

6.4.1 Number Types

numtype𝐼 ::= ‘i32’ ⇒ i32
| ‘i64’ ⇒ i64
| ‘f32’ ⇒ f32
| ‘f64’ ⇒ f64

6.4.2 Vector Types

vectype𝐼 ::= ‘v128’ ⇒ v128

6.4.3 Heap Types

absheaptype ::= ‘any’ ⇒ any
| ‘eq’ ⇒ eq
| ‘i31’ ⇒ i31
| ‘struct’ ⇒ struct
| ‘array’ ⇒ array
| ‘none’ ⇒ none
| ‘func’ ⇒ func
| ‘nofunc’ ⇒ nofunc
| ‘extern’ ⇒ extern
| ‘noexn’ ⇒ noexn
| ‘exn’ ⇒ exn
| ‘noextern’ ⇒ noextern

heaptype𝐼 ::= 𝑡:absheaptype ⇒ 𝑦
| 𝑥:typeidx𝐼 ⇒ 𝑥

47 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

6.4. Types 219

https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.4.4 Reference Types

reftype𝐼 ::= ‘(’ ‘ref’ ht :heaptype ‘)’ ⇒ ref ht
| ‘(’ ‘ref’ ‘null’ ht :heaptype ‘)’ ⇒ ref null ht

Abbreviations

There are shorthands for references to abstract heap types.

‘anyref’ ≡ ‘(’ ‘ref’ ‘null’ ‘any’ ‘)’
‘eqref’ ≡ ‘(’ ‘ref’ ‘null’ ‘eq’ ‘)’
‘i31ref’ ≡ ‘(’ ‘ref’ ‘null’ ‘i31’ ‘)’
‘structref’ ≡ ‘(’ ‘ref’ ‘null’ ‘struct’ ‘)’
‘arrayref’ ≡ ‘(’ ‘ref’ ‘null’ ‘array’ ‘)’
‘nullref’ ≡ ‘(’ ‘ref’ ‘null’ ‘none’ ‘)’
‘funcref’ ≡ ‘(’ ‘ref’ ‘null’ ‘func’ ‘)’
‘nullfuncref’ ≡ ‘(’ ‘ref’ ‘null’ ‘nofunc’ ‘)’
‘exnref’ ≡ ‘(’ ‘ref’ ‘null’ ‘exn’ ‘)’
‘nullexnref’ ≡ ‘(’ ‘ref’ ‘null’ ‘noexn’ ‘)’
‘externref’ ≡ ‘(’ ‘ref’ ‘null’ ‘extern’ ‘)’
‘nullexternref’ ≡ ‘(’ ‘ref’ ‘null’ ‘noextern’ ‘)’

6.4.5 Value Types

valtype𝐼 ::= 𝑡:numtype𝐼 ⇒ 𝑡
| 𝑡:vectype𝐼 ⇒ 𝑡
| 𝑡:reftype𝐼 ⇒ 𝑡

6.4.6 Function Types

functype𝐼 ::= ‘(’ ‘func’ 𝑡*1: vec(param𝐼) 𝑡*2: vec(result𝐼) ‘)’ ⇒ [𝑡*1] → [𝑡*2]
param𝐼 ::= ‘(’ ‘param’ id? 𝑡:valtype𝐼 ‘)’ ⇒ 𝑡
result𝐼 ::= ‘(’ ‘result’ 𝑡:valtype𝐼 ‘)’ ⇒ 𝑡

Note: The optional identifier names for parameters in a function type only have documentation purpose. They
cannot be referenced from anywhere.

Abbreviations

Multiple anonymous parameters or results may be combined into a single declaration:

‘(’ ‘param’ valtype* ‘)’ ≡ (‘(’ ‘param’ valtype ‘)’)*
‘(’ ‘result’ valtype* ‘)’ ≡ (‘(’ ‘result’ valtype ‘)’)*

220 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.4.7 Aggregate Types

arraytype𝐼 ::= ‘(’ ‘array’ ft :fieldtype𝐼 ‘)’ ⇒ ft
structtype𝐼 ::= ‘(’ ‘struct’ ft*: vec(field𝐼) ‘)’ ⇒ ft*

field𝐼 ::= ‘(’ ‘field’ id? ft :fieldtype𝐼 ‘)’ ⇒ ft
fieldtype𝐼 ::= st :storagetype ⇒ const st

| ‘(’ ‘mut’ st :storagetype ‘)’ ⇒ var st
storagetype𝐼 ::= 𝑡:valtype𝐼 ⇒ 𝑡

| 𝑡:packedtype ⇒ 𝑡
packedtype ::= ‘i8’ ⇒ i8

| ‘i16’ ⇒ i16

Abbreviations

Multiple anonymous structure fields may be combined into a single declaration:

‘(’ ‘field’ fieldtype* ‘)’ ≡ (‘(’ ‘field’ fieldtype ‘)’)*

6.4.8 Composite Types

comptype𝐼 ::= at :arraytype𝐼 ⇒ array at
| st :structtype𝐼 ⇒ struct at
| ft :functype𝐼 ⇒ func ft

6.4.9 Recursive Types

rectype𝐼 ::= ‘(’ ‘rec’ st*: vec(typedef𝐼) ‘)’ ⇒ rec st*

typedef𝐼 ::= ‘(’ ‘type’ id? st :subtype𝐼 ‘)’ ⇒ st

subtype𝐼 ::= ‘(’ ‘sub’ ‘final’? 𝑥*: vec(typeidx𝐼) ct :comptype𝐼 ‘)’ ⇒ sub final? 𝑥* ct

Abbreviations

Singular recursive types can omit the ‘rec’ keyword:

typedef ≡ ‘(’ ‘rec’ typedef ‘)’

Similarly, final sub types with no super-types can omit the sub keyword and arguments:

comptype ≡ ‘(’ ‘sub’ ‘final’ 𝜖 comptype ‘)’

6.4.10 Limits

limits ::= 𝑛:u32 ⇒ {min 𝑛,max 𝜖}
| 𝑛:u32 𝑚:u32 ⇒ {min 𝑛,max 𝑚}

6.4. Types 221

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.4.11 Memory Types

memtype𝐼 ::= lim:limits ⇒ lim

6.4.12 Table Types

tabletype𝐼 ::= lim:limits et :reftype𝐼 ⇒ lim et

6.4.13 Global Types

globaltype𝐼 ::= 𝑡:valtype ⇒ const 𝑡
| ‘(’ ‘mut’ 𝑡:valtype𝐼 ‘)’ ⇒ var 𝑡

6.5 Instructions

Instructions are syntactically distinguished into plain and structured instructions.

instr𝐼 ::= in:plaininstr𝐼 ⇒ in
| in:blockinstr𝐼 ⇒ in

In addition, as a syntactic abbreviation, instructions can be written as S-expressions in folded form, to group them
visually.

6.5.1 Labels

Structured control instructions can be annotated with a symbolic label identifier. They are the only symbolic
identifiers that can be bound locally in an instruction sequence. The following grammar handles the corresponding
update to the identifier context by composing the context with an additional label entry.

label𝐼 ::= 𝑣:id ⇒ {labels 𝑣} ⊕ 𝐼 (if 𝑣 /∈ 𝐼.labels)
| 𝑣:id ⇒ {labels 𝑣} ⊕ (𝐼 with labels[𝑖] = 𝜖) (if 𝐼.labels[𝑖] = 𝑣)
| 𝜖 ⇒ {labels (𝜖)} ⊕ 𝐼

Note: The new label entry is inserted at the beginning of the label list in the identifier context. This effectively
shifts all existing labels up by one, mirroring the fact that control instructions are indexed relatively not absolutely.

If a label with the same name already exists, then it is shadowed and the earlier label becomes inaccessible.

6.5.2 Control Instructions

Structured control instructions can bind an optional symbolic label identifier. The same label identifier may op-
tionally be repeated after the corresponding end or else keywords, to indicate the matching delimiters.

Their block type is given as a type use, analogous to the type of functions. However, the special case of a type use
that is syntactically empty or consists of only a single result is not regarded as an abbreviation for an inline function

222 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

type, but is parsed directly into an optional value type.

blocktype𝐼 ::=
|

(𝑡:result𝐼)
? ⇒ 𝑡?

𝑥, 𝐼 ′:typeuse𝐼 ⇒ 𝑥 (if 𝐼 ′ = {locals (𝜖)*})
blockinstr𝐼 ::= ‘block’ 𝐼 ′:label𝐼 bt :blocktype𝐼 (in:instr𝐼′)* ‘end’ id?

⇒ block bt in* end (if id? = 𝜖 ∨ id? = label)
| ‘loop’ 𝐼 ′:label𝐼 bt :blocktype𝐼 (in:instr𝐼′)* ‘end’ id?

⇒ loop bt in* end (if id? = 𝜖 ∨ id? = label)
| ‘if’ 𝐼 ′:label𝐼 bt :blocktype𝐼 (in1:instr𝐼′)* ‘else’ id?1 (in2:instr𝐼′)* ‘end’ id?2

⇒ if bt in*
1 else in

*
2 end (if id?1 = 𝜖 ∨ id?1 = label, id?2 = 𝜖 ∨ id?2 = label)

| ‘try_table’ 𝐼 ′:label𝐼 bt :blocktype (𝑐:catch𝐼)
* (in:instr𝐼′)* ‘end’ id?

⇒ try_table bt 𝑐* in* end (if id? = 𝜖 ∨ id? = label)
catch𝐼 ::=

|
|
|

‘(’ ‘catch’ 𝑥:tagidx𝐼 𝑙:labelidx𝐼 ‘)’ ⇒ catch 𝑥 𝑙
‘(’ ‘catch_ref’ 𝑥:tagidx𝐼 𝑙:labelidx𝐼 ‘)’ ⇒ catch_ref 𝑥 𝑙
‘(’ ‘catch_all’ 𝑙:labelidx𝐼 ‘)’ ⇒ catch_all 𝑙
‘(’ ‘catch_all_ref’ 𝑙:labelidx𝐼 ‘)’ ⇒ catch_all_ref 𝑙

Note: The side condition stating that the identifier context 𝐼 ′ must only contain unnamed entries in the rule for
typeuse block types enforces that no identifier can be bound in any param declaration for a block type.

All other control instruction are represented verbatim.

plaininstr𝐼 ::= ‘unreachable’ ⇒ unreachable
| ‘nop’ ⇒ nop
| ‘br’ 𝑙:labelidx𝐼 ⇒ br 𝑙
| ‘br_if’ 𝑙:labelidx𝐼 ⇒ br_if 𝑙
| ‘br_table’ 𝑙*:vec(labelidx𝐼) 𝑙𝑁 :labelidx𝐼 ⇒ br_table 𝑙* 𝑙𝑁
| ‘br_on_null’ 𝑙:labelidx𝐼 ⇒ br_on_null 𝑙
| ‘br_on_non_null’ 𝑙:labelidx𝐼 ⇒ br_on_non_null 𝑙
| ‘br_on_cast’ 𝑙:labelidx𝐼 𝑡1:reftype 𝑡2:reftype ⇒ br_on_cast 𝑙 𝑡1 𝑡2
| ‘br_on_cast_fail’ 𝑙:labelidx𝐼 𝑡1:reftype 𝑡2:reftype ⇒ br_on_cast_fail 𝑙 𝑡1 𝑡2
| ‘return’ ⇒ return
| ‘call’ 𝑥:funcidx𝐼 ⇒ call 𝑥
| ‘call_ref’ 𝑥:typeidx ⇒ call_ref 𝑥
| ‘call_indirect’ 𝑥:tableidx 𝑦, 𝐼 ′:typeuse𝐼 ⇒ call_indirect 𝑥 𝑦 (if 𝐼 ′ = {locals (𝜖)*})
| ‘return_call’ 𝑥:funcidx𝐼 ⇒ return_call 𝑥
| ‘return_call_ref’ 𝑥:typeidx ⇒ return_call_ref 𝑥
| ‘return_call_indirect’ 𝑥:tableidx 𝑦, 𝐼 ′:typeuse𝐼 ⇒ return_call_indirect 𝑥 𝑦 (if 𝐼 ′ = {locals (𝜖)*})
| ‘throw’ 𝑥:tagidx𝐼 ⇒ throw 𝑥
| ‘throw_ref’ ⇒ throw_ref

Note: The side condition stating that the identifier context 𝐼 ′ must only contain unnamed entries in the rule for
call_indirect enforces that no identifier can be bound in any param declaration appearing in the type annotation.

Abbreviations

The ‘else’ keyword of an ‘if’ instruction can be omitted if the following instruction sequence is empty.

‘if’ label blocktype𝐼 instr* ‘end’ ≡ ‘if’ label blocktype𝐼 instr* ‘else’ ‘end’

Also, for backwards compatibility, the table index to ‘call_indirect’ and ‘return_call_indirect’ can be
omitted, defaulting to 0.

‘call_indirect’ typeuse ≡ ‘call_indirect’ 0 typeuse

‘return_call_indirect’ typeuse ≡ ‘return_call_indirect’ 0 typeuse

6.5. Instructions 223

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.5.3 Reference Instructions

plaininstr𝐼 ::= . . .
| ‘ref.null’ 𝑡:heaptype ⇒ ref.null 𝑡
| ‘ref.func’ 𝑥:funcidx ⇒ ref.func 𝑥
| ‘ref.is_null’ ⇒ ref.is_null
| ‘ref.as_non_null’ ⇒ ref.as_non_null
| ‘ref.eq’ ⇒ ref.eq
| ‘ref.test’ 𝑡:reftype ⇒ ref.test 𝑡
| ‘ref.cast’ 𝑡:reftype ⇒ ref.cast 𝑡
| ‘struct.new’ 𝑥:typeidx𝐼 ⇒ struct.new 𝑥
| ‘struct.new_default’ 𝑥:typeidx𝐼 ⇒ struct.new_default 𝑥
| ‘struct.get’ 𝑥:typeidx𝐼 𝑦:fieldidx𝐼,𝑥 ⇒ struct.get 𝑥 𝑦
| ‘struct.get_u’ 𝑥:typeidx𝐼 𝑦:fieldidx𝐼,𝑥 ⇒ struct.get_u 𝑥 𝑦
| ‘struct.get_s’ 𝑥:typeidx𝐼 𝑦:fieldidx𝐼,𝑥 ⇒ struct.get_s 𝑥 𝑦
| ‘struct.set’ 𝑥:typeidx𝐼 𝑦:fieldidx𝐼,𝑥 ⇒ struct.set 𝑥 𝑦
| ‘array.new’ 𝑥:typeidx𝐼 ⇒ array.new 𝑥
| ‘array.new_default’ 𝑥:typeidx𝐼 ⇒ array.new_default 𝑥
| ‘array.new_fixed’ 𝑥:typeidx𝐼 𝑛:u32 ⇒ array.new_fixed 𝑥 𝑛
| ‘array.new_data’ 𝑥:typeidx𝐼 𝑦:dataidx𝐼 ⇒ array.new_data 𝑥 𝑦
| ‘array.new_elem’ 𝑥:typeidx𝐼 𝑦:elemidx𝐼 ⇒ array.new_elem 𝑥 𝑦
| ‘array.get’ 𝑥:typeidx𝐼 ⇒ array.get 𝑥
| ‘array.get_u’ 𝑥:typeidx𝐼 ⇒ array.get_u 𝑥
| ‘array.get_s’ 𝑥:typeidx𝐼 ⇒ array.get_s 𝑥
| ‘array.set’ 𝑥:typeidx𝐼 ⇒ array.set 𝑥
| ‘array.len’ ⇒ array.len
| ‘array.fill’ 𝑥:typeidx𝐼 ⇒ array.fill 𝑥
| ‘array.copy’ 𝑥:typeidx𝐼 𝑦:typeidx𝐼 ⇒ array.copy 𝑥 𝑦
| ‘array.init_data’ 𝑥:typeidx𝐼 𝑦:dataidx𝐼 ⇒ array.init_data 𝑥 𝑦
| ‘array.init_elem’ 𝑥:typeidx𝐼 𝑦:elemidx𝐼 ⇒ array.init_elem 𝑥 𝑦
| ‘ref.i31’ ⇒ ref.i31
| ‘i31.get_u’ ⇒ i31.get_u
| ‘i31.get_s’ ⇒ i31.get_s
| ‘any.convert_extern’ ⇒ any.convert_extern
| ‘extern.convert_any’ ⇒ extern.convert_any

6.5.4 Parametric Instructions

plaininstr𝐼 ::= . . .
| ‘drop’ ⇒ drop
| ‘select’ ((𝑡:result𝐼)*)? ⇒ select (𝑡*)?

6.5.5 Variable Instructions

plaininstr𝐼 ::= . . .
| ‘local.get’ 𝑥:localidx𝐼 ⇒ local.get 𝑥
| ‘local.set’ 𝑥:localidx𝐼 ⇒ local.set 𝑥
| ‘local.tee’ 𝑥:localidx𝐼 ⇒ local.tee 𝑥
| ‘global.get’ 𝑥:globalidx𝐼 ⇒ global.get 𝑥
| ‘global.set’ 𝑥:globalidx𝐼 ⇒ global.set 𝑥

224 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.5.6 Table Instructions

plaininstr𝐼 ::= . . .
| ‘table.get’ 𝑥:tableidx𝐼 ⇒ table.get 𝑥
| ‘table.set’ 𝑥:tableidx𝐼 ⇒ table.set 𝑥
| ‘table.size’ 𝑥:tableidx𝐼 ⇒ table.size 𝑥
| ‘table.grow’ 𝑥:tableidx𝐼 ⇒ table.grow 𝑥
| ‘table.fill’ 𝑥:tableidx𝐼 ⇒ table.fill 𝑥
| ‘table.copy’ 𝑥:tableidx𝐼 𝑦:tableidx𝐼 ⇒ table.copy 𝑥 𝑦
| ‘table.init’ 𝑥:tableidx𝐼 𝑦:elemidx𝐼 ⇒ table.init 𝑥 𝑦
| ‘elem.drop’ 𝑥:elemidx𝐼 ⇒ elem.drop 𝑥

Abbreviations

For backwards compatibility, all table indices may be omitted from table instructions, defaulting to 0.

‘table.get’ ≡ ‘table.get’ ‘0’
‘table.set’ ≡ ‘table.set’ ‘0’
‘table.size’ ≡ ‘table.size’ ‘0’
‘table.grow’ ≡ ‘table.grow’ ‘0’
‘table.fill’ ≡ ‘table.fill’ ‘0’
‘table.copy’ ≡ ‘table.copy’ ‘0’ ‘0’
‘table.init’ 𝑥:elemidx𝐼 ≡ ‘table.init’ ‘0’ 𝑥:elemidx𝐼

6.5.7 Memory Instructions

The offset and alignment immediates to memory instructions are optional. The offset defaults to 0, the alignment
to the storage size of the respective memory access, which is its natural alignment. Lexically, an offset or align

6.5. Instructions 225

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

phrase is considered a single keyword token, so no white space is allowed around the ‘=’.

memarg𝑁 ::= 𝑜:offset 𝑎:align𝑁 ⇒ {align 𝑛, offset 𝑜} (if 𝑎 = 2𝑛)
offset ::= ‘offset=’𝑜:u32 ⇒ 𝑜

| 𝜖 ⇒ 0
align𝑁 ::= ‘align=’𝑎:u32 ⇒ 𝑎

| 𝜖 ⇒ 𝑁
plaininstr𝐼 ::= . . .

| ‘i32.load’ 𝑥:memidx 𝑚:memarg4 ⇒ i32.load 𝑥 𝑚
| ‘i64.load’ 𝑥:memidx 𝑚:memarg8 ⇒ i64.load 𝑥 𝑚
| ‘f32.load’ 𝑥:memidx 𝑚:memarg4 ⇒ f32.load 𝑥 𝑚
| ‘f64.load’ 𝑥:memidx 𝑚:memarg8 ⇒ f64.load 𝑥 𝑚
| ‘v128.load’ 𝑥:memidx 𝑚:memarg16 ⇒ v128.load 𝑥 𝑚
| ‘i32.load8_s’ 𝑥:memidx 𝑚:memarg1 ⇒ i32.load8_s 𝑥 𝑚
| ‘i32.load8_u’ 𝑥:memidx 𝑚:memarg1 ⇒ i32.load8_u 𝑥 𝑚
| ‘i32.load16_s’ 𝑥:memidx 𝑚:memarg2 ⇒ i32.load16_s 𝑥 𝑚
| ‘i32.load16_u’ 𝑥:memidx 𝑚:memarg2 ⇒ i32.load16_u 𝑥 𝑚
| ‘i64.load8_s’ 𝑥:memidx 𝑚:memarg1 ⇒ i64.load8_s 𝑥 𝑚
| ‘i64.load8_u’ 𝑥:memidx 𝑚:memarg1 ⇒ i64.load8_u 𝑥 𝑚
| ‘i64.load16_s’ 𝑥:memidx 𝑚:memarg2 ⇒ i64.load16_s 𝑥 𝑚
| ‘i64.load16_u’ 𝑥:memidx 𝑚:memarg2 ⇒ i64.load16_u 𝑥 𝑚
| ‘i64.load32_s’ 𝑥:memidx 𝑚:memarg4 ⇒ i64.load32_s 𝑥 𝑚
| ‘i64.load32_u’ 𝑥:memidx 𝑚:memarg4 ⇒ i64.load32_u 𝑥 𝑚
| ‘v128.load8x8_s’ 𝑥:memidx 𝑚:memarg8 ⇒ v128.load8x8_s 𝑥 𝑚
| ‘v128.load8x8_u’ 𝑥:memidx 𝑚:memarg8 ⇒ v128.load8x8_u 𝑥 𝑚
| ‘v128.load16x4_s’ 𝑥:memidx 𝑚:memarg8 ⇒ v128.load16x4_s 𝑥 𝑚
| ‘v128.load16x4_u’ 𝑥:memidx 𝑚:memarg8 ⇒ v128.load16x4_u 𝑥 𝑚
| ‘v128.load32x2_s’ 𝑥:memidx 𝑚:memarg8 ⇒ v128.load32x2_s 𝑥 𝑚
| ‘v128.load32x2_u’ 𝑥:memidx 𝑚:memarg8 ⇒ v128.load32x2_u 𝑥 𝑚
| ‘v128.load8_splat’ 𝑥:memidx 𝑚:memarg1 ⇒ v128.load8_splat 𝑥 𝑚
| ‘v128.load16_splat’ 𝑥:memidx 𝑚:memarg2 ⇒ v128.load16_splat 𝑥 𝑚
| ‘v128.load32_splat’ 𝑥:memidx 𝑚:memarg4 ⇒ v128.load32_splat 𝑥 𝑚
| ‘v128.load64_splat’ 𝑥:memidx 𝑚:memarg8 ⇒ v128.load64_splat 𝑥 𝑚
| ‘v128.load32_zero’ 𝑥:memidx 𝑚:memarg4 ⇒ v128.load32_zero 𝑥 𝑚
| ‘v128.load64_zero’ 𝑥:memidx 𝑚:memarg8 ⇒ v128.load64_zero 𝑥 𝑚
| ‘v128.load8_lane’ 𝑥:memidx 𝑚:memarg1 𝑦:u8 ⇒ v128.load8_lane 𝑥 𝑚 𝑦
| ‘v128.load16_lane’ 𝑥:memidx 𝑚:memarg2 𝑦:u8 ⇒ v128.load16_lane 𝑥 𝑚 𝑦
| ‘v128.load32_lane’ 𝑥:memidx 𝑚:memarg4 𝑦:u8 ⇒ v128.load32_lane 𝑥 𝑚 𝑦
| ‘v128.load64_lane’ 𝑥:memidx 𝑚:memarg8 𝑦:u8 ⇒ v128.load64_lane 𝑥 𝑚 𝑦
| ‘i32.store’ 𝑥:memidx 𝑚:memarg4 ⇒ i32.store 𝑥 𝑚
| ‘i64.store’ 𝑥:memidx 𝑚:memarg8 ⇒ i64.store 𝑥 𝑚
| ‘f32.store’ 𝑥:memidx 𝑚:memarg4 ⇒ f32.store 𝑥 𝑚
| ‘f64.store’ 𝑥:memidx 𝑚:memarg8 ⇒ f64.store 𝑥 𝑚
| ‘v128.store’ 𝑥:memidx 𝑚:memarg16 ⇒ v128.store 𝑥 𝑚
| ‘i32.store8’ 𝑥:memidx 𝑚:memarg1 ⇒ i32.store8 𝑥 𝑚
| ‘i32.store16’ 𝑥:memidx 𝑚:memarg2 ⇒ i32.store16 𝑥 𝑚
| ‘i64.store8’ 𝑥:memidx 𝑚:memarg1 ⇒ i64.store8 𝑥 𝑚
| ‘i64.store16’ 𝑥:memidx 𝑚:memarg2 ⇒ i64.store16 𝑥 𝑚
| ‘i64.store32’ 𝑥:memidx 𝑚:memarg4 ⇒ i64.store32 𝑥 𝑚
| ‘v128.store8_lane’ 𝑥:memidx 𝑚:memarg1 𝑦:u8 ⇒ v128.store8_lane 𝑥 𝑚 𝑦
| ‘v128.store16_lane’ 𝑥:memidx 𝑚:memarg2 𝑦:u8 ⇒ v128.store16_lane 𝑥 𝑚 𝑦
| ‘v128.store32_lane’ 𝑥:memidx 𝑚:memarg4 𝑦:u8 ⇒ v128.store32_lane 𝑥 𝑚 𝑦
| ‘v128.store64_lane’ 𝑥:memidx 𝑚:memarg8 𝑦:u8 ⇒ v128.store64_lane 𝑥 𝑚 𝑦

‘memory.size’ 𝑥:memidx ⇒ memory.size 𝑥
| ‘memory.grow’ 𝑥:memidx ⇒ memory.grow 𝑥
| ‘memory.fill’ 𝑥:memidx ⇒ memory.fill 𝑥
| ‘memory.copy’ 𝑥:memidx 𝑦:memidx ⇒ memory.copy 𝑥 𝑦
| ‘memory.init’ 𝑥:memidx 𝑦:dataidx𝐼 ⇒ memory.init 𝑥 𝑦
| ‘data.drop’ 𝑥:dataidx𝐼 ⇒ data.drop 𝑥

226 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Abbreviations

As an abbreviation, the memory index can be omitted in all memory instructions, defaulting to 0.

numtype‘.load’ memarg ≡ numtype‘.load’ ‘0’ memarg

vectype‘.load’ memarg ≡ vectype‘.load’ ‘0’ memarg

numtype‘.load’𝑁 ‘_’sx memarg ≡ numtype‘.load’𝑁 ‘_’sx ‘0’ memarg

vectype‘.load’𝑁x𝑀 ‘_’sx memarg ≡ vectype‘.load’𝑁x𝑀 ‘_’sx ‘0’ memarg

vectype‘.load’𝑁 ‘_splat’ memarg ≡ vectype‘.load’𝑁 ‘_splat’ ‘0’ memarg

vectype‘.load’𝑁 ‘_zero’ memarg ≡ vectype‘.load’𝑁 ‘_zero’ ‘0’ memarg

vectype‘.load’𝑁 ‘_lane’ memarg u8 ≡ vectype‘.load’𝑁 ‘_lane’ ‘0’ memarg u8

numtype‘.store’ memarg ≡ numtype‘.store’ ‘0’ memarg

vectype‘.store’ memarg ≡ vectype‘.store’ ‘0’ memarg

numtype‘.store’𝑁 memarg ≡ numtype‘.store’𝑁 ‘0’ memarg

vectype‘.store’𝑁 ‘_lane’ memarg u8 ≡ vectype‘.store’𝑁 ‘_lane’ ‘0’ memarg u8

‘memory.size’ ≡ ‘memory.size’ ‘0’
‘memory.grow’ ≡ ‘memory.grow’ ‘0’
‘memory.fill’ ≡ ‘memory.fill’ ‘0’
‘memory.copy’ ≡ ‘memory.copy’ ‘0’ ‘0’
‘memory.init’ 𝑥:elemidx𝐼 ≡ ‘memory.init’ ‘0’ 𝑥:elemidx𝐼

6.5.8 Numeric Instructions

plaininstr𝐼 ::= . . .
| ‘i32.const’ 𝑛:i32 ⇒ i32.const 𝑛
| ‘i64.const’ 𝑛:i64 ⇒ i64.const 𝑛
| ‘f32.const’ 𝑧:f32 ⇒ f32.const 𝑧
| ‘f64.const’ 𝑧:f64 ⇒ f64.const 𝑧

| ‘i32.clz’ ⇒ i32.clz
| ‘i32.ctz’ ⇒ i32.ctz
| ‘i32.popcnt’ ⇒ i32.popcnt
| ‘i32.add’ ⇒ i32.add
| ‘i32.sub’ ⇒ i32.sub
| ‘i32.mul’ ⇒ i32.mul
| ‘i32.div_s’ ⇒ i32.div_s
| ‘i32.div_u’ ⇒ i32.div_u
| ‘i32.rem_s’ ⇒ i32.rem_s
| ‘i32.rem_u’ ⇒ i32.rem_u
| ‘i32.and’ ⇒ i32.and
| ‘i32.or’ ⇒ i32.or
| ‘i32.xor’ ⇒ i32.xor
| ‘i32.shl’ ⇒ i32.shl
| ‘i32.shr_s’ ⇒ i32.shr_s
| ‘i32.shr_u’ ⇒ i32.shr_u
| ‘i32.rotl’ ⇒ i32.rotl
| ‘i32.rotr’ ⇒ i32.rotr

6.5. Instructions 227

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| ‘i64.clz’ ⇒ i64.clz
| ‘i64.ctz’ ⇒ i64.ctz
| ‘i64.popcnt’ ⇒ i64.popcnt
| ‘i64.add’ ⇒ i64.add
| ‘i64.sub’ ⇒ i64.sub
| ‘i64.mul’ ⇒ i64.mul
| ‘i64.div_s’ ⇒ i64.div_s
| ‘i64.div_u’ ⇒ i64.div_u
| ‘i64.rem_s’ ⇒ i64.rem_s
| ‘i64.rem_u’ ⇒ i64.rem_u
| ‘i64.and’ ⇒ i64.and
| ‘i64.or’ ⇒ i64.or
| ‘i64.xor’ ⇒ i64.xor
| ‘i64.shl’ ⇒ i64.shl
| ‘i64.shr_s’ ⇒ i64.shr_s
| ‘i64.shr_u’ ⇒ i64.shr_u
| ‘i64.rotl’ ⇒ i64.rotl
| ‘i64.rotr’ ⇒ i64.rotr

| ‘f32.abs’ ⇒ f32.abs
| ‘f32.neg’ ⇒ f32.neg
| ‘f32.ceil’ ⇒ f32.ceil
| ‘f32.floor’ ⇒ f32.floor
| ‘f32.trunc’ ⇒ f32.trunc
| ‘f32.nearest’ ⇒ f32.nearest
| ‘f32.sqrt’ ⇒ f32.sqrt
| ‘f32.add’ ⇒ f32.add
| ‘f32.sub’ ⇒ f32.sub
| ‘f32.mul’ ⇒ f32.mul
| ‘f32.div’ ⇒ f32.div
| ‘f32.min’ ⇒ f32.min
| ‘f32.max’ ⇒ f32.max
| ‘f32.copysign’ ⇒ f32.copysign

| ‘f64.abs’ ⇒ f64.abs
| ‘f64.neg’ ⇒ f64.neg
| ‘f64.ceil’ ⇒ f64.ceil
| ‘f64.floor’ ⇒ f64.floor
| ‘f64.trunc’ ⇒ f64.trunc
| ‘f64.nearest’ ⇒ f64.nearest
| ‘f64.sqrt’ ⇒ f64.sqrt
| ‘f64.add’ ⇒ f64.add
| ‘f64.sub’ ⇒ f64.sub
| ‘f64.mul’ ⇒ f64.mul
| ‘f64.div’ ⇒ f64.div
| ‘f64.min’ ⇒ f64.min
| ‘f64.max’ ⇒ f64.max
| ‘f64.copysign’ ⇒ f64.copysign

228 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| ‘i32.eqz’ ⇒ i32.eqz
| ‘i32.eq’ ⇒ i32.eq
| ‘i32.ne’ ⇒ i32.ne
| ‘i32.lt_s’ ⇒ i32.lt_s
| ‘i32.lt_u’ ⇒ i32.lt_u
| ‘i32.gt_s’ ⇒ i32.gt_s
| ‘i32.gt_u’ ⇒ i32.gt_u
| ‘i32.le_s’ ⇒ i32.le_s
| ‘i32.le_u’ ⇒ i32.le_u
| ‘i32.ge_s’ ⇒ i32.ge_s
| ‘i32.ge_u’ ⇒ i32.ge_u

| ‘i64.eqz’ ⇒ i64.eqz
| ‘i64.eq’ ⇒ i64.eq
| ‘i64.ne’ ⇒ i64.ne
| ‘i64.lt_s’ ⇒ i64.lt_s
| ‘i64.lt_u’ ⇒ i64.lt_u
| ‘i64.gt_s’ ⇒ i64.gt_s
| ‘i64.gt_u’ ⇒ i64.gt_u
| ‘i64.le_s’ ⇒ i64.le_s
| ‘i64.le_u’ ⇒ i64.le_u
| ‘i64.ge_s’ ⇒ i64.ge_s
| ‘i64.ge_u’ ⇒ i64.ge_u

| ‘f32.eq’ ⇒ f32.eq
| ‘f32.ne’ ⇒ f32.ne
| ‘f32.lt’ ⇒ f32.lt
| ‘f32.gt’ ⇒ f32.gt
| ‘f32.le’ ⇒ f32.le
| ‘f32.ge’ ⇒ f32.ge

| ‘f64.eq’ ⇒ f64.eq
| ‘f64.ne’ ⇒ f64.ne
| ‘f64.lt’ ⇒ f64.lt
| ‘f64.gt’ ⇒ f64.gt
| ‘f64.le’ ⇒ f64.le
| ‘f64.ge’ ⇒ f64.ge

6.5. Instructions 229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| ‘i32.wrap_i64’ ⇒ i32.wrap_i64
| ‘i32.trunc_f32_s’ ⇒ i32.trunc_f32_s
| ‘i32.trunc_f32_u’ ⇒ i32.trunc_f32_u
| ‘i32.trunc_f64_s’ ⇒ i32.trunc_f64_s
| ‘i32.trunc_f64_u’ ⇒ i32.trunc_f64_u
| ‘i32.trunc_sat_f32_s’ ⇒ i32.trunc_sat_f32_s
| ‘i32.trunc_sat_f32_u’ ⇒ i32.trunc_sat_f32_u
| ‘i32.trunc_sat_f64_s’ ⇒ i32.trunc_sat_f64_s
| ‘i32.trunc_sat_f64_u’ ⇒ i32.trunc_sat_f64_u
| ‘i64.extend_i32_s’ ⇒ i64.extend_i32_s
| ‘i64.extend_i32_u’ ⇒ i64.extend_i32_u
| ‘i64.trunc_f32_s’ ⇒ i64.trunc_f32_s
| ‘i64.trunc_f32_u’ ⇒ i64.trunc_f32_u
| ‘i64.trunc_f64_s’ ⇒ i64.trunc_f64_s
| ‘i64.trunc_f64_u’ ⇒ i64.trunc_f64_u
| ‘i64.trunc_sat_f32_s’ ⇒ i64.trunc_sat_f32_s
| ‘i64.trunc_sat_f32_u’ ⇒ i64.trunc_sat_f32_u
| ‘i64.trunc_sat_f64_s’ ⇒ i64.trunc_sat_f64_s
| ‘i64.trunc_sat_f64_u’ ⇒ i64.trunc_sat_f64_u
| ‘f32.convert_i32_s’ ⇒ f32.convert_i32_s
| ‘f32.convert_i32_u’ ⇒ f32.convert_i32_u
| ‘f32.convert_i64_s’ ⇒ f32.convert_i64_s
| ‘f32.convert_i64_u’ ⇒ f32.convert_i64_u
| ‘f32.demote_f64’ ⇒ f32.demote_f64
| ‘f64.convert_i32_s’ ⇒ f64.convert_i32_s
| ‘f64.convert_i32_u’ ⇒ f64.convert_i32_u
| ‘f64.convert_i64_s’ ⇒ f64.convert_i64_s
| ‘f64.convert_i64_u’ ⇒ f64.convert_i64_u
| ‘f64.promote_f32’ ⇒ f64.promote_f32
| ‘i32.reinterpret_f32’ ⇒ i32.reinterpret_f32
| ‘i64.reinterpret_f64’ ⇒ i64.reinterpret_f64
| ‘f32.reinterpret_i32’ ⇒ f32.reinterpret_i32
| ‘f64.reinterpret_i64’ ⇒ f64.reinterpret_i64

| ‘i32.extend8_s’ ⇒ i32.extend8_s
| ‘i32.extend16_s’ ⇒ i32.extend16_s
| ‘i64.extend8_s’ ⇒ i64.extend8_s
| ‘i64.extend16_s’ ⇒ i64.extend16_s
| ‘i64.extend32_s’ ⇒ i64.extend32_s

6.5.9 Vector Instructions

Vector constant instructions have a mandatory shape descriptor, which determines how the following values are
parsed.

| ‘v128.const’ ‘i8x16’ (𝑛:i8)16 ⇒ v128.const bytes−1
𝑖128(bytes𝑖8(𝑛)

16)
| ‘v128.const’ ‘i16x8’ (𝑛:i16)8 ⇒ v128.const bytes−1

𝑖128(bytes𝑖16(𝑛)
8)

| ‘v128.const’ ‘i32x4’ (𝑛:i32)4 ⇒ v128.const bytes−1
𝑖128(bytes𝑖32(𝑛)

4)
| ‘v128.const’ ‘i64x2’ (𝑛:i64)2 ⇒ v128.const bytes−1

𝑖128(bytes𝑖64(𝑛)
2)

| ‘v128.const’ ‘f32x4’ (𝑧:f32)4 ⇒ v128.const bytes−1
𝑖128(bytes𝑓32(𝑧)

4)
| ‘v128.const’ ‘f64x2’ (𝑧:f64)2 ⇒ v128.const bytes−1

𝑖128(bytes𝑓64(𝑧)
2)

| ‘i8x16.shuffle’ (𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8)16 ⇒ i8x16.shuffle 𝑙𝑎𝑛𝑒𝑖𝑑𝑥16

| ‘i8x16.swizzle’ ⇒ i8x16.swizzle

230 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| ‘i8x16.splat’ ⇒ i8x16.splat
| ‘i16x8.splat’ ⇒ i16x8.splat
| ‘i32x4.splat’ ⇒ i32x4.splat
| ‘i64x2.splat’ ⇒ i64x2.splat
| ‘f32x4.splat’ ⇒ f32x4.splat
| ‘f64x2.splat’ ⇒ f64x2.splat

| ‘i8x16.extract_lane_s’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i8x16.extract_lane_s 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i8x16.extract_lane_u’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i8x16.extract_lane_u 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i8x16.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i8x16.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i16x8.extract_lane_s’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i16x8.extract_lane_s 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i16x8.extract_lane_u’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i16x8.extract_lane_u 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i16x8.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i16x8.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i32x4.extract_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i32x4.extract_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i32x4.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i32x4.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i64x2.extract_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i64x2.extract_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i64x2.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i64x2.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘f32x4.extract_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ f32x4.extract_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘f32x4.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ f32x4.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘f64x2.extract_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ f64x2.extract_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘f64x2.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ f64x2.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥

| ‘i8x16.eq’ ⇒ i8x16.eq
| ‘i8x16.ne’ ⇒ i8x16.ne
| ‘i8x16.lt_s’ ⇒ i8x16.lt_s
| ‘i8x16.lt_u’ ⇒ i8x16.lt_u
| ‘i8x16.gt_s’ ⇒ i8x16.gt_s
| ‘i8x16.gt_u’ ⇒ i8x16.gt_u
| ‘i8x16.le_s’ ⇒ i8x16.le_s
| ‘i8x16.le_u’ ⇒ i8x16.le_u
| ‘i8x16.ge_s’ ⇒ i8x16.ge_s
| ‘i8x16.ge_u’ ⇒ i8x16.ge_u

| ‘i16x8.eq’ ⇒ i16x8.eq
| ‘i16x8.ne’ ⇒ i16x8.ne
| ‘i16x8.lt_s’ ⇒ i16x8.lt_s
| ‘i16x8.lt_u’ ⇒ i16x8.lt_u
| ‘i16x8.gt_s’ ⇒ i16x8.gt_s
| ‘i16x8.gt_u’ ⇒ i16x8.gt_u
| ‘i16x8.le_s’ ⇒ i16x8.le_s
| ‘i16x8.le_u’ ⇒ i16x8.le_u
| ‘i16x8.ge_s’ ⇒ i16x8.ge_s
| ‘i16x8.ge_u’ ⇒ i16x8.ge_u

| ‘i32x4.eq’ ⇒ i32x4.eq
| ‘i32x4.ne’ ⇒ i32x4.ne
| ‘i32x4.lt_s’ ⇒ i32x4.lt_s
| ‘i32x4.lt_u’ ⇒ i32x4.lt_u
| ‘i32x4.gt_s’ ⇒ i32x4.gt_s
| ‘i32x4.gt_u’ ⇒ i32x4.gt_u
| ‘i32x4.le_s’ ⇒ i32x4.le_s
| ‘i32x4.le_u’ ⇒ i32x4.le_u
| ‘i32x4.ge_s’ ⇒ i32x4.ge_s
| ‘i32x4.ge_u’ ⇒ i32x4.ge_u

6.5. Instructions 231

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| ‘i64x2.eq’ ⇒ i64x2.eq
| ‘i64x2.ne’ ⇒ i64x2.ne
| ‘i64x2.lt_s’ ⇒ i64x2.lt_s
| ‘i64x2.gt_s’ ⇒ i64x2.gt_s
| ‘i64x2.le_s’ ⇒ i64x2.le_s
| ‘i64x2.ge_s’ ⇒ i64x2.ge_s
|

| ‘f32x4.eq’ ⇒ f32x4.eq
| ‘f32x4.ne’ ⇒ f32x4.ne
| ‘f32x4.lt’ ⇒ f32x4.lt
| ‘f32x4.gt’ ⇒ f32x4.gt
| ‘f32x4.le’ ⇒ f32x4.le
| ‘f32x4.ge’ ⇒ f32x4.ge

| ‘f64x2.eq’ ⇒ f64x2.eq
| ‘f64x2.ne’ ⇒ f64x2.ne
| ‘f64x2.lt’ ⇒ f64x2.lt
| ‘f64x2.gt’ ⇒ f64x2.gt
| ‘f64x2.le’ ⇒ f64x2.le
| ‘f64x2.ge’ ⇒ f64x2.ge

| ‘v128.not’ ⇒ v128.not
| ‘v128.and’ ⇒ v128.and
| ‘v128.andnot’ ⇒ v128.andnot
| ‘v128.or’ ⇒ v128.or
| ‘v128.xor’ ⇒ v128.xor
| ‘v128.bitselect’ ⇒ v128.bitselect
| ‘v128.any_true’ ⇒ v128.any_true

| ‘i8x16.abs’ ⇒ i8x16.abs
| ‘i8x16.neg’ ⇒ i8x16.neg
| ‘i8x16.all_true’ ⇒ i8x16.all_true
| ‘i8x16.bitmask’ ⇒ i8x16.bitmask
| ‘i8x16.narrow_i16x8_s’ ⇒ i8x16.narrow_i16x8_s
| ‘i8x16.narrow_i16x8_u’ ⇒ i8x16.narrow_i16x8_u
| ‘i8x16.shl’ ⇒ i8x16.shl
| ‘i8x16.shr_s’ ⇒ i8x16.shr_s
| ‘i8x16.shr_u’ ⇒ i8x16.shr_u
| ‘i8x16.add’ ⇒ i8x16.add
| ‘i8x16.add_sat_s’ ⇒ i8x16.add_sat_s
| ‘i8x16.add_sat_u’ ⇒ i8x16.add_sat_u
| ‘i8x16.sub’ ⇒ i8x16.sub
| ‘i8x16.sub_sat_s’ ⇒ i8x16.sub_sat_s
| ‘i8x16.sub_sat_u’ ⇒ i8x16.sub_sat_u
| ‘i8x16.min_s’ ⇒ i8x16.min_s
| ‘i8x16.min_u’ ⇒ i8x16.min_u
| ‘i8x16.max_s’ ⇒ i8x16.max_s
| ‘i8x16.max_u’ ⇒ i8x16.max_u
| ‘i8x16.avgr_u’ ⇒ i8x16.avgr_u
| ‘i8x16.popcnt’ ⇒ i8x16.popcnt

232 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| ‘i16x8.abs’ ⇒ i16x8.abs
| ‘i16x8.neg’ ⇒ i16x8.neg
| ‘i16x8.all_true’ ⇒ i16x8.all_true
| ‘i16x8.bitmask’ ⇒ i16x8.bitmask
| ‘i16x8.narrow_i32x4_s’ ⇒ i16x8.narrow_i32x4_s
| ‘i16x8.narrow_i32x4_u’ ⇒ i16x8.narrow_i32x4_u
| ‘i16x8.extend_low_i8x16_s’ ⇒ i16x8.extend_low_i8x16_s
| ‘i16x8.extend_high_i8x16_s’ ⇒ i16x8.extend_high_i8x16_s
| ‘i16x8.extend_low_i8x16_u’ ⇒ i16x8.extend_low_i8x16_u
| ‘i16x8.extend_high_i8x16_u’ ⇒ i16x8.extend_high_i8x16_u
| ‘i16x8.shl’ ⇒ i16x8.shl
| ‘i16x8.shr_s’ ⇒ i16x8.shr_s
| ‘i16x8.shr_u’ ⇒ i16x8.shr_u
| ‘i16x8.add’ ⇒ i16x8.add
| ‘i16x8.add_sat_s’ ⇒ i16x8.add_sat_s
| ‘i16x8.add_sat_u’ ⇒ i16x8.add_sat_u
| ‘i16x8.sub’ ⇒ i16x8.sub
| ‘i16x8.sub_sat_s’ ⇒ i16x8.sub_sat_s
| ‘i16x8.sub_sat_u’ ⇒ i16x8.sub_sat_u
| ‘i16x8.mul’ ⇒ i16x8.mul
| ‘i16x8.min_s’ ⇒ i16x8.min_s
| ‘i16x8.min_u’ ⇒ i16x8.min_u
| ‘i16x8.max_s’ ⇒ i16x8.max_s
| ‘i16x8.max_u’ ⇒ i16x8.max_u
| ‘i16x8.avgr_u’ ⇒ i16x8.avgr_u
| ‘i16x8.q15mulr_sat_s’ ⇒ i16x8.q15mulr_sat_s
| ‘i16x8.extmul_low_i8x16_s’ ⇒ i16x8.extmul_low_i8x16_s
| ‘i16x8.extmul_high_i8x16_s’ ⇒ i16x8.extmul_high_i8x16_s
| ‘i16x8.extmul_low_i8x16_u’ ⇒ i16x8.extmul_low_i8x16_u
| ‘i16x8.extmul_high_i8x16_u’ ⇒ i16x8.extmul_high_i8x16_u
| ‘i16x8.extadd_pairwise_i8x16_s’ ⇒ i16x8.extadd_pairwise_i8x16_s
| ‘i16x8.extadd_pairwise_i8x16_u’ ⇒ i16x8.extadd_pairwise_i8x16_u

| ‘i32x4.abs’ ⇒ i32x4.abs
| ‘i32x4.neg’ ⇒ i32x4.neg
| ‘i32x4.all_true’ ⇒ i32x4.all_true
| ‘i32x4.bitmask’ ⇒ i32x4.bitmask
| ‘i32x4.extadd_pairwise_i16x8_s’ ⇒ i32x4.extadd_pairwise_i16x8_s
| ‘i32x4.extend_low_i16x8_s’ ⇒ i32x4.extend_low_i16x8_s
| ‘i32x4.extend_high_i16x8_s’ ⇒ i32x4.extend_high_i16x8_s
| ‘i32x4.extend_low_i16x8_u’ ⇒ i32x4.extend_low_i16x8_u
| ‘i32x4.extend_high_i16x8_u’ ⇒ i32x4.extend_high_i16x8_u
| ‘i32x4.shl’ ⇒ i32x4.shl
| ‘i32x4.shr_s’ ⇒ i32x4.shr_s
| ‘i32x4.shr_u’ ⇒ i32x4.shr_u
| ‘i32x4.add’ ⇒ i32x4.add
| ‘i32x4.sub’ ⇒ i32x4.sub
| ‘i32x4.mul’ ⇒ i32x4.mul
| ‘i32x4.min_s’ ⇒ i32x4.min_s
| ‘i32x4.min_u’ ⇒ i32x4.min_u
| ‘i32x4.max_s’ ⇒ i32x4.max_s
| ‘i32x4.max_u’ ⇒ i32x4.max_u
| ‘i32x4.dot_i16x8_s’ ⇒ i32x4.dot_i16x8_s
| ‘i32x4.extmul_low_i16x8_s’ ⇒ i32x4.extmul_low_i16x8_s
| ‘i32x4.extmul_high_i16x8_s’ ⇒ i32x4.extmul_high_i16x8_s
| ‘i32x4.extmul_low_i16x8_u’ ⇒ i32x4.extmul_low_i16x8_u
| ‘i32x4.extmul_high_i16x8_u’ ⇒ i32x4.extmul_high_i16x8_u

6.5. Instructions 233

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| ‘i64x2.abs’ ⇒ i64x2.abs
| ‘i64x2.neg’ ⇒ i64x2.neg
| ‘i64x2.all_true’ ⇒ i64x2.all_true
| ‘i64x2.bitmask’ ⇒ i64x2.bitmask
| ‘i64x2.extend_low_i32x4_s’ ⇒ i64x2.extend_low_i32x4_s
| ‘i64x2.extend_high_i32x4_s’ ⇒ i64x2.extend_high_i32x4_s
| ‘i64x2.extend_low_i32x4_u’ ⇒ i64x2.extend_low_i32x4_u
| ‘i64x2.extend_high_i32x4_u’ ⇒ i64x2.extend_high_i32x4_u
| ‘i64x2.shl’ ⇒ i64x2.shl
| ‘i64x2.shr_s’ ⇒ i64x2.shr_s
| ‘i64x2.shr_u’ ⇒ i64x2.shr_u
| ‘i64x2.add’ ⇒ i64x2.add
| ‘i64x2.sub’ ⇒ i64x2.sub
| ‘i64x2.mul’ ⇒ i64x2.mul
| ‘i64x2.extmul_low_i32x4_s’ ⇒ i64x2.extmul_low_i32x4_s
| ‘i64x2.extmul_high_i32x4_s’ ⇒ i64x2.extmul_high_i32x4_s
| ‘i64x2.extmul_low_i32x4_u’ ⇒ i64x2.extmul_low_i32x4_u
| ‘i64x2.extmul_high_i32x4_u’ ⇒ i64x2.extmul_high_i32x4_u

| ‘f32x4.abs’ ⇒ f32x4.abs
| ‘f32x4.neg’ ⇒ f32x4.neg
| ‘f32x4.sqrt’ ⇒ f32x4.sqrt
| ‘f32x4.ceil’ ⇒ f32x4.ceil
| ‘f32x4.floor’ ⇒ f32x4.floor
| ‘f32x4.trunc’ ⇒ f32x4.trunc
| ‘f32x4.nearest’ ⇒ f32x4.nearest
| ‘f32x4.add’ ⇒ f32x4.add
| ‘f32x4.sub’ ⇒ f32x4.sub
| ‘f32x4.mul’ ⇒ f32x4.mul
| ‘f32x4.div’ ⇒ f32x4.div
| ‘f32x4.min’ ⇒ f32x4.min
| ‘f32x4.max’ ⇒ f32x4.max
| ‘f32x4.pmin’ ⇒ f32x4.pmin
| ‘f32x4.pmax’ ⇒ f32x4.pmax

| ‘f64x2.abs’ ⇒ f64x2.abs
| ‘f64x2.neg’ ⇒ f64x2.neg
| ‘f64x2.sqrt’ ⇒ f64x2.sqrt
| ‘f64x2.ceil’ ⇒ f64x2.ceil
| ‘f64x2.floor’ ⇒ f64x2.floor
| ‘f64x2.trunc’ ⇒ f64x2.trunc
| ‘f64x2.nearest’ ⇒ f64x2.nearest
| ‘f64x2.add’ ⇒ f64x2.add
| ‘f64x2.sub’ ⇒ f64x2.sub
| ‘f64x2.mul’ ⇒ f64x2.mul
| ‘f64x2.div’ ⇒ f64x2.div
| ‘f64x2.min’ ⇒ f64x2.min
| ‘f64x2.max’ ⇒ f64x2.max
| ‘f64x2.pmin’ ⇒ f64x2.pmin
| ‘f64x2.pmax’ ⇒ f64x2.pmax

234 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

| ‘i32x4.trunc_sat_f32x4_s’ ⇒ i32x4.trunc_sat_f32x4_s
| ‘i32x4.trunc_sat_f32x4_u’ ⇒ i32x4.trunc_sat_f32x4_u
| ‘i32x4.trunc_sat_f64x2_s_zero’ ⇒ i32x4.trunc_sat_f64x2_s_zero
| ‘i32x4.trunc_sat_f64x2_u_zero’ ⇒ i32x4.trunc_sat_f64x2_u_zero
| ‘f32x4.convert_i32x4_s’ ⇒ f32x4.convert_i32x4_s
| ‘f32x4.convert_i32x4_u’ ⇒ f32x4.convert_i32x4_u
| ‘f64x2.convert_low_i32x4_s’ ⇒ f64x2.convert_low_i32x4_s
| ‘f64x2.convert_low_i32x4_u’ ⇒ f64x2.convert_low_i32x4_u
| ‘f32x4.demote_f64x2_zero’ ⇒ f32x4.demote_f64x2_zero
| ‘f64x2.promote_low_f32x4’ ⇒ f64x2.promote_low_f32x4

6.5.10 Folded Instructions

Instructions can be written as S-expressions by grouping them into folded form. In that notation, an instruction is
wrapped in parentheses and optionally includes nested folded instructions to indicate its operands.

In the case of block instructions, the folded form omits the ‘end’ delimiter. For if instructions, both branches have
to be wrapped into nested S-expressions, headed by the keywords ‘then’ and ‘else’.

The set of all phrases defined by the following abbreviations recursively forms the auxiliary syntactic class
foldedinstr. Such a folded instruction can appear anywhere a regular instruction can.

‘(’ plaininstr foldedinstr* ‘)’ ≡ foldedinstr* plaininstr

‘(’ ‘block’ label blocktype instr* ‘)’ ≡ ‘block’ label blocktype instr* ‘end’
‘(’ ‘loop’ label blocktype instr* ‘)’ ≡ ‘loop’ label blocktype instr* ‘end’
‘(’ ‘if’ label blocktype foldedinstr* ‘(’ ‘then’ instr*1 ‘)’ (‘(’ ‘else’ instr*2 ‘)’)? ‘)’ ≡

foldedinstr* ‘if’ label blocktype instr*1 ‘else’ (instr*2)
? ‘end’

‘(’ ‘try_table’ label blocktype catch* instr* ‘)’ ≡
‘try_table’ label blocktype catch* instr* ‘end’

Note: For example, the instruction sequence

(local.get $x) (i32.const 2) i32.add (i32.const 3) i32.mul

can be folded into

(i32.mul (i32.add (local.get $x) (i32.const 2)) (i32.const 3))

Folded instructions are solely syntactic sugar, no additional syntactic or type-based checking is implied.

6.5.11 Expressions

Expressions are written as instruction sequences. No explicit ‘end’ keyword is included, since they only occur in
bracketed positions.

expr𝐼 ::= (in:instr𝐼)
* ⇒ in* end

6.5. Instructions 235

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.6 Modules

6.6.1 Indices

Indices can be given either in raw numeric form or as symbolic identifiers when bound by a respective construct.
Such identifiers are looked up in the suitable space of the identifier context 𝐼 .

typeidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.types[𝑥] = 𝑣)

funcidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.funcs[𝑥] = 𝑣)

tableidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.tables[𝑥] = 𝑣)

memidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.mems[𝑥] = 𝑣)

globalidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.globals[𝑥] = 𝑣)

tagidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.tags[𝑥] = 𝑣)

elemidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.elem[𝑥] = 𝑣)

dataidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.data[𝑥] = 𝑣)

localidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.locals[𝑥] = 𝑣)

labelidx𝐼 ::= 𝑙:u32 ⇒ 𝑙
| 𝑣:id ⇒ 𝑙 (if 𝐼.labels[𝑙] = 𝑣)

fieldidx𝐼,𝑥 ::= 𝑖:u32 ⇒ 𝑖
| 𝑣:id ⇒ 𝑖 (if 𝐼.fields[𝑥][𝑖] = 𝑣)

6.6.2 Type Uses

A type use is a reference to a function type definition. It may optionally be augmented by explicit inlined parameter
and result declarations. That allows binding symbolic identifiers to name the local indices of parameters. If inline
declarations are given, then their types must match the referenced function type.

typeuse𝐼 ::= ‘(’ ‘type’ 𝑥:typeidx𝐼 ‘)’ ⇒ 𝑥, 𝐼 ′

(if 𝐼.typedefs[𝑥] = sub final (func [𝑡𝑛1] → [𝑡*2]) ∧ 𝐼 ′ = {locals (𝜖)𝑛})
| ‘(’ ‘type’ 𝑥:typeidx𝐼 ‘)’ (𝑡1:param)

* (𝑡2:result)
* ⇒ 𝑥, 𝐼 ′

(if 𝐼.typedefs[𝑥] = sub final (func [𝑡*1] → [𝑡*2]) ∧ 𝐼 ′ = {locals id(param)*} well-formed)

Note: If inline declarations are given, their types must be syntactically equal to the types from the indexed
definition; possible type substitutions from other definitions that might make them equal are not taken into account.
This is to simplify syntactic pre-processing.

The synthesized attribute of a typeuse is a pair consisting of both the used type index and the local identifier
context containing possible parameter identifiers. The following auxiliary function extracts optional identifiers
from parameters:

id(‘(’ ‘param’ id? . . . ‘)’) = id?

Note: Both productions overlap for the case that the function type is [] → []. However, in that case, they also
produce the same results, so that the choice is immaterial.

236 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

The well-formedness condition on 𝐼 ′ ensures that the parameters do not contain duplicate identifiers.

Abbreviations

A typeuse may also be replaced entirely by inline parameter and result declarations. In that case, a type index is
automatically inserted:

(𝑡1:param)
* (𝑡2:result)

* ≡ ‘(’ ‘type’ 𝑥 ‘)’ param* result*

where 𝑥 is the smallest existing type index whose recursive type definition in the current module is of the form

‘(’ ‘rec’ ‘(’ ‘type’ ‘(’ ‘sub’ ‘final’ ‘(’ ‘func’ param* result* ‘)’ ‘)’ ‘)’ ‘)’

If no such index exists, then a new recursive type of the same form is inserted at the end of the module.

Abbreviations are expanded in the order they appear, such that previously inserted type definitions are reused by
consecutive expansions.

6.6.3 Imports

The descriptors in imports can bind a symbolic function, table, memory, tag, or global identifier.

import𝐼 ::= ‘(’ ‘import’ mod :name nm:name 𝑑:importdesc𝐼 ‘)’
⇒ {module mod , name nm, desc 𝑑}

importdesc𝐼 ::= ‘(’ ‘func’ id? 𝑥, 𝐼 ′:typeuse𝐼 ‘)’ ⇒ func 𝑥
| ‘(’ ‘table’ id? tt :tabletype𝐼 ‘)’ ⇒ table tt
| ‘(’ ‘memory’ id? mt :memtype𝐼 ‘)’ ⇒ mem mt
| ‘(’ ‘global’ id? gt :globaltype𝐼 ‘)’ ⇒ global gt
| ‘(’ ‘tag’ id? tt :tag ‘)’ ⇒ tag tt

Abbreviations

As an abbreviation, imports may also be specified inline with function, table, memory, global, or tag definitions;
see the respective sections.

6.6.4 Functions

Function definitions can bind a symbolic function identifier, and local identifiers for its parameters and locals.

func𝐼 ::= ‘(’ ‘func’ id? 𝑥, 𝐼 ′:typeuse𝐼 (loc:local𝐼)
* (in:instr𝐼′′)* ‘)’

⇒ {type 𝑥, locals loc*, body in* end}
(if 𝐼 ′′ = 𝐼 ⊕ 𝐼 ′ ⊕ {locals id(local)*} well-formed)

local𝐼 ::= ‘(’ ‘local’ id? 𝑡:valtype𝐼 ‘)’ ⇒ {type 𝑡}

The definition of the local identifier context 𝐼 ′′ uses the following auxiliary function to extract optional identifiers
from locals:

id(‘(’ ‘local’ id? . . . ‘)’) = id?

Note: The well-formedness condition on 𝐼 ′′ ensures that parameters and locals do not contain duplicate identifiers.

6.6. Modules 237

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Abbreviations

Multiple anonymous locals may be combined into a single declaration:

‘(’ ‘local’ valtype* ‘)’ ≡ (‘(’ ‘local’ valtype ‘)’)*

Functions can be defined as imports or exports inline:

‘(’ ‘func’ id? ‘(’ ‘import’ name1 name2 ‘)’ typeuse ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘func’ id? typeuse ‘)’ ‘)’

‘(’ ‘func’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘func’ id′ ‘)’ ‘)’ ‘(’ ‘func’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Note: The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently,
a function declaration can contain any number of exports, possibly followed by an import.

6.6.5 Tables

Table definitions can bind a symbolic table identifier.

table𝐼 ::= ‘(’ ‘table’ id? tt :tabletype𝐼 𝑒:expr𝐼 ‘)’ ⇒ {type tt , init 𝑒}

Abbreviations

A table’s initialization expression can be omitted, in which case it defaults to ref.null:

‘(’ ‘table’ id? tabletype ‘)’ ≡ ‘(’ ‘table’ id? tabletype ‘(’ ref.null ht ‘)’ ‘)’
(if tabletype = limits ‘(’ ‘ref’ ‘null’? ht ‘)’)

An element segment can be given inline with a table definition, in which case its offset is 0 and the limits of the
table type are inferred from the length of the given segment:

‘(’ ‘table’ id? reftype ‘(’ ‘elem’ expr𝑛:vec(elemexpr) ‘)’ ‘)’ ≡
‘(’ ‘table’ id′ 𝑛 𝑛 reftype ‘)’
‘(’ ‘elem’ ‘(’ ‘table’ id′ ‘)’ ‘(’ ‘i32.const’ ‘0’ ‘)’ reftype vec(elemexpr) ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

‘(’ ‘table’ id? reftype ‘(’ ‘elem’ 𝑥𝑛:vec(funcidx) ‘)’ ‘)’ ≡
‘(’ ‘table’ id′ 𝑛 𝑛 reftype ‘)’
‘(’ ‘elem’ ‘(’ ‘table’ id′ ‘)’ ‘(’ ‘i32.const’ ‘0’ ‘)’ reftype vec(‘(’ ‘ref.func’ funcidx ‘)’) ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Tables can be defined as imports or exports inline:

‘(’ ‘table’ id? ‘(’ ‘import’ name1 name2 ‘)’ tabletype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘table’ id? tabletype ‘)’ ‘)’

‘(’ ‘table’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘table’ id′ ‘)’ ‘)’ ‘(’ ‘table’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Note: The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently,
a table declaration can contain any number of exports, possibly followed by an import.

238 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.6.6 Memories

Memory definitions can bind a symbolic memory identifier.

mem𝐼 ::= ‘(’ ‘memory’ id? mt :memtype𝐼 ‘)’ ⇒ {type mt}

Abbreviations

A data segment can be given inline with a memory definition, in which case its offset is 0 and the limits of the
memory type are inferred from the length of the data, rounded up to page size:

‘(’ ‘memory’ id? ‘(’ ‘data’ 𝑏𝑛:datastring ‘)’ ‘)’ ≡
‘(’ ‘memory’ id′ 𝑚 𝑚 ‘)’
‘(’ ‘data’ ‘(’ ‘memory’ id′ ‘)’ ‘(’ ‘i32.const’ ‘0’ ‘)’ datastring ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh,𝑚 = ceil(𝑛/64Ki))

Memories can be defined as imports or exports inline:

‘(’ ‘memory’ id? ‘(’ ‘import’ name1 name2 ‘)’ memtype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘memory’ id? memtype ‘)’ ‘)’

‘(’ ‘memory’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘memory’ id′ ‘)’ ‘)’ ‘(’ ‘memory’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Note: The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently,
a memory declaration can contain any number of exports, possibly followed by an import.

6.6.7 Globals

Global definitions can bind a symbolic global identifier.

global𝐼 ::= ‘(’ ‘global’ id? gt :globaltype𝐼 𝑒:expr𝐼 ‘)’ ⇒ {type gt , init 𝑒}

Abbreviations

Globals can be defined as imports or exports inline:

‘(’ ‘global’ id? ‘(’ ‘import’ name1 name2 ‘)’ globaltype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘global’ id? globaltype ‘)’ ‘)’

‘(’ ‘global’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘global’ id′ ‘)’ ‘)’ ‘(’ ‘global’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Note: The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently,
a global declaration can contain any number of exports, possibly followed by an import.

6.6. Modules 239

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.6.8 Tags

An tag definition can bind a symbolic tag identifier.

tag𝐼 ::= ‘(’ ‘tag’ id? 𝑥, 𝐼 ′:typeuse𝐼 ‘)’
⇒ {type 𝑥}

Abbreviations

Tags can be defined as imports or exports inline:

‘(’ ‘tag’ id? ‘(’ ‘import’ name1 name2 ‘)’ typeuse ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘tag’ id? typeuse ‘)’ ‘)’

‘(’ ‘tag’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘tag’ id′ ‘)’ ‘)’ ‘(’ ‘tag’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Note: The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently,
a memory declaration can contain any number of exports, possibly followed by an import.

6.6.9 Exports

The syntax for exports mirrors their abstract syntax directly.

export𝐼 ::= ‘(’ ‘export’ nm:name 𝑑:exportdesc𝐼 ‘)’ ⇒ {name nm, desc 𝑑}
exportdesc𝐼 ::= ‘(’ ‘func’ 𝑥:funcidx𝐼 ‘)’ ⇒ func 𝑥

| ‘(’ ‘table’ 𝑥:tableidx𝐼 ‘)’ ⇒ table 𝑥
| ‘(’ ‘memory’ 𝑥:memidx𝐼 ‘)’ ⇒ mem 𝑥
| ‘(’ ‘global’ 𝑥:globalidx𝐼 ‘)’ ⇒ global 𝑥
| ‘(’ ‘tag’ 𝑥:tagidx𝐼 ‘)’ ⇒ tag 𝑥

Abbreviations

As an abbreviation, exports may also be specified inline with function, table, memory, global, or tag definitions;
see the respective sections.

6.6.10 Start Function

A start function is defined in terms of its index.

start𝐼 ::= ‘(’ ‘start’ 𝑥:funcidx𝐼 ‘)’ ⇒ {func 𝑥}

Note: At most one start function may occur in a module, which is ensured by a suitable side condition on the
module grammar.

240 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

6.6.11 Element Segments

Element segments allow for an optional table index to identify the table to initialize.

elem𝐼 ::= ‘(’ ‘elem’ id? (𝑒𝑡, 𝑦*):elemlist𝐼 ‘)’
⇒ {type 𝑒𝑡, init 𝑦*,mode passive}

| ‘(’ ‘elem’ id? 𝑥:tableuse𝐼 ‘(’ ‘offset’ 𝑒:expr𝐼 ‘)’ (𝑒𝑡, 𝑦*):elemlist𝐼 ‘)’
⇒ {type 𝑒𝑡, init 𝑦*,mode active {table 𝑥, offset 𝑒}}

‘(’ ‘elem’ id? ‘declare’ (𝑒𝑡, 𝑦*):elemlist𝐼 ‘)’
⇒ {type 𝑒𝑡, init 𝑦*,mode declarative}

elemlist𝐼 ::= 𝑡:reftype𝐼 𝑦*:vec(elemexpr𝐼) ⇒ (type 𝑡, init 𝑦*)
elemexpr𝐼 ::= ‘(’ ‘item’ 𝑒:expr𝐼 ‘)’ ⇒ 𝑒
tableuse𝐼 ::= ‘(’ ‘table’ 𝑥:tableidx𝐼 ‘)’ ⇒ 𝑥

Abbreviations

As an abbreviation, a single instruction may occur in place of the offset of an active element segment or as an
element expression:

‘(’ instr ‘)’ ≡ ‘(’ ‘offset’ instr ‘)’
‘(’ instr ‘)’ ≡ ‘(’ ‘item’ instr ‘)’

Also, the element list may be written as just a sequence of function indices:

‘func’ vec(funcidx𝐼) ≡ ‘(ref’ ‘func)’ vec(‘(’ ‘ref.func’ funcidx𝐼 ‘)’)

A table use can be omitted, defaulting to 0. Furthermore, for backwards compatibility with earlier versions of
WebAssembly, if the table use is omitted, the ‘func’ keyword can be omitted as well.

𝜖 ≡ ‘(’ ‘table’ ‘0’ ‘)’
‘(’ ‘elem’ id? ‘(’ ‘offset’ expr𝐼 ‘)’ vec(funcidx𝐼) ‘)’ ≡ ‘(’ ‘elem’ id? ‘(’ ‘table’ ‘0’ ‘)’ ‘(’ ‘offset’ expr𝐼 ‘)’ ‘func’ vec(funcidx𝐼) ‘)’

As another abbreviation, element segments may also be specified inline with table definitions; see the respective
section.

6.6.12 Data Segments

Data segments allow for an optional memory index to identify the memory to initialize. The data is written as a
string, which may be split up into a possibly empty sequence of individual string literals.

data𝐼 ::= ‘(’ ‘data’ id? 𝑏*:datastring ‘)’
⇒ {init 𝑏*,mode passive}

| ‘(’ ‘data’ id? 𝑥:memuse𝐼 ‘(’ ‘offset’ 𝑒:expr𝐼 ‘)’ 𝑏*:datastring ‘)’
⇒ {init 𝑏*,mode active {memory 𝑥′, offset 𝑒}}

datastring ::= (𝑏*:string)* ⇒ concat((𝑏*)*)
memuse𝐼 ::= ‘(’ ‘memory’ 𝑥:memidx𝐼 ‘)’ ⇒ 𝑥

Note: In the current version of WebAssembly, the only valid memory index is 0 or a symbolic memory identifier
resolving to the same value.

6.6. Modules 241

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Abbreviations

As an abbreviation, a single instruction may occur in place of the offset of an active data segment:

‘(’ instr ‘)’ ≡ ‘(’ ‘offset’ instr ‘)’

Also, a memory use can be omitted, defaulting to 0.

𝜖 ≡ ‘(’ ‘memory’ ‘0’ ‘)’

As another abbreviation, data segments may also be specified inline with memory definitions; see the respective
section.

6.6.13 Modules

A module consists of a sequence of fields that can occur in any order. All definitions and their respective bound
identifiers scope over the entire module, including the text preceding them.

A module may optionally bind an identifier that names the module. The name serves a documentary role only.

Note: Tools may include the module name in the name section of the binary format.

module ::= ‘(’ ‘module’ id? (𝑚:modulefield𝐼)
* ‘)’ ⇒

⨁︀
𝑚*

(if 𝐼 =
⨁︀

idc(modulefield)* well-formed)
modulefield𝐼 ::= ty*:rectype𝐼 ⇒ {types ty*}

| im:import𝐼 ⇒ {imports im}
| fn:func𝐼 ⇒ {funcs fn}
| ta:table𝐼 ⇒ {tables ta}
| me:mem𝐼 ⇒ {mems me}
| gl :global𝐼 ⇒ {globals gl}
| tg :tag𝐼 ⇒ {tags tg}
| el :elem𝐼 ⇒ {elems el}
| da:data𝐼 ⇒ {datas da}
| st :start𝐼 ⇒ {start st}
| ex :export𝐼 ⇒ {exports ex}

The following restrictions are imposed on the composition of modules: 𝑚1 ⊕𝑚2 is defined if and only if

• 𝑚1.start = 𝜖 ∨𝑚2.start = 𝜖

• 𝑚1.funcs = 𝑚1.tables = 𝑚1.mems = 𝑚1.globals = 𝑚1.tags = 𝜖 ∨𝑚2.imports = 𝜖

Note: The first condition ensures that there is at most one start function. The second condition enforces that all
imports must occur before any regular definition of a function, table, memory, global, or tag, thereby maintaining
the ordering of the respective index spaces.

The well-formedness condition on 𝐼 in the grammar for module ensures that no namespace contains duplicate
identifiers.

The definition of the initial identifier context 𝐼 uses the following auxiliary definition which maps each relevant

242 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

definition to a singular context with one (possibly empty) identifier:

idc(‘(’ ‘rec’ typedef* ‘)’) =
⨁︀

idc(typedef)*

idc(‘(’ ‘type’ id? subtype ‘)’) = {types (id?), fields idf(subtype), typedefs st}
idc(‘(’ ‘func’ id? . . . ‘)’) = {funcs (id?)}
idc(‘(’ ‘table’ id? . . . ‘)’) = {tables (id?)}
idc(‘(’ ‘memory’ id? . . . ‘)’) = {mems (id?)}
idc(‘(’ ‘global’ id? . . . ‘)’) = {globals (id?)}
idc(‘(’ ‘tag’ id? . . . ‘)’) = {tags (id?)}
idc(‘(’ ‘elem’ id? . . . ‘)’) = {elem (id?)}
idc(‘(’ ‘data’ id? . . . ‘)’) = {data (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘func’ id? . . . ‘)’ ‘)’) = {funcs (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘table’ id? . . . ‘)’ ‘)’) = {tables (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘memory’ id? . . . ‘)’ ‘)’) = {mems (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘global’ id? . . . ‘)’ ‘)’) = {globals (id?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘tag’ id? . . . ‘)’ ‘)’) = {tags (id?)}
idc(‘(’ . . . ‘)’) = {}

idf(‘(’ ‘sub’ . . . comptype ‘)’) = idf(comptype)
idf(‘(’ ‘struct’ Tfield* ‘)’) =

⨁︀
idf(field)*

idf(‘(’ ‘array’ . . . ‘)’) = 𝜖
idf(‘(’ ‘func’ . . . ‘)’) = 𝜖
idf(‘(’ ‘field’ id? . . . ‘)’) = id?

Abbreviations

In a source file, the toplevel (module . . .) surrounding the module body may be omitted.

modulefield* ≡ ‘(’ ‘module’ modulefield* ‘)’

6.6. Modules 243

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

244 Chapter 6. Text Format

CHAPTER 7

Appendix

7.1 Embedding

A WebAssembly implementation will typically be embedded into a host environment. An embedder implements
the connection between such a host environment and the WebAssembly semantics as defined in the main body of
this specification. An embedder is expected to interact with the semantics in well-defined ways.

This section defines a suitable interface to the WebAssembly semantics in the form of entry points through which
an embedder can access it. The interface is intended to be complete, in the sense that an embedder does not need
to reference other functional parts of the WebAssembly specification directly.

Note: On the other hand, an embedder does not need to provide the host environment with access to all function-
ality defined in this interface. For example, an implementation may not support parsing of the text format.

7.1.1 Types

In the description of the embedder interface, syntactic classes from the abstract syntax and the runtime’s abstract
machine are used as names for variables that range over the possible objects from that class. Hence, these syntactic
classes can also be interpreted as types.

For numeric parameters, notation like 𝑛 : u32 is used to specify a symbolic name in addition to the respective
value range.

7.1.2 Booleans

Interface operation that are predicates return Boolean values:

bool ::= false | true

245

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.1.3 Errors

Failure of an interface operation is indicated by an auxiliary syntactic class:

error ::= error

In addition to the error conditions specified explicitly in this section, such as invalid arguments or exceptions and
traps resulting from execution, implementations may also return errors when specific implementation limitations
are reached.

Note: Errors are abstract and unspecific with this definition. Implementations can refine it to carry suitable
classifications and diagnostic messages.

7.1.4 Pre- and Post-Conditions

Some operations state pre-conditions about their arguments or post-conditions about their results. It is the embed-
der’s responsibility to meet the pre-conditions. If it does, the post conditions are guaranteed by the semantics.

In addition to pre- and post-conditions explicitly stated with each operation, the specification adopts the following
conventions for runtime objects (store , moduleinst , externval , addresses):

• Every runtime object passed as a parameter must be valid per an implicit pre-condition.

• Every runtime object returned as a result is valid per an implicit post-condition.

Note: As long as an embedder treats runtime objects as abstract and only creates and manipulates them through
the interface defined here, all implicit pre-conditions are automatically met.

7.1.5 Store

store_init() : store

1. Return the empty store.

store_init() = {}

7.1.6 Modules

module_decode(byte*) : module | error

1. If there exists a derivation for the byte sequence byte* as a module according to the binary grammar for
modules, yielding a module 𝑚, then return 𝑚.

2. Else, return error.

module_decode(𝑏*) = 𝑚 (if module *
=⇒ 𝑚:𝑏*)

module_decode(𝑏*) = error (otherwise)

246 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

module_parse(char*) : module | error

1. If there exists a derivation for the source char* as a module according to the text grammar for modules,
yielding a module 𝑚, then return 𝑚.

2. Else, return error.

module_parse(𝑐*) = 𝑚 (if module *
=⇒ 𝑚:𝑐*)

module_parse(𝑐*) = error (otherwise)

module_validate(module) : error?

1. If module is valid, then return nothing.

2. Else, return error.

module_validate(𝑚) = 𝜖 (if ⊢ 𝑚 : externtype* → externtype ′
*
)

module_validate(𝑚) = error (otherwise)

module_instantiate(store,module, externval*) : (store,moduleinst | error)

1. Try instantiating module in store with external values externval* as imports:

a. If it succeeds with a module instance moduleinst , then let result be moduleinst .

b. Else, let result be error.

2. Return the new store paired with result .

module_instantiate(𝑆,𝑚, ev*) = (𝑆′, 𝐹.module) (if instantiate(𝑆,𝑚, ev*) →˓ *𝑆′;𝐹 ; 𝜖)
module_instantiate(𝑆,𝑚, ev*) = (𝑆′, error) (otherwise, if instantiate(𝑆,𝑚, ev*) →˓ *𝑆′;𝐹 ; result)

Note: The store may be modified even in case of an error.

module_imports(module) : (name,name, externtype)*

1. Pre-condition: module is valid with the external import types externtype* and external export types
externtype ′

*.

2. Let import* be the imports module.imports.

3. Assert: the length of import* equals the length of externtype*.

4. For each import 𝑖 in import* and corresponding externtype𝑖 in externtype*, do:

a. Let result 𝑖 be the triple (import 𝑖.module, import 𝑖.name, externtype𝑖).

5. Return the concatenation of all result 𝑖, in index order.

6. Post-condition: each externtype𝑖 is valid under the empty context.

module_imports(𝑚) = (im.module, im.name, externtype)*

(if im* = 𝑚.imports ∧ ⊢ 𝑚 : externtype* → externtype ′
*
)

7.1. Embedding 247

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

module_exports(module) : (name, externtype)*

1. Pre-condition: module is valid with the external import types externtype* and external export types
externtype ′

*.

2. Let export* be the exports module.exports.

3. Assert: the length of export* equals the length of externtype ′*.

4. For each export 𝑖 in export* and corresponding externtype ′𝑖 in externtype ′
*, do:

a. Let result 𝑖 be the pair (export 𝑖.name, externtype ′𝑖).

5. Return the concatenation of all result 𝑖, in index order.

6. Post-condition: each externtype ′𝑖 is valid under the empty context.

module_exports(𝑚) = (ex .name, externtype ′)*

(if ex* = 𝑚.exports ∧ ⊢ 𝑚 : externtype* → externtype ′
*
)

7.1.7 Module Instances

instance_export(moduleinst ,name) : externval | error

1. Assert: due to validity of the module instance moduleinst , all its export names are different.

2. If there exists an exportinst 𝑖 in moduleinst .exports such that name exportinst 𝑖.name equals name , then:

a. Return the external value exportinst 𝑖.value.

3. Else, return error.

instance_export(𝑚,name) = 𝑚.exports[𝑖].value (if 𝑚.exports[𝑖].name = name)
instance_export(𝑚,name) = error (otherwise)

7.1.8 Functions

func_alloc(store, functype, hostfunc) : (store, funcaddr)

1. Pre-condition: the functype is valid under the empty context.

2. Let funcaddr be the result of allocating a host function in store with function type functype and host function
code hostfunc.

3. Return the new store paired with funcaddr .

func_alloc(𝑆, ta, code) = (𝑆′, a) (if allochostfunc(𝑆, ta, code) = 𝑆′, a)

Note: This operation assumes that hostfunc satisfies the pre- and post-conditions required for a function instance
with type functype.

Regular (non-host) function instances can only be created indirectly through module instantiation.

248 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

func_type(store, funcaddr) : functype

1. Let functype be the function type 𝑆.funcs[𝑎].type.

2. Return functype.

3. Post-condition: the returned function type is valid.

func_type(𝑆, 𝑎) = 𝑆.funcs[𝑎].type

func_invoke(store, funcaddr , val*) : (store, val* | error)

1. Try invoking the function funcaddr in store with values val* as arguments:

a. If it succeeds with values val ′* as results, then let result be val ′*.

b. Else it has trapped, hence let result be error.

2. Return the new store paired with result .

func_invoke(𝑆, 𝑎, 𝑣*) = (𝑆′, 𝑣′
*
) (if invoke(𝑆, 𝑎, 𝑣*) →˓ *𝑆′;𝐹 ; 𝑣′

*
)

func_invoke(𝑆, 𝑎, 𝑣*) = (𝑆′, error) (if invoke(𝑆, 𝑎, 𝑣*) →˓ *𝑆′;𝐹 ; result)

Note: The store may be modified even in case of an error.

7.1.9 Tables

table_alloc(store, tabletype, ref) : (store, tableaddr)

1. Pre-condition: the tabletype is valid under the empty context.

2. Let tableaddr be the result of allocating a table in store with table type tabletype and initialization value
ref .

3. Return the new store paired with tableaddr .

table_alloc(𝑆, tt , 𝑟) = (𝑆′, a) (if alloctable(𝑆, tt , 𝑟) = 𝑆′, a)

table_type(store, tableaddr) : tabletype

1. Return 𝑆.tables[𝑎].type.

2. Post-condition: the returned table type is valid under the empty context.

table_type(𝑆, 𝑎) = 𝑆.tables[𝑎].type

7.1. Embedding 249

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

table_read(store, tableaddr , 𝑖 : u32) : ref | error

1. Let ti be the table instance store.tables[tableaddr].

2. If 𝑖 is larger than or equal to the length of ti .elem, then return error.

3. Else, return the reference value ti .elem[𝑖].

table_read(𝑆, 𝑎, 𝑖) = 𝑟 (if 𝑆.tables[𝑎].elem[𝑖] = 𝑟)
table_read(𝑆, 𝑎, 𝑖) = error (otherwise)

table_write(store, tableaddr , 𝑖 : u32 , ref) : store | error

1. Let ti be the table instance store.tables[tableaddr].

2. If 𝑖 is larger than or equal to the length of ti .elem, then return error.

3. Replace ti .elem[𝑖] with the reference value ref .

4. Return the updated store.

table_write(𝑆, 𝑎, 𝑖, 𝑟) = 𝑆′ (if 𝑆′ = 𝑆 with tables[𝑎].elem[𝑖] = 𝑟)
table_write(𝑆, 𝑎, 𝑖, 𝑟) = error (otherwise)

table_size(store, tableaddr) : u32

1. Return the length of store.tables[tableaddr].elem.

table_size(𝑆, 𝑎) = 𝑛 (if |𝑆.tables[𝑎].elem| = 𝑛)

table_grow(store, tableaddr , 𝑛 : u32 , ref) : store | error

1. Try growing the table instance store.tables[tableaddr] by 𝑛 elements with initialization value ref :

a. If it succeeds, return the updated store.

b. Else, return error.

table_grow(𝑆, 𝑎, 𝑛, 𝑟) = 𝑆′ (if 𝑆′ = 𝑆 with tables[𝑎] = growtable(𝑆.tables[𝑎], 𝑛, 𝑟))
table_grow(𝑆, 𝑎, 𝑛, 𝑟) = error (otherwise)

7.1.10 Memories

mem_alloc(store,memtype) : (store,memaddr)

1. Pre-condition: the memtype is valid under the empty context.

2. Let memaddr be the result of allocating a memory in store with memory type memtype.

3. Return the new store paired with memaddr .

mem_alloc(𝑆,mt) = (𝑆′, a) (if allocmem(𝑆,mt) = 𝑆′, a)

250 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

mem_type(store,memaddr) : memtype

1. Return 𝑆.mems[𝑎].type.

2. Post-condition: the returned memory type is valid under the empty context.

mem_type(𝑆, 𝑎) = 𝑆.mems[𝑎].type

mem_read(store,memaddr , 𝑖 : u32) : byte | error

1. Let mi be the memory instance store.mems[memaddr].

2. If 𝑖 is larger than or equal to the length of mi .data, then return error.

3. Else, return the byte mi .data[𝑖].

mem_read(𝑆, 𝑎, 𝑖) = 𝑏 (if 𝑆.mems[𝑎].data[𝑖] = 𝑏)
mem_read(𝑆, 𝑎, 𝑖) = error (otherwise)

mem_write(store,memaddr , 𝑖 : u32 , byte) : store | error

1. Let mi be the memory instance store.mems[memaddr].

2. If u32 is larger than or equal to the length of mi .data, then return error.

3. Replace mi .data[𝑖] with byte .

4. Return the updated store.

mem_write(𝑆, 𝑎, 𝑖, 𝑏) = 𝑆′ (if 𝑆′ = 𝑆 with mems[𝑎].data[𝑖] = 𝑏)
mem_write(𝑆, 𝑎, 𝑖, 𝑏) = error (otherwise)

mem_size(store,memaddr) : u32

1. Return the length of store.mems[memaddr].data divided by the page size.

mem_size(𝑆, 𝑎) = 𝑛 (if |𝑆.mems[𝑎].data| = 𝑛 · 64Ki)

mem_grow(store,memaddr , 𝑛 : u32) : store | error

1. Try growing the memory instance store.mems[memaddr] by 𝑛 pages:

a. If it succeeds, return the updated store.

b. Else, return error.

mem_grow(𝑆, 𝑎, 𝑛) = 𝑆′ (if 𝑆′ = 𝑆 with mems[𝑎] = growmem(𝑆.mems[𝑎], 𝑛))
mem_grow(𝑆, 𝑎, 𝑛) = error (otherwise)

7.1. Embedding 251

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.1.11 Tags

tag_alloc(store, tagtype) : (store, tagaddr)

1. Pre-condition: 𝑡𝑎𝑔𝑡𝑦𝑝𝑒 is valid.

2. Let tagaddr be the result of allocating a tag in store with tag type tagtype .

3. Return the new store paired with tagaddr .

tag_alloc(𝑆, tt) = (𝑆′, a) (if alloctag(𝑆, tt) = 𝑆′, a)

7.1.12 Globals

global_alloc(store, globaltype, val) : (store, globaladdr)

1. Pre-condition: the globaltype is valid under the empty context.

2. Let globaladdr be the result of allocating a global in store with global type globaltype and initialization
value val .

3. Return the new store paired with globaladdr .

global_alloc(𝑆, gt , 𝑣) = (𝑆′, a) (if allocglobal(𝑆, gt , 𝑣) = 𝑆′, a)

global_type(store, globaladdr) : globaltype

1. Return 𝑆.globals[𝑎].type.

2. Post-condition: the returned global type is valid under the empty context.

global_type(𝑆, 𝑎) = 𝑆.globals[𝑎].type

global_read(store, globaladdr) : val

1. Let gi be the global instance store.globals[globaladdr].

2. Return the value gi .value.

global_read(𝑆, 𝑎) = 𝑣 (if 𝑆.globals[𝑎].value = 𝑣)

global_write(store, globaladdr , val) : store | error

1. Let gi be the global instance store.globals[globaladdr].

2. Let mut 𝑡 be the structure of the global type gi .type.

3. If mut is not var, then return error.

4. Replace gi .value with the value val .

5. Return the updated store.

global_write(𝑆, 𝑎, 𝑣) = 𝑆′ (if 𝑆.globals[𝑎].type = var 𝑡 ∧ 𝑆′ = 𝑆 with globals[𝑎].value = 𝑣)
global_write(𝑆, 𝑎, 𝑣) = error (otherwise)

252 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.1.13 References

ref_type(store, ref) : reftype

1. Pre-condition: the reference ref is valid under store 𝑆.

2. Return the reference type 𝑡 with which ref is valid.

3. Post-condition: the returned reference type is valid under the empty context.

ref_type(𝑆, 𝑟) = 𝑡 (if 𝑆 ⊢ 𝑟 : 𝑡)

Note: In future versions of WebAssembly, not all references may carry precise type information at run time. In
such cases, this function may return a less precise supertype.

7.1.14 Matching

match_valtype(valtype1, valtype2) : bool

1. Pre-condition: the value types valtype1 and valtype2 are valid under the empty context.

2. If valtype1 matches valtype2, then return true .

3. Else, return false .

match_reftype(𝑡1, 𝑡2) = true (if⊢ 𝑡1 ≤ 𝑡2)
match_reftype(𝑡1, 𝑡2) = false (otherwise)

match_externtype(externtype1, externtype2) : bool

1. Pre-condition: the extern types externtype1 and externtype2 are valid under the empty context.

2. If externtype1 matches externtype2, then return true .

3. Else, return false .

match_externtype(et1, et2) = true (if⊢ et1 ≤ et2)
match_externtype(et1, et2) = false (otherwise)

7.2 Implementation Limitations

Implementations typically impose additional restrictions on a number of aspects of a WebAssembly module or
execution. These may stem from:

• physical resource limits,

• constraints imposed by the embedder or its environment,

• limitations of selected implementation strategies.

This section lists allowed limitations. Where restrictions take the form of numeric limits, no minimum requirements
are given, nor are the limits assumed to be concrete, fixed numbers. However, it is expected that all implementations
have “reasonably” large limits to enable common applications.

Note: A conforming implementation is not allowed to leave out individual features. However, designated subsets
of WebAssembly may be specified in the future.

7.2. Implementation Limitations 253

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.2.1 Syntactic Limits

Structure

An implementation may impose restrictions on the following dimensions of a module:

• the number of types in a module

• the number of functions in a module, including imports

• the number of tables in a module, including imports

• the number of memories in a module, including imports

• the number of globals in a module, including imports

• the number of tags in a module, including imports

• the number of element segments in a module

• the number of data segments in a module

• the number of imports to a module

• the number of exports from a module

• the number of sub types in a recursive type

• the subtyping depth of a sub type

• the number of fields in a structure type

• the number of parameters in a function type

• the number of results in a function type

• the number of parameters in a block type

• the number of results in a block type

• the number of locals in a function

• the number of instructions in a function body

• the number of instructions in a structured control instruction

• the number of structured control instructions in a function

• the nesting depth of structured control instructions

• the number of label indices in a br_table instruction

• the number of instructions in a constant expression

• the length of the array in a array.new_fixed instruction

• the length of an element segment

• the length of a data segment

• the length of a name

• the range of characters in a name

If the limits of an implementation are exceeded for a given module, then the implementation may reject the vali-
dation, compilation, or instantiation of that module with an embedder-specific error.

Note: The last item allows embedders that operate in limited environments without support for Unicode48 to limit
the names of imports and exports to common subsets like ASCII49.

48 https://www.unicode.org/versions/latest/
49 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

254 Chapter 7. Appendix

https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Binary Format

For a module given in binary format, additional limitations may be imposed on the following dimensions:

• the size of a module

• the size of any section

• the size of an individual function’s code

• the size of a structured control instruction

• the size of an individual constant expression’s instruction sequence

• the number of sections

Text Format

For a module given in text format, additional limitations may be imposed on the following dimensions:

• the size of the source text

• the size of any syntactic element

• the size of an individual token

• the nesting depth of folded instructions

• the length of symbolic identifiers

• the range of literal characters allowed in the source text

7.2.2 Validation

An implementation may defer validation of individual functions until they are first invoked.

If a function turns out to be invalid, then the invocation, and every consecutive call to the same function, results in
a trap.

Note: This is to allow implementations to use interpretation or just-in-time compilation for functions. The function
must still be fully validated before execution of its body begins.

7.2.3 Execution

Restrictions on the following dimensions may be imposed during execution of a WebAssembly program:

• the number of allocated module instances

• the number of allocated function instances

• the number of allocated table instances

• the number of allocated memory instances

• the number of allocated global instances

• the number of allocated tag instances

• the number of allocated structure instances

• the number of allocated array instances

• the number of allocated exception instances

• the size of a table instance

7.2. Implementation Limitations 255

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

• the size of a memory instance

• the size of an array instance

• the number of frames on the stack

• the number of labels on the stack

• the number of values on the stack

If the runtime limits of an implementation are exceeded during execution of a computation, then it may terminate
that computation and report an embedder-specific error to the invoking code.

Some of the above limits may already be verified during instantiation, in which case an implementation may report
exceedance in the same manner as for syntactic limits.

Note: Concrete limits are usually not fixed but may be dependent on specifics, interdependent, vary over time, or
depend on other implementation- or embedder-specific situations or events.

7.3 Type Soundness

The type system of WebAssembly is sound, implying both type safety and memory safety with respect to the We-
bAssembly semantics. For example:

• All types declared and derived during validation are respected at run time; e.g., every local or global variable
will only contain type-correct values, every instruction will only be applied to operands of the expected type,
and every function invocation always evaluates to a result of the right type (if it does not diverge, throw an
exception, or trap).

• No memory location will be read or written except those explicitly defined by the program, i.e., as a local, a
global, an element in a table, or a location within a linear memory.

• There is no undefined behavior, i.e., the execution rules cover all possible cases that can occur in a valid
program, and the rules are mutually consistent.

Soundness also is instrumental in ensuring additional properties, most notably, encapsulation of function and
module scopes: no locals can be accessed outside their own function and no module components can be accessed
outside their own module unless they are explicitly exported or imported.

The typing rules defining WebAssembly validation only cover the static components of a WebAssembly program.
In order to state and prove soundness precisely, the typing rules must be extended to the dynamic components of
the abstract runtime, that is, the store, configurations, and administrative instructions.50

7.3.1 Contexts

In order to check rolled up recursive types, the context is locally extended with an additional component that records
the sub type corresponding to each recursive type index within the current recursive type:

𝐶 ::= { . . . , recs subtype* }

50 The formalization and theorems are derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan
Gohman, Luke Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssemblyPage 256, 51. Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

51 https://dl.acm.org/citation.cfm?doid=3062341.3062363

256 Chapter 7. Appendix

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.3.2 Types

Well-formedness for extended type forms is defined as follows.

Heap Type bot

• The heap type is valid.

𝐶 ⊢ bot ok

Heap Type rec 𝑖

• The recursive type index 𝑖 must exist in 𝐶.recs.

• Then the heap type is valid.
𝐶.recs[𝑖] = subtype

𝐶 ⊢ rec 𝑖 ok

Value Type bot

• The value type is valid.

𝐶 ⊢ bot ok

Recursive Types rec subtype*

• Let 𝐶 ′ be the current context 𝐶, but where recs is subtype*.

• There must be a type index 𝑥, such that for each sub type subtype𝑖 in subtype*:

– Under the context 𝐶 ′, the sub type subtype𝑖 must be valid for type index 𝑥+ 𝑖 and recursive type index
𝑖.

• Then the recursive type is valid for the type index 𝑥.
𝐶, recs subtype* ⊢ rec subtype* ok(𝑥, 0)

𝐶 ⊢ rec subtype* ok(𝑥)

𝐶 ⊢ rec 𝜖 ok(𝑥, 𝑖)
𝐶 ⊢ subtype ok(𝑥, 𝑖) 𝐶 ⊢ rec subtype ′

* ok(𝑥+ 1, 𝑖+ 1)

𝐶 ⊢ rec subtype subtype ′* ok(𝑥, 𝑖)

Note: These rules are a generalisation of the ones previously given.

Sub types sub final? ht* comptype

• The composite type comptype must be valid.

• The sequence ht* may be no longer than 1.

• For every heap type ht𝑘 in ht*:

– The heap type ht𝑘 must be ordered before a type index 𝑥 and recursive type index a 𝑖, meaning:

∗ Either ht𝑘 is a defined type.

∗ Or ht𝑘 is a type index 𝑦𝑘 that is smaller than 𝑥.

∗ Or ht𝑘 is a recursive type index rec 𝑗𝑘 where 𝑗𝑘 is smaller than 𝑖.

7.3. Type Soundness 257

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

– Let sub type subtype𝑘 be the unrolling of the heap type ht𝑘, meaning:

∗ Either ht𝑘 is a defined type deftype𝑘, then subtype𝑘 must be the unrolling of deftype𝑘.

∗ Or ht𝑘 is a type index 𝑦𝑘, then subtype𝑘 must be the unrolling of the defined type 𝐶.types[𝑦𝑘].

∗ Or ht𝑘 is a recursive type index rec 𝑗𝑘, then subtype𝑘 must be 𝐶.recs[𝑗𝑘].

– The sub type subtype𝑘 must not contain final.

– Let comptype ′𝑘 be the composite type in subtype𝑘.

– The composite type comptype must match comptype ′𝑘.

• Then the sub type is valid for the type index 𝑥 and recursive type index 𝑖.

|ht*| ≤ 1 (ht ≺ 𝑥, 𝑖)* (unroll𝐶(ht) = sub ht ′
*
comptype ′)*

𝐶 ⊢ comptype ok (𝐶 ⊢ comptype ≤ comptype ′)*

𝐶 ⊢ sub final? ht* comptype ok(𝑥, 𝑖)
where:

(deftype ≺ 𝑥, 𝑖) = true
(𝑦 ≺ 𝑥, 𝑖) = 𝑦 < 𝑥
(rec 𝑗 ≺ 𝑥, 𝑖) = 𝑗 < 𝑖

unroll𝐶(deftype) = unroll(deftype)
unroll𝐶(𝑦) = unroll(𝐶.types[𝑦])
unroll𝐶(rec 𝑗) = 𝐶.recs[𝑗]

Note: This rule is a generalisation of the ones previously given, which only allowed type indices as supertypes.

7.3.3 Subtyping

In a rolled-up recursive type, a recursive type indices rec 𝑖 matches another heap type ht if:

• Let sub final? ht ′
*
comptype be the sub type 𝐶.recs[𝑖].

• The heap type ht is contained in ht ′
*.

𝐶.recs[𝑖] = sub final? (ht*1 ht ht
*
2) comptype

𝐶 ⊢ rec 𝑖 ≤ ht

Note: This rule is only invoked when checking validity of rolled-up recursive types.

7.3.4 Results

Results can be classified by result types as follows.

Results val*

• For each value val 𝑖 in val*:

– The value val 𝑖 is valid with some value type 𝑡𝑖.

• Let 𝑡* be the concatenation of all 𝑡𝑖.

• Then the result is valid with result type [𝑡*].

(𝑆 ⊢ val : 𝑡)*

𝑆 ⊢ val* : [𝑡*]

258 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Results 𝑇 [(ref.exn 𝑎) throw_ref]

• The value ref.exn 𝑎 must be valid.

• Then the result is valid with result type [𝑡*], for any sequence 𝑡′* of value types.

Results trap

• The result is valid with result type [𝑡*], for any valid closed result types.

⊢ [𝑡*] ok
𝑆 ⊢ trap : [𝑡*]

𝑆 ⊢ tag tagaddr : tag [𝑡*] → [] (𝑆 ⊢ val : 𝑡)*

𝑆 ⊢ 𝑇 [(ref.exn 𝑎) throw_ref] : [𝑡′*]

7.3.5 Store Validity

The following typing rules specify when a runtime store 𝑆 is valid. A valid store must consist of function, table,
memory, global, tag, element, data, structure, array, exception, and module instances that are themselves valid,
relative to 𝑆.

To that end, each kind of instance is classified by a respective function, table, memory, global, tag, element, or data
type, or just ok in the case of structures, arrays, or exceptions. Module instances are classified by module contexts,
which are regular contexts repurposed as module types describing the index spaces defined by a module.

Store 𝑆

• Each function instance funcinst 𝑖 in 𝑆.funcs must be valid with some function type functype𝑖.

• Each table instance tableinst 𝑖 in 𝑆.tables must be valid with some table type tabletype𝑖.

• Each memory instance meminst 𝑖 in 𝑆.mems must be valid with some memory type memtype𝑖.

• Each global instance globalinst 𝑖 in 𝑆.globals must be valid with some global type globaltype𝑖.

• Each tag instance taginst 𝑖 in 𝑆.tags must be valid with some tag type tagtype𝑖.

• Each element instance eleminst 𝑖 in 𝑆.elems must be valid with some reference type reftype𝑖.

• Each data instance datainst 𝑖 in 𝑆.datas must be valid.

• Each structure instance structinst 𝑖 in 𝑆.structs must be valid.

• Each array instance arrayinst 𝑖 in 𝑆.arrays must be valid.

• Each exception instance exninst 𝑖 in 𝑆.exns must be valid.

• No reference to a bound structure address must be reachable from itself through a path consisting only of
indirections through immutable structure, or array fields or fields of exception instances.

• No reference to a bound array address must be reachable from itself through a path consisting only of indi-
rections through immutable structure or array fields or fields of exception instances.

• No reference to a bound exception address must be reachable from itself through a path consisting only of
indirections through immutable structure or array fields or fields of exception instances.

• Then the store is valid.

7.3. Type Soundness 259

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

(𝑆 ⊢ funcinst : deftype)* (𝑆 ⊢ tableinst : tabletype)*

(𝑆 ⊢ meminst : memtype)* (𝑆 ⊢ globalinst : globaltype)*

(𝑆 ⊢ taginst : tagtype)*

(𝑆 ⊢ eleminst : reftype)* (𝑆 ⊢ datainst ok)*
(𝑆 ⊢ structinst ok)* (𝑆 ⊢ arrayinst ok)* (𝑆 ⊢ exninst ok)*

𝑆 = {funcs funcinst*, globals globalinst*, tables tableinst*,mems meminst*, tags taginst*,
elems eleminst*, datas datainst*, structs structinst*, arrays arrayinst*, exns exninst*}

(𝑆.structs[𝑎s] = structinst)* ((ref.struct 𝑎s) ̸≫+
𝑆 (ref.struct 𝑎s))

*

(𝑆.arrays[𝑎a] = arrayinst)* ((ref.array 𝑎a) ̸≫+
𝑆 (ref.array 𝑎a))

*

(𝑆.exns[𝑎e] = exninst)* ((ref.exn 𝑎e) ̸≫+
𝑆 (ref.exn 𝑎e))

*

⊢ 𝑆 ok
where val1 ≫+

𝑆 val2 denotes the transitive closure of the following immutable reachability relation on values:

(ref.struct 𝑎) ≫𝑆 𝑆.structs[𝑎].fields[𝑖] if expand(𝑆.structs[𝑎].type) = struct ft 𝑖1 (const st) ft
*
2

(ref.array 𝑎) ≫𝑆 𝑆.arrays[𝑎].fields[𝑖] if expand(𝑆.arrays[𝑎].type) = array (const st)
(ref.exn 𝑎) ≫𝑆 𝑆.exns[𝑎].fields[𝑖]
(ref.extern ref) ≫𝑆 ref

Note: The constraint on reachability through immutable fields prevents the presence of cyclic data structures that
can not be constructed in the language. Cycles can only be formed using mutation.

Function Instances {type functype,module moduleinst , code func}

• The function type functype must be valid under an empty context.

• The module instance moduleinst must be valid with some context 𝐶.

• Under context 𝐶:

– The function func must be valid with some function type functype ′.

– The function type functype ′ must match functype.

• Then the function instance is valid with function type functype.

⊢ functype ok 𝑆 ⊢ moduleinst : 𝐶
𝐶 ⊢ func : functype ′ 𝐶 ⊢ functype ′ ≤ functype

𝑆 ⊢ {type functype,module moduleinst , code func} : functype

Host Function Instances {type functype, hostcode hf }

• The function type functype must be valid under an empty context.

• Let [𝑡*1] → [𝑡*2] be the function type functype.

• For every valid store 𝑆1 extending 𝑆 and every sequence val* of values whose types coincide with 𝑡*1:

– Executing hf in store 𝑆1 with arguments val* has a non-empty set of possible outcomes.

– For every element 𝑅 of this set:

∗ Either 𝑅 must be ⊥ (i.e., divergence).

∗ Or 𝑅 consists of a valid store 𝑆2 extending 𝑆1 and a result result whose type coincides with [𝑡*2].

• Then the function instance is valid with function type functype.

260 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

⊢ [𝑡*1] → [𝑡*2] ok

∀𝑆1, val
, ⊢ 𝑆1 ok ∧ ⊢ 𝑆 ⪯ 𝑆1 ∧ 𝑆1 ⊢ val : [𝑡*1] =⇒

hf (𝑆1; val
*) ⊃ ∅ ∧

∀𝑅 ∈ hf (𝑆1; val
*), 𝑅 = ⊥ ∨

∃𝑆2, result , ⊢ 𝑆2 ok ∧ ⊢ 𝑆1 ⪯ 𝑆2 ∧ 𝑆2 ⊢ result : [𝑡*2] ∧𝑅 = (𝑆2; result)

𝑆 ⊢ {type [𝑡*1] → [𝑡*2], hostcode hf } : [𝑡*1] → [𝑡*2]

Note: This rule states that, if appropriate pre-conditions about store and arguments are satisfied, then executing
the host function must satisfy appropriate post-conditions about store and results. The post-conditions match the
ones in the execution rule for invoking host functions.

Any store under which the function is invoked is assumed to be an extension of the current store. That way, the
function itself is able to make sufficient assumptions about future stores.

Table Instances {type (limits 𝑡), elem ref *}

• The table type limits 𝑡 must be valid under the empty context.

• The length of ref * must equal limits.min.

• For each reference ref 𝑖 in the table’s elements ref 𝑛:

– The reference ref 𝑖 must be valid with some reference type 𝑡′𝑖.

– The reference type 𝑡′𝑖 must match the reference type 𝑡.

• Then the table instance is valid with table type limits 𝑡.
⊢ limits 𝑡 ok 𝑛 = limits.min (𝑆 ⊢ ref : 𝑡′)𝑛 (⊢ 𝑡′ ≤ 𝑡)𝑛

𝑆 ⊢ {type (limits 𝑡), elem ref 𝑛} : limits 𝑡

Memory Instances {type limits, data 𝑏*}

• The memory type limits must be valid under the empty context.

• The length of 𝑏* must equal limits.min multiplied by the page size 64Ki.

• Then the memory instance is valid with memory type limits .
⊢ limits ok 𝑛 = limits.min · 64Ki

𝑆 ⊢ {type limits, data 𝑏𝑛} : limits

Global Instances {type (mut 𝑡), value val}

• The global type mut 𝑡 must be valid under the empty context.

• The value val must be valid with some value type 𝑡′.

• The value type 𝑡′ must match the value type 𝑡.

• Then the global instance is valid with global type mut 𝑡.
⊢ mut 𝑡 ok 𝑆 ⊢ val : 𝑡′ ⊢ 𝑡′ ≤ 𝑡

𝑆 ⊢ {type (mut 𝑡), value val} : mut 𝑡

7.3. Type Soundness 261

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Tag Instances {type tagtype}

• The tag type tagtype must be valid under the empty context.

• Then the tag instance is valid with tag type tagtype.
⊢ tagtype ok

𝑆 ⊢ {type tagtype} : tagtype

Element Instances {type 𝑡, elem ref *}

• The reference type 𝑡 must be valid under the empty context.

• For each reference ref 𝑖 in the elements ref 𝑛:

– The reference ref 𝑖 must be valid with some reference type 𝑡′𝑖.

– The reference type 𝑡′𝑖 must match the reference type 𝑡.

• Then the element instance is valid with reference type 𝑡.
⊢ 𝑡 ok (𝑆 ⊢ ref : 𝑡′)* (⊢ 𝑡′ ≤ 𝑡)*

𝑆 ⊢ {type 𝑡, elem ref *} : 𝑡

Data Instances {data 𝑏*}

• The data instance is valid.

𝑆 ⊢ {data 𝑏*} ok

Structure Instances {type deftype, fields fieldval*}

• The defined type deftype must be valid under the empty context.

• The expansion of deftype must be a structure type struct fieldtype*.

• The length of the sequence of field values fieldval* must be the same as the length of the sequence of field
types fieldtype*.

• For each field value fieldval 𝑖 in fieldval* and corresponding field type fieldtype𝑖 in fieldtype*:

– Let fieldtype𝑖 be mut storagetype𝑖.

– The field value fieldval 𝑖 must be valid with storage type storagetype𝑖.

• Then the structure instance is valid.
⊢ dt ok expand(dt) = struct (mut st)* (𝑆 ⊢ fv : st)*

𝑆 ⊢ {type dt , fields fv*} ok

262 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Array Instances {type deftype, fields fieldval*}

• The defined type deftype must be valid under the empty context.

• The expansion of deftype must be an array type array fieldtype .

• Let fieldtype be mut storagetype.

• For each field value fieldval 𝑖 in fieldval*:

– The field value fieldval 𝑖 must be valid with storage type storagetype.

• Then the array instance is valid.
⊢ dt ok expand(dt) = array (mut st) (𝑆 ⊢ fv : st)*

𝑆 ⊢ {type dt , fields fv*} ok

Field Values fieldval

• If fieldval is a value val , then:

– The value val must be valid with value type 𝑡.

– Then the field value is valid with value type 𝑡.

• Else, fieldval is a packed value packedval :

– Let packedtype.pack 𝑖 be the field value fieldval .

– Then the field value is valid with packed type packedtype.

𝑆 ⊢ pt .pack 𝑖 : pt

Exception Instances {tag 𝑎, fields val*}

• The store entry 𝑆.tags[𝑎] must exist.

• Let [𝑡*] → [𝑡′
*
] be the tag type 𝑆.tags[𝑎].type.

• The result type [𝑡′*] must be empty.

• The sequence val𝑎𝑠𝑡 of values must have the same length as the sequence 𝑡* of value types.

• For each value val 𝑖 in val𝑎𝑠𝑡 and corresponding value type 𝑡𝑖 in 𝑡*, the value val 𝑖 must be valid with type
𝑡𝑖.

• Then the exception instance is valid.
𝑆.tags[𝑎] = {type = [𝑡*] → []} (𝑆 ⊢ val : 𝑡)*

𝑆 ⊢ {tag 𝑎, fields val*} ok

Export Instances {name name, value externval}

• The external value externval must be valid with some external type externtype.

• Then the export instance is valid.
𝑆 ⊢ externval : externtype

𝑆 ⊢ {name name, value externval} ok

7.3. Type Soundness 263

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Module Instances moduleinst

• Each defined type deftype𝑖 in moduleinst .types must be valid under the empty context.

• For each function address funcaddr 𝑖 in moduleinst .funcaddrs, the external value func funcaddr 𝑖 must be
valid with some external type func functype𝑖.

• For each table address tableaddr 𝑖 in moduleinst .tableaddrs, the external value table tableaddr 𝑖 must be
valid with some external type table tabletype𝑖.

• For each memory address memaddr 𝑖 in moduleinst .memaddrs, the external value mem memaddr 𝑖 must
be valid with some external type mem memtype𝑖.

• For each global address globaladdr 𝑖 in moduleinst .globaladdrs, the external value global globaladdr 𝑖 must
be valid with some external type global globaltype𝑖.

• For each tag address tagaddr 𝑖 in moduleinst .tagaddrs, the external value tag tagaddr 𝑖 must be valid with
some external type tag tagtype𝑖.

• For each element address elemaddr 𝑖 in moduleinst .elemaddrs, the element instance 𝑆.elems[elemaddr 𝑖]
must be valid with some reference type reftype𝑖.

• For each data address dataaddr 𝑖 in moduleinst .dataaddrs, the data instance 𝑆.datas[dataaddr 𝑖] must be
valid.

• Each export instance exportinst 𝑖 in moduleinst .exports must be valid.

• For each export instance exportinst 𝑖 in moduleinst .exports, the name exportinst 𝑖.name must be different
from any other name occurring in moduleinst .exports.

• Let deftype* be the concatenation of all deftype𝑖 in order.

• Let functype* be the concatenation of all functype𝑖 in order.

• Let tabletype* be the concatenation of all tabletype𝑖 in order.

• Let memtype* be the concatenation of all memtype𝑖 in order.

• Let globaltype* be the concatenation of all globaltype𝑖 in order.

• Let tagtype* be the concatenation of all tagtype𝑖 in order.

• Let reftype* be the concatenation of all reftype𝑖 in order.

• Let 𝑚 be the length of moduleinst .funcaddrs.

• Let 𝑛 be the length of moduleinst .dataaddrs.

• Let 𝑥* be the sequence of function indices from 0 to 𝑚− 1.

• Then the module instance is valid with context {types deftype*, funcs functype*, tables tabletype*,
mems memtype*, globals globaltype*, CTAGS~tagtype^ast, elems reftype*, datas ok𝑛, refs 𝑥*}.

264 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

(⊢ deftype ok)*
(𝑆 ⊢ func funcaddr : func functype)* (𝑆 ⊢ table tableaddr : table tabletype)*

(𝑆 ⊢ mem memaddr : mem memtype)* (𝑆 ⊢ global globaladdr : global globaltype)*

(𝑆 ⊢ tag tagaddr : tag tagtype)*

(𝑆 ⊢ 𝑆.elems[elemaddr] : reftype)* (𝑆 ⊢ 𝑆.datas[dataaddr] ok)𝑛
(𝑆 ⊢ exportinst ok)* (exportinst .name)* disjoint

𝑆 ⊢ {types deftype*,
funcaddrs funcaddr*,
tableaddrs tableaddr*,
memaddrs memaddr*,
globaladdrs globaladdr*,
tagaddrs tagaddr*,
elemaddrs elemaddr*,
dataaddrs dataaddr𝑛,
exports exportinst* } : {types deftype*,

funcs functype*,
tables tabletype*,
mems memtype*,
globals globaltype*,
tags tagtype*,
elems reftype*,
datas ok𝑛,
refs 0 . . . (|funcaddr*| − 1) }

7.3.6 Configuration Validity

To relate the WebAssembly type system to its execution semantics, the typing rules for instructions must be ex-
tended to configurations 𝑆;𝑇 , which relates the store to execution threads.

Configurations and threads are classified by their result type. In addition to the store 𝑆, threads are typed under a
return type resulttype?, which controls whether and with which type a return instruction is allowed. This type is
absent (𝜖) except for instruction sequences inside an administrative frame instruction.

Finally, frames are classified with frame contexts, which extend the module contexts of a frame’s associated module
instance with the locals that the frame contains.

Configurations 𝑆;𝑇

• The store 𝑆 must be valid.

• Under no allowed return type, the thread 𝑇 must be valid with some result type [𝑡*].

• Then the configuration is valid with the result type [𝑡*].

⊢ 𝑆 ok 𝑆; 𝜖 ⊢ 𝑇 : [𝑡*]

⊢ 𝑆;𝑇 : [𝑡*]

7.3. Type Soundness 265

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Threads 𝐹 ; instr*

• Let resulttype? be the current allowed return type.

• The frame 𝐹 must be valid with a context 𝐶.

• Let 𝐶 ′ be the same context as 𝐶, but with return set to resulttype?.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with some type [] → [𝑡*].

• Then the thread is valid with the result type [𝑡*].

𝑆 ⊢ 𝐹 : 𝐶 𝑆;𝐶, return resulttype? ⊢ instr* : [] → [𝑡*]

𝑆; resulttype? ⊢ 𝐹 ; instr* : [𝑡*]

Frames {locals val*,module moduleinst}

• The module instance moduleinst must be valid with some module context 𝐶.

• Each value val 𝑖 in val* must be valid with some value type 𝑡𝑖.

• Let 𝑡* be the concatenation of all 𝑡𝑖 in order.

• Let 𝐶 ′ be the same context as 𝐶, but with the value types 𝑡* prepended to the locals vector.

• Then the frame is valid with frame context 𝐶 ′.
𝑆 ⊢ moduleinst : 𝐶 (𝑆 ⊢ val : 𝑡)*

𝑆 ⊢ {locals val*,module moduleinst} : (𝐶, locals 𝑡*)

7.3.7 Administrative Instructions

Typing rules for administrative instructions are specified as follows. In addition to the context 𝐶, typing of these
instructions is defined under a given store 𝑆.

To that end, all previous typing judgements 𝐶 ⊢ prop are generalized to include the store, as in 𝑆;𝐶 ⊢ prop, by
implicitly adding 𝑆 to all rules – 𝑆 is never modified by the pre-existing rules, but it is accessed in the extra rules
for administrative instructions given below.

trap

• The instruction is valid with any valid instruction type of the form [𝑡*1] → [𝑡*2].

𝐶 ⊢ [𝑡*1] → [𝑡*2] ok
𝑆;𝐶 ⊢ trap : [𝑡*1] → [𝑡*2]

val

• The value val must be valid with value type 𝑡.

• Then it is valid as an instruction with type [] → [𝑡].
𝑆 ⊢ val : 𝑡

𝑆;𝐶 ⊢ val : [] → [𝑡]

266 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

invoke funcaddr

• The external function value func funcaddr must be valid with external function type funcfunctype ′.

• Let [𝑡*1] → [𝑡*2]) be the function type functype.

• Then the instruction is valid with type [𝑡*1] → [𝑡*2].

𝑆 ⊢ func funcaddr : func [𝑡*1] → [𝑡*2]

𝑆;𝐶 ⊢ invoke funcaddr : [𝑡*1] → [𝑡*2]

label𝑛{instr*0} instr* end

• The instruction sequence instr*0 must be valid with some type [𝑡𝑛1] →𝑥* [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡𝑛1] prepended to the labels vector.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [] →𝑥′* [𝑡*2].

• Then the compound instruction is valid with type [] → [𝑡*2].

𝑆;𝐶 ⊢ instr*0 : [𝑡𝑛1] →𝑥* [𝑡*2] 𝑆;𝐶, labels [𝑡𝑛1] ⊢ instr* : [] →𝑥′* [𝑡*2]

𝑆;𝐶 ⊢ label𝑛{instr*0} instr* end : [] → [𝑡*2]

handler𝑛{catch*} instr* end

• For every catch clause catch𝑖 in catch*, catch𝑖 must be valid.

• The instruction sequence instr* must be valid with some type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

(𝐶 ⊢ catch ok)* 𝑆;𝐶 ⊢ instr* : [𝑡*1] → [𝑡*2]

𝑆;𝐶 ⊢ handler𝑛{catch*} instr* end : [𝑡*1] → [𝑡*2]

frame𝑛{𝐹} instr* end

• Under the valid return type [𝑡𝑛], the thread 𝐹 ; instr* must be valid with result type [𝑡𝑛].

• Then the compound instruction is valid with type [] → [𝑡𝑛].

𝐶 ⊢ [𝑡𝑛] ok 𝑆; [𝑡𝑛] ⊢ 𝐹 ; instr* : [𝑡𝑛]

𝑆;𝐶 ⊢ frame𝑛{𝐹} instr* end : [] → [𝑡𝑛]

7.3.8 Store Extension

Programs can mutate the store and its contained instances. Any such modification must respect certain invariants,
such as not removing allocated instances or changing immutable definitions. While these invariants are inherent
to the execution semantics of WebAssembly instructions and modules, host functions do not automatically adhere
to them. Consequently, the required invariants must be stated as explicit constraints on the invocation of host
functions. Soundness only holds when the embedder ensures these constraints.

The necessary constraints are codified by the notion of store extension: a store state 𝑆′ extends state 𝑆, written
𝑆 ⪯ 𝑆′, when the following rules hold.

Note: Extension does not imply that the new store is valid, which is defined separately above.

7.3. Type Soundness 267

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Store 𝑆

• The length of 𝑆.funcs must not shrink.

• The length of 𝑆.tables must not shrink.

• The length of 𝑆.mems must not shrink.

• The length of 𝑆.globals must not shrink.

• The length of 𝑆.tags must not shrink.

• The length of 𝑆.elems must not shrink.

• The length of 𝑆.datas must not shrink.

• The length of 𝑆.structs must not shrink.

• The length of 𝑆.arrays must not shrink.

• The length of 𝑆.exns must not shrink.

• For each function instance funcinst 𝑖 in the original 𝑆.funcs, the new function instance must be an extension
of the old.

• For each table instance tableinst 𝑖 in the original 𝑆.tables, the new table instance must be an extension of the
old.

• For each memory instancememinst 𝑖 in the original 𝑆.mems, the new memory instance must be an extension
of the old.

• For each global instance globalinst 𝑖 in the original 𝑆.globals, the new global instance must be an extension
of the old.

• For each tag instance taginst 𝑖 in the original 𝑆.tags, the new tag instance must be an extension of the old.

• For each element instance eleminst 𝑖 in the original 𝑆.elems, the new element instance must be an extension
of the old.

• For each data instance datainst 𝑖 in the original 𝑆.datas, the new data instance must be an extension of the
old.

• For each structure instance structinst 𝑖 in the original 𝑆.structs, the new structure instance must be an ex-
tension of the old.

• For each array instance arrayinst 𝑖 in the original 𝑆.arrays, the new array instance must be an extension of
the old.

• For each exception instance exninst 𝑖 in the original 𝑆.exns, the new exception instance must be an extension
of the old.
𝑆1.funcs = funcinst*1 𝑆2.funcs = funcinst ′1

*
funcinst*2 (⊢ funcinst1 ⪯ funcinst ′1)

*

𝑆1.tables = tableinst*1 𝑆2.tables = tableinst ′1
*
tableinst*2 (⊢ tableinst1 ⪯ tableinst ′1)

*

𝑆1.mems = meminst*1 𝑆2.mems = meminst ′1
*
meminst*2 (⊢ meminst1 ⪯ meminst ′1)

*

𝑆1.globals = globalinst*1 𝑆2.globals = globalinst ′1
*
globalinst*2 (⊢ globalinst1 ⪯ globalinst ′1)

*

𝑆1.tags = taginst*1 𝑆2.tags = taginst ′1
*
taginst*2 (⊢ taginst1 ⪯ taginst ′1)

*

𝑆1.elems = eleminst*1 𝑆2.elems = eleminst ′1
*
eleminst*2 (⊢ eleminst1 ⪯ eleminst ′1)

*

𝑆1.datas = datainst*1 𝑆2.datas = datainst ′1
*
datainst*2 (⊢ datainst1 ⪯ datainst ′1)

*

𝑆1.structs = structinst*1 𝑆2.structs = structinst ′1
*
structinst*2 (⊢ structinst1 ⪯ structinst ′1)

*

𝑆1.arrays = arrayinst*1 𝑆2.arrays = arrayinst ′1
*
arrayinst*2 (⊢ arrayinst1 ⪯ arrayinst ′1)

*

𝑆1.exns = exninst*1 𝑆2.exns = exninst ′1
*
exninst*2 (⊢ exninst1 ⪯ exninst ′1)

*

⊢ 𝑆1 ⪯ 𝑆2

268 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Function Instance funcinst

• A function instance must remain unchanged.

⊢ funcinst ⪯ funcinst

Table Instance tableinst

• The table type tableinst .type must remain unchanged.

• The length of tableinst .elem must not shrink.
𝑛1 ≤ 𝑛2

⊢ {type tt , elem (fa?
1)

𝑛1} ⪯ {type tt , elem (fa?
2)

𝑛2}

Memory Instance meminst

• The memory type meminst .type must remain unchanged.

• The length of meminst .data must not shrink.
𝑛1 ≤ 𝑛2

⊢ {type mt , data 𝑏𝑛1
1 } ⪯ {type mt , data 𝑏𝑛2

2 }

Global Instance globalinst

• The global type globalinst .type must remain unchanged.

• Let mut 𝑡 be the structure of globalinst .type.

• If mut is const, then the value globalinst .value must remain unchanged.
mut = var ∨ val1 = val2

⊢ {type (mut 𝑡), value val1} ⪯ {type (mut 𝑡), value val2}

Tag Instance taginst

• A tag instance must remain unchanged.

⊢ taginst ⪯ taginst

Element Instance eleminst

• The reference type eleminst .type must remain unchanged.

• The vector eleminst .elem must:

– either remain unchanged,

– or shrink to length 0.

⊢ {type 𝑡, elem 𝑎*} ⪯ {type 𝑡, elem 𝑎*}

⊢ {type 𝑡, elem 𝑎*} ⪯ {type 𝑡, elem 𝜖}

7.3. Type Soundness 269

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Data Instance datainst

• The vector datainst .data must:

– either remain unchanged,

– or shrink to length 0.

⊢ {data 𝑏*} ⪯ {data 𝑏*}

⊢ {data 𝑏*} ⪯ {data 𝜖}

Structure Instance structinst

• The defined type structinst .type must remain unchanged.

• Assert: due to store well-formedness, the expansion of structinst .type is a structure type.

• Let struct fieldtype* be the expansion of structinst .type.

• The length of the vector structinst .fields must remain unchanged.

• Assert: due to store well-formedness, the length of structinst .fields is the same as the length of fieldtype*.

• For each field value fieldval 𝑖 in structinst .fields and corresponding field type fieldtype𝑖 in fieldtype*:

– Let mut 𝑖 st 𝑖 be the structure of fieldtype𝑖.

– If mut 𝑖 is const, then the field value fieldval 𝑖 must remain unchanged.
(mut = var ∨ fieldval1 = fieldval2)

*

⊢ {type (mut st)*, fields fieldval*1} ⪯ {type (mut st)*, fields fieldval*2}

Array Instance arrayinst

• The defined type arrayinst .type must remain unchanged.

• Assert: due to store well-formedness, the expansion of arrayinst .type is an array type.

• Let array fieldtype be the expansion of arrayinst .type.

• The length of the vector arrayinst .fields must remain unchanged.

• Let mut st be the structure of fieldtype .

• If mut is const, then the sequence of field values arrayinst .fields must remain unchanged.
mut = var ∨ fieldval*1 = fieldval*2

⊢ {type (mut st), fields fieldval*1} ⪯ {type (mut st), fields fieldval*2}

Exception Instance exninst

• An exception instance must remain unchanged.

⊢ exninst ⪯ exninst

270 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.3.9 Theorems

Given the definition of valid configurations, the standard soundness theorems hold.5254

Theorem (Preservation). If a configuration 𝑆;𝑇 is valid with result type [𝑡*] (i.e., ⊢ 𝑆;𝑇 : [𝑡*]), and steps to
𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ 𝑆′;𝑇 ′), then 𝑆′;𝑇 ′ is a valid configuration with the same result type (i.e., ⊢ 𝑆′;𝑇 ′ : [𝑡*]).
Furthermore, 𝑆′ is an extension of 𝑆 (i.e., ⊢ 𝑆 ⪯ 𝑆′).

A terminal thread is one whose sequence of instructions is a result. A terminal configuration is a configuration
whose thread is terminal.

Theorem (Progress). If a configuration 𝑆;𝑇 is valid (i.e., ⊢ 𝑆;𝑇 : [𝑡*] for some result type [𝑡*]), then either it is
terminal, or it can step to some configuration 𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ 𝑆′;𝑇 ′).

From Preservation and Progress the soundness of the WebAssembly type system follows directly.

Corollary (Soundness). If a configuration 𝑆;𝑇 is valid (i.e., ⊢ 𝑆;𝑇 : [𝑡*] for some result type [𝑡*]), then it either
diverges or takes a finite number of steps to reach a terminal configuration 𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ *𝑆′;𝑇 ′) that is
valid with the same result type (i.e., ⊢ 𝑆′;𝑇 ′ : [𝑡*]) and where 𝑆′ is an extension of 𝑆 (i.e., ⊢ 𝑆 ⪯ 𝑆′).

In other words, every thread in a valid configuration either runs forever, traps, throws an exception, or terminates
with a result that has the expected type. Consequently, given a valid store, no computation defined by instantiation or
invocation of a valid module can “crash” or otherwise (mis)behave in ways not covered by the execution semantics
given in this specification.

7.4 Type System Properties

7.4.1 Principal Types

The type system of WebAssembly features both subtyping and simple forms of polymorphism for instruction types.
That has the effect that every instruction or instruction sequence can be classified with multiple different instruction
types.

However, the typing rules still allow deriving principal types for instruction sequences. That is, every valid instruc-
tion sequence has one particular type scheme, possibly containing some unconstrained place holder type variables,
that is a subtype of all its valid instruction types, after substituting its type variables with suitable specific types.

Moreover, when deriving an instruction type in a “forward” manner, i.e., the input of the instruction sequence is
already fixed to specific types, then it has a principal output type expressible without type variables, up to a possibly
polymorphic stack bottom representable with one single variable. In other words, “forward” principal types are
effectively closed.

Note: For example, in isolation, the instruction ref.as_non_null has the type [(ref null ht)] → [(ref ht)] for any
choice of valid heap type ht . Moreover, if the input type [(ref null ht)] is already determined, i.e., a specific ht is
given, then the output type [(ref ht)] is fully determined as well.

The implication of the latter property is that a validator for complete instruction sequences (as they occur in valid
modules) can be implemented with a simple left-to-right algorithm that does not require the introduction of type
variables.

A typing algorithm capable of handling partial instruction sequences (as might be considered for program analysis
or program manipulation) needs to introduce type variables and perform substitutions, but it does not need to

52 A machine-verified version of the formalization and soundness proof of the PLDI 2017 paper is described in the following article: Conrad
Watt. Mechanising and Verifying the WebAssembly SpecificationPage 271, 53. Proceedings of the 7th ACM SIGPLAN Conference on Certified
Programs and Proofs (CPP 2018). ACM 2018.

53 https://dl.acm.org/citation.cfm?id=3167082
54 Machine-verified formalizations and soundness proofs of the semantics from the official specification are described in the following article:

Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, Philippa Gardner. Two Mechanisations of WebAssembly 1.055. Proceedings
of the 24th International Symposium on Formal Methods (FM 2021). Springer 2021.

55 https://link.springer.com/chapter/10.1007/978-3-030-90870-6_4

7.4. Type System Properties 271

https://dl.acm.org/citation.cfm?id=3167082
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_4

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

perform backtracking or record any non-syntactic constraints on these type variables.

Technically, the syntax of heap, value, and result types can be enriched with type variables as follows:

null ::= null? | 𝛼null

heaptype ::= . . . | 𝛼heaptype

reftype ::= ref null heaptype
valtype ::= . . . | 𝛼valtype | 𝛼numvectype

resulttype ::= [𝛼?
valtype* valtype*]

where each 𝛼xyz ranges over a set of type variables for syntactic class xyz , respectively. The special class
numvectype is defined as numtype | vectype | bot, and is only needed to handle unannotated select instructions.

A type is closed when it does not contain any type variables, and open otherwise. A type substitution 𝜎 is a finite
mapping from type variables to closed types of the respective syntactic class. When applied to an open type, it
replaces the type variables 𝛼 from its domain with the respective 𝜎(𝛼).

Theorem (Principal Types). If an instruction sequence instr* is valid with some closed instruction type instrtype
(i.e., 𝐶 ⊢ instr* : instrtype), then it is also valid with a possibly open instruction type instrtypemin (i.e., 𝐶 ⊢
instr* : instrtypemin), such that for every closed type instrtype ′ with which instr* is valid (i.e., for all 𝐶 ⊢
instr* : instrtype ′), there exists a substitution 𝜎, such that 𝜎(instrtypemin) is a subtype of instrtype ′ (i.e.,

𝐶 ⊢ 𝜎(instrtypemin) ≤ instrtype ′). Furthermore, instrtypemin is unique up to the choice of type variables.

Theorem (Closed Principal Forward Types). If closed input type [𝑡*1] is given and the instruction sequence instr*
is valid with instruction type [𝑡*1] →𝑥* [𝑡*2] (i.e., 𝐶 ⊢ instr* : [𝑡*1] →𝑥* [𝑡*2]), then it is also valid with instruction
type [𝑡*1] →𝑥* [𝛼valtype* 𝑡*] (i.e., 𝐶 ⊢ instr* : [𝑡*1] →𝑥* [𝛼valtype* 𝑡*]), where all 𝑡* are closed, such that for
every closed result type [𝑡′2

*
] with which instr* is valid (i.e., for all 𝐶 ⊢ instr* : [𝑡*1] →𝑥* [𝑡′2

*
]), there exists a

substitution 𝜎, such that [𝑡′2
*
] = [𝜎(𝛼valtype*) 𝑡*].

7.4.2 Type Lattice

The Principal Types property depends on the existence of a greatest lower bound for any pair of types.

Theorem (Greatest Lower Bounds for Value Types). For any two value types 𝑡1 and 𝑡2 that are valid (i.e.,
𝐶 ⊢ 𝑡1 ok and 𝐶 ⊢ 𝑡2 ok), there exists a valid value type 𝑡 that is a subtype of both 𝑡1 and 𝑡2 (i.e., 𝐶 ⊢ 𝑡 ok and
𝐶 ⊢ 𝑡 ≤ 𝑡1 and 𝐶 ⊢ 𝑡 ≤ 𝑡2), such that every valid value type 𝑡′ that also is a subtype of both 𝑡1 and 𝑡2 (i.e., for all
𝐶 ⊢ 𝑡′ ok and 𝐶 ⊢ 𝑡′ ≤ 𝑡1 and 𝐶 ⊢ 𝑡′ ≤ 𝑡2), is a subtype of 𝑡 (i.e., 𝐶 ⊢ 𝑡′ ≤ 𝑡).

Note: The greatest lower bound of two types may be bot.

Theorem (Conditional Least Upper Bounds for Value Types). Any two value types 𝑡1 and 𝑡2 that are valid (i.e.,
𝐶 ⊢ 𝑡1 ok and 𝐶 ⊢ 𝑡2 ok) either have no common supertype, or there exists a valid value type 𝑡 that is a supertype
of both 𝑡1 and 𝑡2 (i.e., 𝐶 ⊢ 𝑡 ok and 𝐶 ⊢ 𝑡1 ≤ 𝑡 and 𝐶 ⊢ 𝑡2 ≤ 𝑡), such that every valid value type 𝑡′ that also is
a supertype of both 𝑡1 and 𝑡2 (i.e., for all 𝐶 ⊢ 𝑡′ ok and 𝐶 ⊢ 𝑡1 ≤ 𝑡′ and 𝐶 ⊢ 𝑡2 ≤ 𝑡′), is a supertype of 𝑡 (i.e.,
𝐶 ⊢ 𝑡 ≤ 𝑡′).

Note: If a top type was added to the type system, a least upper bound would exist for any two types.

Corollary (Type Lattice). Assuming the addition of a provisional top type, value types form a lattice with respect
to their subtype relation.

Finally, value types can be partitioned into multiple disjoint hierarchies that are not related by subtyping, except
through bot.

Theorem (Disjoint Subtype Hierarchies). The greatest lower bound of two value types is bot or ref bot if and
only if they do not have a least upper bound.

In other words, types that do not have common supertypes, do not have common subtypes either (other than bot
or ref bot), and vice versa.

272 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Note: Types from disjoint hierarchies can safely be represented in mutually incompatible ways in an implemen-
tation, because their values can never flow to the same place.

7.4.3 Compositionality

Valid instruction sequences can be freely composed, as long as their types match up.

Theorem (Composition). If two instruction sequences instr*1 and instr*2 are valid with types [𝑡*1] →𝑥*
1
[𝑡*] and

[𝑡*] →𝑥*
2
[𝑡*2], respectively (i.e., 𝐶 ⊢ instr*1 : [𝑡*1] →𝑥*

1
[𝑡*] and 𝐶 ⊢ instr*1 : [𝑡*] →𝑥*

2
[𝑡*2]), then the concatenated

instruction sequence (instr*1 instr*2) is valid with type [𝑡*1] →𝑥*
1 𝑥*

2
[𝑡*2] (i.e., 𝐶 ⊢ instr*1 instr*2 : [𝑡*1] →𝑥*

1 𝑥*
2
[𝑡*2]).

Note: More generally, instead of a shared type [𝑡*], it suffices if the output type of instr*1 is a subtype of the input
type of instr*1, since the subtype can always be weakened to its supertype by subsumption.

Inversely, valid instruction sequences can also freely be decomposed, that is, splitting them anywhere produces two
instruction sequences that are both valid.

Theorem (Decomposition). If an instruction sequence instr* that is valid with type [𝑡*1] →𝑥* [𝑡*2] (i.e., 𝐶 ⊢
instr* : [𝑡*1] →𝑥* [𝑡*2]) is split into two instruction sequences instr*1 and instr*2 at any point (i.e., instr* =
instr*1 instr*2), then these are separately valid with some types [𝑡*1] →𝑥*

1
[𝑡*] and [𝑡*] →𝑥*

2
[𝑡*2], respectively (i.e.,

𝐶 ⊢ instr*1 : [𝑡*1] →𝑥*
1
[𝑡*] and 𝐶 ⊢ instr*1 : [𝑡*] →𝑥*

2
[𝑡*2]), where 𝑥* = 𝑥*

1 𝑥*
2.

Note: This property holds because validation is required even for unreachable code. Without that, instr*2 might
not be valid in isolation.

7.5 Validation Algorithm

The specification of WebAssembly validation is purely declarative. It describes the constraints that must be met
by a module or instruction sequence to be valid.

This section sketches the skeleton of a sound and complete algorithm for effectively validating code, i.e., sequences
of instructions. (Other aspects of validation are straightforward to implement.)

In fact, the algorithm is expressed over the flat sequence of opcodes as occurring in the binary format, and performs
only a single pass over it. Consequently, it can be integrated directly into a decoder.

The algorithm is expressed in typed pseudo code whose semantics is intended to be self-explanatory.

7.5.1 Data Structures

Types

Value types are representable as sets of enumerations:

type num_type = I32 | I64 | F32 | F64
type vec_type = V128
type heap_type =
Any | Eq | I31 | Struct | Array | None |
Func | Nofunc | Exn | Noexn | Extern | Noextern | Bot |
Def(def : def_type)

type ref_type = Ref(heap : heap_type, null : bool)
type val_type = num_type | vec_type | ref_type | Bot

(continues on next page)

7.5. Validation Algorithm 273

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

(continued from previous page)

func is_num(t : val_type) : bool =
return t = I32 || t = I64 || t = F32 || t = F64 || t = Bot

func is_vec(t : val_type) : bool =
return t = V128 || t = Bot

func is_ref(t : val_type) : bool =
return not (is_num t || is_vec t) || t = Bot

Similarly, defined types def_type can be represented:

type packed_type = I8 | I16
type field_type = Field(val : val_type | packed_type, mut : bool)

type struct_type = Struct(fields : list(field_type))
type array_type = Array(fields : field_type)
type func_type = Func(params : list(val_type), results : list(val_type))
type comp_type = struct_type | array_type | func_type

type sub_type = Sub(super : list(def_type), body : comp_type, final : bool)
type rec_type = Rec(types : list(sub_type))

type def_type = Def(rec : rec_type, proj : int32)

func unpack_field(t : field_type) : val_type =
if (it = I8 || t = I16) return I32
return t

func expand_def(t : def_type) : comp_type =
return t.rec.types[t.proj].body

These representations assume that all types have been closed by substituting all type indices (in concrete heap types
and in sub types) with their respective defined types. This includes recursive references to enclosing defined types,
such that type representations form graphs and may be cyclic for recursive types.

We assume that all types have been canonicalized, such that equality on two type representations holds if and only
if their closures are syntactically equivalent, making it a constant-time check.

Note: For the purpose of type canonicalization, recursive references from a heap type to an enclosing recursive
type (i.e., forward edges in the graph that form a cycle) need to be distinguished from references to previously
defined types. However, this distinction does not otherwise affect validation, so is ignored here. In the graph
representation, all recursive types are effectively infinitely unrolled.

We further assume that validation and subtyping checks are defined on value types, as well as a few auxiliary
functions on composite types:

func validate_val_type(t : val_type)
func validate_ref_type(t : ref_type)

func matches_val(t1 : val_type, t2 : val_type) : bool
func matches_ref(t1 : val_type, t2 : val_type) : bool

func is_func(t : comp_type) : bool
func is_struct(t : comp_type) : bool
func is_array(t : comp_type) : bool

274 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Finally, the following function computes the least precise supertype of a given heap type (its corresponding top
type):

func top_heap_type(t : heap_type) : heap_type =
switch (t)
case (Any | Eq | I31 | Struct | Array | None)
return Any

case (Func | Nofunc)
return Func

case (Extern | Noextern)
return Extern

case (Def(dt))
switch (dt.rec.types[dt.proj].body)
case (Struct(_) | Array(_))
return Any

case (Func(_))
return Func

case (Bot)
raise CannotOccurInSource

Context

Validation requires a context for checking uses of indices. For the purpose of presenting the algorithm, it is main-
tained in a set of global variables:

var return_type : list(val_type)
var types : array(def_type)
var locals : array(val_type)
var locals_init : array(bool)
var globals : array(global_type)
var funcs : array(func_type)
var tables : array(table_type)
var mems : array(mem_type)

This assumes suitable representations for the various types besides val_type, which are omitted here.

For locals, there is an additional array recording the initialization status of each local.

Stacks

The algorithm uses three separate stacks: the value stack, the control stack, and the initialization stack. The value
stack tracks the types of operand values on the stack. The control stack tracks surrounding structured control
instructions and their associated blocks. The initialization stack records all locals that have been initialized since
the beginning of the function.

type val_stack = stack(val_type)
type init_stack = stack(u32)

type ctrl_stack = stack(ctrl_frame)
type ctrl_frame = {
opcode : opcode
start_types : list(val_type)
end_types : list(val_type)
val_height : nat
init_height : nat
unreachable : bool

}

7.5. Validation Algorithm 275

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

For each entered block, the control stack records a control frame with the originating opcode, the types on the top
of the operand stack at the start and end of the block (used to check its result as well as branches), the height of the
operand stack at the start of the block (used to check that operands do not underflow the current block), the height
of the initialization stack at the start of the block (used to reset initialization status at the end of the block), and a
flag recording whether the remainder of the block is unreachable (used to handle stack-polymorphic typing after
branches).

For the purpose of presenting the algorithm, these stacks are simply maintained as global variables:

var vals : val_stack
var inits : init_stack
var ctrls : ctrl_stack

However, these variables are not manipulated directly by the main checking function, but through a set of auxiliary
functions:

func push_val(type : val_type) =
vals.push(type)

func pop_val() : val_type =
if (vals.size() = ctrls[0].height && ctrls[0].unreachable) return Bot
error_if(vals.size() = ctrls[0].height)
return vals.pop()

func pop_val(expect : val_type) : val_type =
let actual = pop_val()
error_if(not matches_val(actual, expect))
return actual

func pop_num() : num_type | Bot =
let actual = pop_val()
error_if(not is_num(actual))
return actual

func pop_ref() : ref_type =
let actual = pop_val()
error_if(not is_ref(actual))
if (actual = Bot) return Ref(Bot, false)
return actual

func push_vals(types : list(val_type)) = foreach (t in types) push_val(t)
func pop_vals(types : list(val_type)) : list(val_type) =
var popped := []
foreach (t in reverse(types)) popped.prepend(pop_val(t))
return popped

Pushing an operand value simply pushes the respective type to the value stack.

Popping an operand value checks that the value stack does not underflow the current block and then removes
one type. But first, a special case is handled where the block contains no known values, but has been marked as
unreachable. That can occur after an unconditional branch, when the stack is typed polymorphically. In that case,
the Bot type is returned, because that is a principal choice trivially satisfying all use constraints.

A second function for popping an operand value takes an expected type, which the actual operand type is checked
against. The types may differ by subtyping, including the case where the actual type is Bot, and thereby matches
unconditionally. The function returns the actual type popped from the stack.

Finally, there are accumulative functions for pushing or popping multiple operand types.

Note: The notation stack[i] is meant to index the stack from the top, so that, e.g., ctrls[0] accesses the

276 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

element pushed last.

The initialization stack and the initialization status of locals is manipulated through the following functions:

func get_local(idx : u32) =
error_if(not locals_init[idx])

func set_local(idx : u32) =
if (not locals_init[idx])
inits.push(idx)
locals_init[idx] := true

func reset_locals(height : nat) =
while (inits.size() > height)
locals_init[inits.pop()] := false

Getting a local verifies that it is known to be initialized. When a local is set that was not set already, then its
initialization status is updated and the change is recorded in the initialization stack. Thus, the initialization status
of all locals can be reset to a previous state by denoting a specific height in the initialization stack.

The size of the initialization stack is bounded by the number of (non-defaultable) locals in a function, so can be
preallocated by an algorithm.

The control stack is likewise manipulated through auxiliary functions:

func push_ctrl(opcode : opcode, in : list(val_type), out : list(val_type)) =
let frame = ctrl_frame(opcode, in, out, vals.size(), inits.size(), false)
ctrls.push(frame)
push_vals(in)

func pop_ctrl() : ctrl_frame =
error_if(ctrls.is_empty())
let frame = ctrls[0]
pop_vals(frame.end_types)
error_if(vals.size() =/= frame.val_height)
reset_locals(frame.init_height)
ctrls.pop()
return frame

func label_types(frame : ctrl_frame) : list(val_types) =
return (if (frame.opcode = loop) frame.start_types else frame.end_types)

func unreachable() =
vals.resize(ctrls[0].height)
ctrls[0].unreachable := true

Pushing a control frame takes the types of the label and result values. It allocates a new frame record recording
them along with the current height of the operand stack and marks the block as reachable.

Popping a frame first checks that the control stack is not empty. It then verifies that the operand stack contains the
right types of values expected at the end of the exited block and pops them off the operand stack. Afterwards, it
checks that the stack has shrunk back to its initial height. Finally, it undoes all changes to the initialization status
of locals that happend inside the block.

The type of the label associated with a control frame is either that of the stack at the start or the end of the frame,
determined by the opcode that it originates from.

Finally, the current frame can be marked as unreachable. In that case, all existing operand types are purged from the
value stack, in order to allow for the stack-polymorphism logic in pop_val to take effect. Because every function
has an implicit outermost label that corresponds to an implicit block frame, it is an invariant of the validation

7.5. Validation Algorithm 277

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

algorithm that there always is at least one frame on the control stack when validating an instruction, and hence,
ctrls[0] is always defined.

Note: Even with the unreachable flag set, consecutive operands are still pushed to and popped from the operand
stack. That is necessary to detect invalid examples like (unreachable (i32.const) i64.add). However, a polymorphic
stack cannot underflow, but instead generates Bot types as needed.

7.5.2 Validation of Opcode Sequences

The following function shows the validation of a number of representative instructions that manipulate the stack.
Other instructions are checked in a similar manner.

func validate(opcode) =
switch (opcode)
case (i32.add)
pop_val(I32)
pop_val(I32)
push_val(I32)

case (drop)
pop_val()

case (select)
pop_val(I32)
let t1 = pop_val()
let t2 = pop_val()
error_if(not (is_num(t1) && is_num(t2) || is_vec(t1) && is_vec(t2)))
error_if(t1 =/= t2 && t1 =/= Bot && t2 =/= Bot)
push_val(if (t1 = Bot) t2 else t1)

case (select t)
pop_val(I32)
pop_val(t)
pop_val(t)
push_val(t)

case (ref.is_null)
pop_ref()
push_val(I32)

case (ref.as_non_null)
let rt = pop_ref()
push_val(Ref(rt.heap, false))

case (ref.test rt)
validate_ref_type(rt)
pop_val(Ref(top_heap_type(rt), true))
push_val(I32)

case (local.get x)
get_local(x)
push_val(locals[x])

case (local.set x)
pop_val(locals[x])

(continues on next page)

278 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

(continued from previous page)

set_local(x)

case (unreachable)
unreachable()

case (block t1*->t2*)
pop_vals([t1*])
push_ctrl(block, [t1*], [t2*])

case (loop t1*->t2*)
pop_vals([t1*])
push_ctrl(loop, [t1*], [t2*])

case (if t1*->t2*)
pop_val(I32)
pop_vals([t1*])
push_ctrl(if, [t1*], [t2*])

case (end)
let frame = pop_ctrl()
push_vals(frame.end_types)

case (else)
let frame = pop_ctrl()
error_if(frame.opcode =/= if)
push_ctrl(else, frame.start_types, frame.end_types)

case (br n)
error_if(ctrls.size() < n)
pop_vals(label_types(ctrls[n]))
unreachable()

case (br_if n)
error_if(ctrls.size() < n)
pop_val(I32)
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))

case (br_table n* m)
pop_val(I32)
error_if(ctrls.size() < m)
let arity = label_types(ctrls[m]).size()
foreach (n in n*)
error_if(ctrls.size() < n)
error_if(label_types(ctrls[n]).size() =/= arity)
push_vals(pop_vals(label_types(ctrls[n])))

pop_vals(label_types(ctrls[m]))
unreachable()

case (br_on_null n)
error_if(ctrls.size() < n)
let rt = pop_ref()
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))
push_val(Ref(rt.heap, false))

(continues on next page)

7.5. Validation Algorithm 279

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

(continued from previous page)

case (br_on_cast n rt1 rt2)
validate_ref_type(rt1)
validate_ref_type(rt2)
pop_val(rt1)
push_val(rt2)
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))
pop_val(rt2)
push_val(diff_ref_type(rt2, rt1))

case (return)
pop_vals(return_types)
unreachable()

case (call_ref x)
let t = expand_def(types[x])
error_if(not is_func(t))
pop_vals(t.params)
pop_val(Ref(Def(types[x])))
push_vals(t.results)

case (return_call_ref x)
let t = expand_def(types[x])
error_if(not is_func(t))
pop_vals(t.params)
pop_val(Ref(Def(types[x])))
error_if(t.results.len() =/= return_types.len())
push_vals(t.results)
pop_vals(return_types)
unreachable()

case (struct.new x)
let t = expand_def(types[x])
error_if(not is_struct(t))
for (ti in reverse(t.fields))
pop_val(unpack_field(ti))

push_val(Ref(Def(types[x])))

case (struct.set x n)
let t = expand_def(types[x])
error_if(not is_struct(t) || n >= t.fields.len())
pop_val(Ref(Def(types[x])))
pop_val(unpack_field(st.fields[n]))

case (throw x)
pop_vals(tags[x].type.params)
unreachable()

case (try_table t1*->t2* handler*)
pop_vals([t1*])
foreach (handler in handler*)
error_if(ctrls.size() < handler.label)
push_ctrl(catch, [], label_types(ctrls[handler.label]))
switch (handler.clause)
case (catch x)
push_vals(tags[x].type.params)

(continues on next page)

280 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

(continued from previous page)

case (catch_ref x)
push_vals(tags[x].type.params)
push_val(Exnref)

case (catch_all)
skip

case (catch_all_ref)
push_val(Exnref)

pop_ctrl()
push_ctrl(try_table, [t1*], [t2*])

Note: It is an invariant under the current WebAssembly instruction set that an operand of Bot type is never
duplicated on the stack. This would change if the language were extended with stack instructions like dup. Under
such an extension, the above algorithm would need to be refined by replacing the Bot type with proper type variables
to ensure that all uses are consistent.

7.6 Custom Sections

This appendix defines dedicated custom sections for WebAssembly’s binary format. Such sections do not con-
tribute to, or otherwise affect, the WebAssembly semantics, and like any custom section they may be ignored by
an implementation. However, they provide useful meta data that implementations can make use of to improve user
experience or take compilation hints.

Currently, only one dedicated custom section is defined, the name section.

7.6.1 Name Section

The name section is a custom section whose name string is itself ‘name’. The name section should appear only
once in a module, and only after the data section.

The purpose of this section is to attach printable names to definitions in a module, which e.g. can be used by a
debugger or when parts of the module are to be rendered in text form.

Note: All names are represented in Unicode56 encoded in UTF-8. Names need not be unique.

Subsections

The data of a name section consists of a sequence of subsections. Each subsection consists of a

• a one-byte subsection id,

• the u32 size of the contents, in bytes,

• the actual contents, whose structure is dependent on the subsection id.

namesec ::= section0(namedata)
namedata ::= 𝑛:name (if 𝑛 = ‘name’)

modulenamesubsec?

funcnamesubsec?

localnamesubsec?

tagnamesubsec?

namesubsection𝑁 (B) ::= 𝑁 :byte size:u32 B (if size = ||B||)
56 https://www.unicode.org/versions/latest/

7.6. Custom Sections 281

https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

The following subsection ids are used:

Id Subsection
0 module name
1 function names
2 local names
4 type names
10 field names
11 tag names

Each subsection may occur at most once, and in order of increasing id.

Name Maps

A name map assigns names to indices in a given index space. It consists of a vector of index/name pairs in order
of increasing index value. Each index must be unique, but the assigned names need not be.

namemap ::= vec(nameassoc)
nameassoc ::= idx name

An indirect name map assigns names to a two-dimensional index space, where secondary indices are grouped by
primary indices. It consists of a vector of primary index/name map pairs in order of increasing index value, where
each name map in turn maps secondary indices to names. Each primary index must be unique, and likewise each
secondary index per individual name map.

indirectnamemap ::= vec(indirectnameassoc)
indirectnameassoc ::= idx namemap

Module Names

The module name subsection has the id 0. It simply consists of a single name that is assigned to the module itself.

modulenamesubsec ::= namesubsection0(name)

Function Names

The function name subsection has the id 1. It consists of a name map assigning function names to function indices.

funcnamesubsec ::= namesubsection1(namemap)

Local Names

The local name subsection has the id 2. It consists of an indirect name map assigning local names to local indices
grouped by function indices.

localnamesubsec ::= namesubsection2(indirectnamemap)

282 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Type Names

The type name subsection has the id 4. It consists of a name map assigning type names to type indices.

typenamesubsec ::= namesubsection1(namemap)

Field Names

The field name subsection has the id 10. It consists of an indirect name map assigning field names to field indices
grouped by type indices.

fieldnamesubsec ::= namesubsection2(indirectnamemap)

Tag Names

The tag name subsection has the id 11. It consists of a name map assigning tag names to tag indices.

tagnamesubsec ::= namesubsection1(namemap)

7.7 Change History

Since the original release 1.0 of the WebAssembly specification, a number of proposals for extensions have been
integrated. The following sections provide an overview of what has changed.

7.7.1 Release 2.0

Sign extension instructions

Added new numeric instructions for performing sign extension within integer representations.57

• New numeric instructions: inn.extendN _s

Non-trapping float-to-int conversions

Added new conversion instructions that avoid trapping when converting a floating-point number to an integer.58

• New numeric instructions: inn.trunc_sat_fmm_sx

Multiple values

Generalized the result type of blocks and functions to allow for multiple values; in addition, introduced the ability
to have block parameters.59

• Function types allow more than one result

• Block types can be arbitrary function types
57 https://github.com/WebAssembly/spec/tree/main/proposals/sign-extension-ops/
58 https://github.com/WebAssembly/spec/tree/main/proposals/nontrapping-float-to-int-conversion/
59 https://github.com/WebAssembly/spec/tree/main/proposals/multi-value/

7.7. Change History 283

https://github.com/WebAssembly/spec/tree/main/proposals/sign-extension-ops/
https://github.com/WebAssembly/spec/tree/main/proposals/nontrapping-float-to-int-conversion/
https://github.com/WebAssembly/spec/tree/main/proposals/multi-value/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Reference types

Added funcref and externref as new value types and respective instructions.60

• New value types: reference types funcref and externref

• New reference instructions: ref.null, ref.func, ref.is_null

• Extended parametric instruction: select with optional type immediate

• New declarative form of element segment

Table instructions

Added instructions to directly access and modify tables.Page 284, 60

• Table types allow any reference type as element type

• New table instructions: table.get, table.set, table.size, table.grow

Multiple tables

Added the ability to use multiple tables per module.60

• Modules may define, import, and export multiple tables

• Table instructions take a table index immediate: table.get, table.set, table.size, table.grow, call_indirect

• Element segments take a table index

Bulk memory and table instructions

Added instructions that modify ranges of memory or table entries.6061

• New memory instructions: memory.fill, memory.init, memory.copy, data.drop

• New table instructions: table.fill, table.init, table.copy, elem.drop

• New passive form of data segment

• New passive form of element segment

• New data count section in binary format

• Active data and element segments boundaries are no longer checked at compile time but may trap instead

Vector instructions

Added vector type and instructions that manipulate multiple numeric values in parallel (also known as SIMD, single
instruction multiple data)62

• New value type: v128

• New memory instructions: v128.load, v128.load𝑁x𝑀_sx , v128.load𝑁_zero, v128.load𝑁_splat,
v128.load𝑁_lane, v128.store, v128.store𝑁_lane

• New constant vector instruction: v128.const

• New unary vector instructions: v128.not, i𝑁x𝑀.abs, i𝑁x𝑀.neg, i8x16.popcnt, f𝑁x𝑀.abs, f𝑁x𝑀.neg,
f𝑁x𝑀.sqrt, f𝑁x𝑀.ceil, f𝑁x𝑀.floor, f𝑁x𝑀.trunc, f𝑁x𝑀.nearest

60 https://github.com/WebAssembly/spec/tree/main/proposals/reference-types/
61 https://github.com/WebAssembly/spec/tree/main/proposals/bulk-memory-operations/
62 https://github.com/WebAssembly/spec/tree/main/proposals/simd/

284 Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/reference-types/
https://github.com/WebAssembly/spec/tree/main/proposals/bulk-memory-operations/
https://github.com/WebAssembly/spec/tree/main/proposals/simd/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

• New binary vector instructions: v128.and, v128.andnot, v128.or, v128.xor, i𝑁x𝑀.add, i𝑁x𝑀.sub, i𝑁x𝑀.mul,
i𝑁x𝑀.add_sat_sx , i𝑁x𝑀.sub_sat_sx , i𝑁x𝑀.min_sx , i𝑁x𝑀.max_sx , i𝑁x𝑀.shl, i𝑁x𝑀.shr_sx , f𝑁x𝑀.add,
i𝑁x𝑀.extmul_half _i𝑁 ′x𝑀 ′_sx , i16x8.q15mulr_sat_s, i32x4.dot_i16x8_s, i16x8.extadd_pairwise_i8x16_sx ,
i32x4.extadd_pairwise_i16x8_sx , i8x16.avgr_u, i16x8.avgr_u, f𝑁x𝑀.sub, f𝑁x𝑀.mul, f𝑁x𝑀.div, f𝑁x𝑀.min,
f𝑁x𝑀.max, f𝑁x𝑀.pmin, f𝑁x𝑀.pmax

• New ternary vector instruction: v128.bitselect

• New test vector instructions: v128.any_true, i𝑁x𝑀.all_true

• New relational vector instructions: i𝑁x𝑀.eq, i𝑁x𝑀.ne, i𝑁x𝑀.lt_sx , i𝑁x𝑀.gt_sx , i𝑁x𝑀.le_sx , i𝑁x𝑀.ge_sx ,
f𝑁x𝑀.eq, f𝑁x𝑀.ne, f𝑁x𝑀.lt, f𝑁x𝑀.gt, f𝑁x𝑀.le, f𝑁x𝑀.ge

• New conversion vector instructions:i32x4.trunc_sat_f32x4_sx , i32x4.trunc_sat_f64x2_sx_zero,
f32x4.convert_i32x4_sx , f32x4.demote_f64x2_zero, f64x2.convert_low_i32x4_sx ,
f64x2.promote_low_f32x4

• New lane access vector instructions: i𝑁x𝑀.extract_lane_sx ?, i𝑁x𝑀.replace_lane, f𝑁x𝑀.extract_lane,
f𝑁x𝑀.replace_lane

• New lane splitting/combining vector instructions: i𝑁x𝑀.extend_half _i𝑁 ′x𝑀 ′_sx , i8x16.narrow_i16x8_sx ,
i16x8.narrow_i32x4_sx

• New byte reordering vector instructions: i8x16.shuffle, i8x16.swizzle

• New injection/projection vector instructions: i𝑁x𝑀.splat, f𝑁x𝑀.splat, i𝑁x𝑀.bitmask

7.7.2 Release 3.0

Tail Calls

Added instructions to perform tail calls64.

• New control instructions: 𝑅𝐸𝑇𝑈𝑅𝑁𝐶𝐴𝐿𝐿 and 𝑅𝐸𝑇𝑈𝑅𝑁𝐶𝐴𝐿𝐿𝐼𝑁𝐷𝐼𝑅𝐸𝐶𝑇

Typeful References

Added more precise types for references66.

• New generalised form of reference types: (ref null? heaptype)

• New class of heap types: func, extern, typeidx

• Basic subtyping on reference and value types

• New reference instructions: ref.as_non_null, br_on_null, br_on_non_null

• New control instruction: call_ref

• Refined typing of reference instruction ref.func with more precise result type

• Refined typing of local instructions and instruction sequences to track the initialization status of locals with
non-defaultable type

• Extended table definitions with optional initializer expression
64 https://github.com/WebAssembly/spec/tree/main/proposals/tail-call/
66 https://github.com/WebAssembly/spec/tree/main/proposals/function-references/

7.7. Change History 285

https://github.com/WebAssembly/spec/tree/main/proposals/tail-call/
https://github.com/WebAssembly/spec/tree/main/proposals/function-references/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Garbage Collection

Added managed reference types68.

• New forms of heap types: any, eq, i31, struct, array, none, nofunc, noextern

• New reference type short-hands: anyref, eqref, i31ref, structref, arrayref, nullref, nullfuncref, nullexternref

• New forms of type definitions: structure and array types, sub types, and recursive types

• Enriched subtyping based on explicitly declared sub types and the new heap types

• New generic reference instructions: ref.eq, ref.test, ref.cast, br_on_cast, br_on_cast_fail

• New reference instructions for unboxed scalars: ref.i31, i31.get_sx

• New reference instructions for structure types: struct.new, struct.new_default, struct.get_sx ?, struct.set

• New reference instructions for array types: array.new, array.new_default, array.new_fixed, array.new_data,
array.new_elem, array.get_sx ?, array.set, array.len, array.fill, array.copy, array.init_data, array.init_elem

• New reference instructions for converting host types: any.convert_extern, extern.convert_any

• Extended set of constant instructions with ref.i31, struct.new, struct.new_default, array.new,
array.new_default, array.new_fixed, any.convert_extern, extern.convert_any, and global.get for any
previously declared immutable global

Exception Handling

Added tag definitions, imports, and exports, and instructions to throw and catch exceptions67

• Modules may define, import, and export tags.

• New heap types: exn, noexn

• New reference type short-hands: exnref, nullexnref

• New control instructions: throw, throw_ref, and try_table.

• New tag section in binary format.

Garbage collection

Added managed reference types.Page 286, 68

• New forms of heap types: any, eq, i31, struct, array, none, nofunc, noextern

• New reference type short-hands: anyref, eqref, i31ref, structref, arrayref, nullref, nullfuncref, nullexternref

• New forms of type definitions: structure and array types, sub types, and recursive types

• Enriched subtyping based on explicitly declared sub types and the new heap types

• New generic reference instructions: ref.eq, ref.test, ref.cast, br_on_cast, br_on_cast_fail

• New reference instructions for unboxed scalars: ref.i31, i31.get_sx

• New reference instructions for structure types: struct.new, struct.new_default, struct.get_sx ?, struct.set

• New reference instructions for array types: array.new, array.new_default, array.new_fixed, array.new_data,
array.new_elem, array.get_sx ?, array.set, array.len, array.fill, array.copy, array.init_data, array.init_elem

• New reference instructions for converting host types: any.convert_extern, extern.convert_any

• Extended set of constant instructions with ref.i31, struct.new, struct.new_default, array.new,
array.new_default, array.new_fixed, any.convert_extern, extern.convert_any

68 https://github.com/WebAssembly/spec/tree/main/proposals/gc/
67 https://github.com/WebAssembly/spec/tree/main/proposals/exception-handling/

286 Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/gc/
https://github.com/WebAssembly/spec/tree/main/proposals/exception-handling/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.8 Index of Types

Category Constructor Binary Opcode
Type index 𝑥 (positive number as s32 or u32)
Number type i32 0x7F (-1 as s7)
Number type i64 0x7E (-2 as s7)
Number type f32 0x7D (-3 as s7)
Number type f64 0x7C (-4 as s7)
Vector type v128 0x7B (-5 as s7)
(reserved) 0x7A .. 0x79
Packed type i8 0x78 (-8 as s7)
Packed type i16 0x77 (-9 as s7)
(reserved) 0x78 .. 0x75
Heap type noexn 0x74 (-14 as s7)
Heap type nofunc 0x73 (-13 as s7)
Heap type noextern 0x72 (-14 as s7)
Heap type none 0x71 (-15 as s7)
Heap type func 0x70 (-16 as s7)
Heap type extern 0x6F (-17 as s7)
Heap type any 0x6E (-18 as s7)
Heap type eq 0x6D (-19 as s7)
Heap type i31 0x6C (-20 as s7)
Heap type struct 0x6B (-21 as s7)
Heap type array 0x6A (-22 as s7)
Heap type exn 0x69 (-23 as s7)
(reserved) 0x68 .. 0x65
Reference type ref 0x64 (-28 as s7)
Reference type ref null 0x63 (-29 as s7)
(reserved) 0x62 .. 0x61
Composite type func [valtype*] → [valtype*] 0x60 (-32 as s7)
Composite type struct fieldtype* 0x5F (-33 as s7)
Composite type array fieldtype 0x5E (-34 as s7)
(reserved) 0x5D .. 0x51
Sub type sub typeidx* comptype 0x50 (-48 as s7)
Sub type sub final typeidx* comptype 0x4F (-49 as s7)
Recursive type rec subtype* 0x4E (-50 as s7)
(reserved) 0x4D .. 0x41
Result type [𝜖] 0x40 (-64 as s7)
Table type limits reftype (none)
Memory type limits (none)
Global type mut valtype (none)
Tag type functype (none)

7.9 Index of Instructions

Instruction Binary Opcode Type Validation Execution
unreachable 0x00 [𝑡*1] → [𝑡*2] validation execution
nop 0x01 [] → [] validation execution
block bt 0x02 [𝑡*1] → [𝑡*2] validation execution
loop bt 0x03 [𝑡*1] → [𝑡*2] validation execution
if bt 0x04 [𝑡*1 i32] → [𝑡*2] validation execution

continues on next page

7.8. Index of Types 287

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
else 0x05

(reserved) 0x06

(reserved) 0x07

throw 𝑥 0x08 [𝑡*1 𝑡
*
𝑥] → [𝑡*2] validation execution

(reserved) 0x09

throw_ref 0x0A [𝑡*1 exnref] → [𝑡*2] validation execution
end 0x0B

br 𝑙 0x0C [𝑡*1 𝑡
*] → [𝑡*2] validation execution

br_if 𝑙 0x0D [𝑡* i32] → [𝑡*] validation execution
br_table 𝑙* 𝑙 0x0E [𝑡*1 𝑡

* i32] → [𝑡*2] validation execution
return 0x0F [𝑡*1 𝑡

*] → [𝑡*2] validation execution
call 𝑥 0x10 [𝑡*1] → [𝑡*2] validation execution
call_indirect 𝑥 𝑦 0x11 [𝑡*1 i32] → [𝑡*2] validation execution
return_call 𝑥 0x12 [𝑡*1] → [𝑡*2] validation execution
return_call_indirect 𝑥 𝑦 0x13 [𝑡*1 i32] → [𝑡*2] validation execution
call_ref 𝑥 0x14 [𝑡*1 (ref null 𝑥)] → [𝑡*2] validation execution
return_call_ref 𝑥 0x15 [𝑡*1 (ref null 𝑥)] → [𝑡*2] validation execution
(reserved) 0x16

(reserved) 0x17

(reserved) 0x18

(reserved) 0x19

drop 0x1A [𝑡] → [] validation execution
select 0x1B [𝑡 𝑡 i32] → [𝑡] validation execution
select 𝑡 0x1C [𝑡 𝑡 i32] → [𝑡] validation execution
(reserved) 0x1D

(reserved) 0x1E

try_table bt 0x1F [𝑡*1] → [𝑡*2] validation execution
local.get 𝑥 0x20 [] → [𝑡] validation execution
local.set 𝑥 0x21 [𝑡] → [] validation execution
local.tee 𝑥 0x22 [𝑡] → [𝑡] validation execution
global.get 𝑥 0x23 [] → [𝑡] validation execution
global.set 𝑥 0x24 [𝑡] → [] validation execution
table.get 𝑥 0x25 [i32] → [𝑡] validation execution
table.set 𝑥 0x26 [i32 𝑡] → [] validation execution
(reserved) 0x27

i32.load 𝑥 memarg 0x28 [i32] → [i32] validation execution
i64.load 𝑥 memarg 0x29 [i32] → [i64] validation execution
f32.load 𝑥 memarg 0x2A [i32] → [f32] validation execution
f64.load 𝑥 memarg 0x2B [i32] → [f64] validation execution
i32.load8_s 𝑥 memarg 0x2C [i32] → [i32] validation execution
i32.load8_u 𝑥 memarg 0x2D [i32] → [i32] validation execution
i32.load16_s 𝑥 memarg 0x2E [i32] → [i32] validation execution
i32.load16_u 𝑥 memarg 0x2F [i32] → [i32] validation execution
i64.load8_s 𝑥 memarg 0x30 [i32] → [i64] validation execution
i64.load8_u 𝑥 memarg 0x31 [i32] → [i64] validation execution
i64.load16_s 𝑥 memarg 0x32 [i32] → [i64] validation execution
i64.load16_u 𝑥 memarg 0x33 [i32] → [i64] validation execution
i64.load32_s 𝑥 memarg 0x34 [i32] → [i64] validation execution
i64.load32_u 𝑥 memarg 0x35 [i32] → [i64] validation execution
i32.store 𝑥 memarg 0x36 [i32 i32] → [] validation execution
i64.store 𝑥 memarg 0x37 [i32 i64] → [] validation execution
f32.store 𝑥 memarg 0x38 [i32 f32] → [] validation execution
f64.store 𝑥 memarg 0x39 [i32 f64] → [] validation execution
i32.store8 𝑥 memarg 0x3A [i32 i32] → [] validation execution
i32.store16 𝑥 memarg 0x3B [i32 i32] → [] validation execution

continues on next page

288 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i64.store8 𝑥 memarg 0x3C [i32 i64] → [] validation execution
i64.store16 𝑥 memarg 0x3D [i32 i64] → [] validation execution
i64.store32 𝑥 memarg 0x3E [i32 i64] → [] validation execution
memory.size 𝑥 0x3F [] → [i32] validation execution
memory.grow 𝑥 0x40 [i32] → [i32] validation execution
i32.const i32 0x41 [] → [i32] validation execution
i64.const i64 0x42 [] → [i64] validation execution
f32.const f32 0x43 [] → [f32] validation execution
f64.const f64 0x44 [] → [f64] validation execution
i32.eqz 0x45 [i32] → [i32] validation execution (operator)
i32.eq 0x46 [i32 i32] → [i32] validation execution (operator)
i32.ne 0x47 [i32 i32] → [i32] validation execution (operator)
i32.lt_s 0x48 [i32 i32] → [i32] validation execution (operator)
i32.lt_u 0x49 [i32 i32] → [i32] validation execution (operator)
i32.gt_s 0x4A [i32 i32] → [i32] validation execution (operator)
i32.gt_u 0x4B [i32 i32] → [i32] validation execution (operator)
i32.le_s 0x4C [i32 i32] → [i32] validation execution (operator)
i32.le_u 0x4D [i32 i32] → [i32] validation execution (operator)
i32.ge_s 0x4E [i32 i32] → [i32] validation execution (operator)
i32.ge_u 0x4F [i32 i32] → [i32] validation execution (operator)
i64.eqz 0x50 [i64] → [i32] validation execution (operator)
i64.eq 0x51 [i64 i64] → [i32] validation execution (operator)
i64.ne 0x52 [i64 i64] → [i32] validation execution (operator)
i64.lt_s 0x53 [i64 i64] → [i32] validation execution (operator)
i64.lt_u 0x54 [i64 i64] → [i32] validation execution (operator)
i64.gt_s 0x55 [i64 i64] → [i32] validation execution (operator)
i64.gt_u 0x56 [i64 i64] → [i32] validation execution (operator)
i64.le_s 0x57 [i64 i64] → [i32] validation execution (operator)
i64.le_u 0x58 [i64 i64] → [i32] validation execution (operator)
i64.ge_s 0x59 [i64 i64] → [i32] validation execution (operator)
i64.ge_u 0x5A [i64 i64] → [i32] validation execution (operator)
f32.eq 0x5B [f32 f32] → [i32] validation execution (operator)
f32.ne 0x5C [f32 f32] → [i32] validation execution (operator)
f32.lt 0x5D [f32 f32] → [i32] validation execution (operator)
f32.gt 0x5E [f32 f32] → [i32] validation execution (operator)
f32.le 0x5F [f32 f32] → [i32] validation execution (operator)
f32.ge 0x60 [f32 f32] → [i32] validation execution (operator)
f64.eq 0x61 [f64 f64] → [i32] validation execution (operator)
f64.ne 0x62 [f64 f64] → [i32] validation execution (operator)
f64.lt 0x63 [f64 f64] → [i32] validation execution (operator)
f64.gt 0x64 [f64 f64] → [i32] validation execution (operator)
f64.le 0x65 [f64 f64] → [i32] validation execution (operator)
f64.ge 0x66 [f64 f64] → [i32] validation execution (operator)
i32.clz 0x67 [i32] → [i32] validation execution (operator)
i32.ctz 0x68 [i32] → [i32] validation execution (operator)
i32.popcnt 0x69 [i32] → [i32] validation execution (operator)
i32.add 0x6A [i32 i32] → [i32] validation execution (operator)
i32.sub 0x6B [i32 i32] → [i32] validation execution (operator)
i32.mul 0x6C [i32 i32] → [i32] validation execution (operator)
i32.div_s 0x6D [i32 i32] → [i32] validation execution (operator)
i32.div_u 0x6E [i32 i32] → [i32] validation execution (operator)
i32.rem_s 0x6F [i32 i32] → [i32] validation execution (operator)
i32.rem_u 0x70 [i32 i32] → [i32] validation execution (operator)
i32.and 0x71 [i32 i32] → [i32] validation execution (operator)
i32.or 0x72 [i32 i32] → [i32] validation execution (operator)

continues on next page

7.9. Index of Instructions 289

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i32.xor 0x73 [i32 i32] → [i32] validation execution (operator)
i32.shl 0x74 [i32 i32] → [i32] validation execution (operator)
i32.shr_s 0x75 [i32 i32] → [i32] validation execution (operator)
i32.shr_u 0x76 [i32 i32] → [i32] validation execution (operator)
i32.rotl 0x77 [i32 i32] → [i32] validation execution (operator)
i32.rotr 0x78 [i32 i32] → [i32] validation execution (operator)
i64.clz 0x79 [i64] → [i64] validation execution (operator)
i64.ctz 0x7A [i64] → [i64] validation execution (operator)
i64.popcnt 0x7B [i64] → [i64] validation execution (operator)
i64.add 0x7C [i64 i64] → [i64] validation execution (operator)
i64.sub 0x7D [i64 i64] → [i64] validation execution (operator)
i64.mul 0x7E [i64 i64] → [i64] validation execution (operator)
i64.div_s 0x7F [i64 i64] → [i64] validation execution (operator)
i64.div_u 0x80 [i64 i64] → [i64] validation execution (operator)
i64.rem_s 0x81 [i64 i64] → [i64] validation execution (operator)
i64.rem_u 0x82 [i64 i64] → [i64] validation execution (operator)
i64.and 0x83 [i64 i64] → [i64] validation execution (operator)
i64.or 0x84 [i64 i64] → [i64] validation execution (operator)
i64.xor 0x85 [i64 i64] → [i64] validation execution (operator)
i64.shl 0x86 [i64 i64] → [i64] validation execution (operator)
i64.shr_s 0x87 [i64 i64] → [i64] validation execution (operator)
i64.shr_u 0x88 [i64 i64] → [i64] validation execution (operator)
i64.rotl 0x89 [i64 i64] → [i64] validation execution (operator)
i64.rotr 0x8A [i64 i64] → [i64] validation execution (operator)
f32.abs 0x8B [f32] → [f32] validation execution (operator)
f32.neg 0x8C [f32] → [f32] validation execution (operator)
f32.ceil 0x8D [f32] → [f32] validation execution (operator)
f32.floor 0x8E [f32] → [f32] validation execution (operator)
f32.trunc 0x8F [f32] → [f32] validation execution (operator)
f32.nearest 0x90 [f32] → [f32] validation execution (operator)
f32.sqrt 0x91 [f32] → [f32] validation execution (operator)
f32.add 0x92 [f32 f32] → [f32] validation execution (operator)
f32.sub 0x93 [f32 f32] → [f32] validation execution (operator)
f32.mul 0x94 [f32 f32] → [f32] validation execution (operator)
f32.div 0x95 [f32 f32] → [f32] validation execution (operator)
f32.min 0x96 [f32 f32] → [f32] validation execution (operator)
f32.max 0x97 [f32 f32] → [f32] validation execution (operator)
f32.copysign 0x98 [f32 f32] → [f32] validation execution (operator)
f64.abs 0x99 [f64] → [f64] validation execution (operator)
f64.neg 0x9A [f64] → [f64] validation execution (operator)
f64.ceil 0x9B [f64] → [f64] validation execution (operator)
f64.floor 0x9C [f64] → [f64] validation execution (operator)
f64.trunc 0x9D [f64] → [f64] validation execution (operator)
f64.nearest 0x9E [f64] → [f64] validation execution (operator)
f64.sqrt 0x9F [f64] → [f64] validation execution (operator)
f64.add 0xA0 [f64 f64] → [f64] validation execution (operator)
f64.sub 0xA1 [f64 f64] → [f64] validation execution (operator)
f64.mul 0xA2 [f64 f64] → [f64] validation execution (operator)
f64.div 0xA3 [f64 f64] → [f64] validation execution (operator)
f64.min 0xA4 [f64 f64] → [f64] validation execution (operator)
f64.max 0xA5 [f64 f64] → [f64] validation execution (operator)
f64.copysign 0xA6 [f64 f64] → [f64] validation execution (operator)
i32.wrap_i64 0xA7 [i64] → [i32] validation execution (operator)
i32.trunc_f32_s 0xA8 [f32] → [i32] validation execution (operator)
i32.trunc_f32_u 0xA9 [f32] → [i32] validation execution (operator)

continues on next page

290 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i32.trunc_f64_s 0xAA [f64] → [i32] validation execution (operator)
i32.trunc_f64_u 0xAB [f64] → [i32] validation execution (operator)
i64.extend_i32_s 0xAC [i32] → [i64] validation execution (operator)
i64.extend_i32_u 0xAD [i32] → [i64] validation execution (operator)
i64.trunc_f32_s 0xAE [f32] → [i64] validation execution (operator)
i64.trunc_f32_u 0xAF [f32] → [i64] validation execution (operator)
i64.trunc_f64_s 0xB0 [f64] → [i64] validation execution (operator)
i64.trunc_f64_u 0xB1 [f64] → [i64] validation execution (operator)
f32.convert_i32_s 0xB2 [i32] → [f32] validation execution (operator)
f32.convert_i32_u 0xB3 [i32] → [f32] validation execution (operator)
f32.convert_i64_s 0xB4 [i64] → [f32] validation execution (operator)
f32.convert_i64_u 0xB5 [i64] → [f32] validation execution (operator)
f32.demote_f64 0xB6 [f64] → [f32] validation execution (operator)
f64.convert_i32_s 0xB7 [i32] → [f64] validation execution (operator)
f64.convert_i32_u 0xB8 [i32] → [f64] validation execution (operator)
f64.convert_i64_s 0xB9 [i64] → [f64] validation execution (operator)
f64.convert_i64_u 0xBA [i64] → [f64] validation execution (operator)
f64.promote_f32 0xBB [f32] → [f64] validation execution (operator)
i32.reinterpret_f32 0xBC [f32] → [i32] validation execution (operator)
i64.reinterpret_f64 0xBD [f64] → [i64] validation execution (operator)
f32.reinterpret_i32 0xBE [i32] → [f32] validation execution (operator)
f64.reinterpret_i64 0xBF [i64] → [f64] validation execution (operator)
i32.extend8_s 0xC0 [i32] → [i32] validation execution (operator)
i32.extend16_s 0xC1 [i32] → [i32] validation execution (operator)
i64.extend8_s 0xC2 [i64] → [i64] validation execution (operator)
i64.extend16_s 0xC3 [i64] → [i64] validation execution (operator)
i64.extend32_s 0xC4 [i64] → [i64] validation execution (operator)
(reserved) 0xC5

(reserved) 0xC6

(reserved) 0xC7

(reserved) 0xC8

(reserved) 0xC9

(reserved) 0xCA

(reserved) 0xCB

(reserved) 0xCC

(reserved) 0xCD

(reserved) 0xCE

(reserved) 0xCF

ref.null ht 0xD0 [] → [(ref null ht)] validation execution
ref.is_null 0xD1 [(ref null ht)] → [i32] validation execution
ref.func 𝑥 0xD2 [] → [ref ht] validation execution
ref.eq 0xD3 [eqref eqref] → [i32] validation execution
ref.as_non_null 0xD4 [(ref null ht)] → [(ref ht)] validation execution
br_on_null 𝑙 0xD5 [𝑡* (ref null ht)] → [𝑡* (ref ht)] validation execution
br_on_non_null 𝑙 0xD6 [𝑡* (ref null ht)] → [𝑡*] validation execution
(reserved) 0xD7

(reserved) 0xD8

(reserved) 0xD9

(reserved) 0xDA

(reserved) 0xDB

(reserved) 0xDC

(reserved) 0xDD

(reserved) 0xDE

(reserved) 0xDF

(reserved) 0xE0

continues on next page

7.9. Index of Instructions 291

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
(reserved) 0xE1

(reserved) 0xE2

(reserved) 0xE3

(reserved) 0xE4

(reserved) 0xE5

(reserved) 0xE6

(reserved) 0xE7

(reserved) 0xE8

(reserved) 0xE9

(reserved) 0xEA

(reserved) 0xEB

(reserved) 0xEC

(reserved) 0xED

(reserved) 0xEE

(reserved) 0xEF

(reserved) 0xF0

(reserved) 0xF1

(reserved) 0xF2

(reserved) 0xF3

(reserved) 0xF4

(reserved) 0xF5

(reserved) 0xF6

(reserved) 0xF7

(reserved) 0xF8

(reserved) 0xF9

(reserved) 0xFA

struct.new 𝑥 0xFB 0x00 [𝑡*] → [(ref 𝑥)] validation execution
struct.new_default 𝑥 0xFB 0x01 [] → [(ref 𝑥)] validation execution
struct.get 𝑥 𝑦 0xFB 0x02 [(ref null 𝑥)] → [𝑡] validation execution
struct.get_s 𝑥 𝑦 0xFB 0x03 [(ref null 𝑥)] → [i32] validation execution
struct.get_u 𝑥 𝑦 0xFB 0x04 [(ref null 𝑥)] → [i32] validation execution
struct.set 𝑥 𝑦 0xFB 0x05 [(ref null 𝑥) 𝑡] → [] validation execution
array.new 𝑥 0xFB 0x06 [𝑡] → [(ref 𝑥)] validation execution
array.new_default 𝑥 0xFB 0x07 [i32] → [(ref 𝑥)] validation execution
array.new_fixed 𝑥 𝑛 0xFB 0x08 [𝑡𝑛] → [(ref 𝑥)] validation execution
array.new_data 𝑥 𝑦 0xFB 0x09 [i32 i32] → [(ref 𝑥)] validation execution
array.new_elem 𝑥 𝑦 0xFB 0x0A [i32 i32] → [(ref 𝑥)] validation execution
array.get 𝑥 0xFB 0x0B [(ref null 𝑥) i32] → [𝑡] validation execution
array.get_s 𝑥 0xFB 0x0C [(ref null 𝑥) i32] → [i32] validation execution
array.get_u 𝑥 0xFB 0x0D [(ref null 𝑥) i32] → [i32] validation execution
array.set 𝑥 0xFB 0x0E [(ref null 𝑥) i32 𝑡] → [] validation execution
array.len 0xFB 0x0F [(ref null array)] → [i32] validation execution
array.fill 𝑥 0xFB 0x10 [(ref null 𝑥) i32 𝑡 i32] → [] validation execution
array.copy 𝑥 𝑦 0xFB 0x11 [(ref null 𝑥) i32 (ref null 𝑦) i32 i32] → [] validation execution
array.init_data 𝑥 𝑦 0xFB 0x12 [(ref null 𝑥) i32 i32 i32] → [] validation execution
array.init_elem 𝑥 𝑦 0xFB 0x13 [(ref null 𝑥) i32 i32 i32] → [] validation execution
ref.test (ref 𝑡) 0xFB 0x14 [(ref 𝑡′)] → [i32] validation execution
ref.test (ref null 𝑡) 0xFB 0x15 [(𝑅𝐸𝐹 null 𝑡′)] → [i32] validation execution
ref.cast (ref 𝑡) 0xFB 0x16 [(ref 𝑡′)] → [(ref 𝑡)] validation execution
ref.cast (ref null 𝑡) 0xFB 0x17 [(ref null 𝑡′)] → [(ref null 𝑡)] validation execution
br_on_cast 𝑡1 𝑡2 0xFB 0x18 [𝑡1] → [𝑡1 ∖ 𝑡2] validation execution
br_on_cast_fail 𝑡1 𝑡2 0xFB 0x19 [𝑡1] → [𝑡2] validation execution
any.convert_extern 0xFB 0x1A [(ref null extern)] → [(ref null any)] validation execution
extern.convert_any 0xFB 0x1B [(ref null any)] → [(ref null extern)] validation execution
ref.i31 0xFB 0x1C [i32] → [i31ref] validation execution

continues on next page

292 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i31.get_s 0xFB 0x1D [i31ref] → [i32] validation execution
i31.get_u 0xFB 0x1E [i31ref] → [i32] validation execution
(reserved) 0xFB 0x1E . . .
i32.trunc_sat_f32_s 0xFC 0x00 [f32] → [i32] validation execution (operator)
i32.trunc_sat_f32_u 0xFC 0x01 [f32] → [i32] validation execution (operator)
i32.trunc_sat_f64_s 0xFC 0x02 [f64] → [i32] validation execution (operator)
i32.trunc_sat_f64_u 0xFC 0x03 [f64] → [i32] validation execution (operator)
i64.trunc_sat_f32_s 0xFC 0x04 [f32] → [i64] validation execution (operator)
i64.trunc_sat_f32_u 0xFC 0x05 [f32] → [i64] validation execution (operator)
i64.trunc_sat_f64_s 0xFC 0x06 [f64] → [i64] validation execution (operator)
i64.trunc_sat_f64_u 0xFC 0x07 [f64] → [i64] validation execution (operator)
memory.init 𝑥 𝑦 0xFC 0x08 [i32 i32 i32] → [] validation execution
data.drop 𝑥 0xFC 0x09 [] → [] validation execution
memory.copy 𝑥 𝑦 0xFC 0x0A [i32 i32 i32] → [] validation execution
memory.fill 𝑦 0xFC 0x0B [i32 i32 i32] → [] validation execution
table.init 𝑥 𝑦 0xFC 0x0C [i32 i32 i32] → [] validation execution
elem.drop 𝑥 0xFC 0x0D [] → [] validation execution
table.copy 𝑥 𝑦 0xFC 0x0E [i32 i32 i32] → [] validation execution
table.grow 𝑥 0xFC 0x0F [𝑡 i32] → [i32] validation execution
table.size 𝑥 0xFC 0x10 [] → [i32] validation execution
table.fill 𝑥 0xFC 0x11 [i32 𝑡 i32] → [] validation execution
(reserved) 0xFC 0x1E . . .
v128.load 𝑥 memarg 0xFD 0x00 [i32] → [v128] validation execution
v128.load8x8_s 𝑥 memarg 0xFD 0x01 [i32] → [v128] validation execution
v128.load8x8_u 𝑥 memarg 0xFD 0x02 [i32] → [v128] validation execution
v128.load16x4_s 𝑥 memarg 0xFD 0x03 [i32] → [v128] validation execution
v128.load16x4_u 𝑥 memarg 0xFD 0x04 [i32] → [v128] validation execution
v128.load32x2_s 𝑥 memarg 0xFD 0x05 [i32] → [v128] validation execution
v128.load32x2_u 𝑥 memarg 0xFD 0x06 [i32] → [v128] validation execution
v128.load8_splat 𝑥 memarg 0xFD 0x07 [i32] → [v128] validation execution
v128.load16_splat 𝑥 memarg 0xFD 0x08 [i32] → [v128] validation execution
v128.load32_splat 𝑥 memarg 0xFD 0x09 [i32] → [v128] validation execution
v128.load64_splat 𝑥 memarg 0xFD 0x0A [i32] → [v128] validation execution
v128.store 𝑥 memarg 0xFD 0x0B [i32 v128] → [] validation execution
v128.const i128 0xFD 0x0C [] → [v128] validation execution
i8x16.shuffle laneidx 16 0xFD 0x0D [v128 v128] → [v128] validation execution
i8x16.swizzle 0xFD 0x0E [v128 v128] → [v128] validation execution
i8x16.splat 0xFD 0x0F [i32] → [v128] validation execution
i16x8.splat 0xFD 0x10 [i32] → [v128] validation execution
i32x4.splat 0xFD 0x11 [i32] → [v128] validation execution
i64x2.splat 0xFD 0x12 [i64] → [v128] validation execution
f32x4.splat 0xFD 0x13 [f32] → [v128] validation execution
f64x2.splat 0xFD 0x14 [f64] → [v128] validation execution
i8x16.extract_lane_s laneidx 0xFD 0x15 [v128] → [i32] validation execution
i8x16.extract_lane_u laneidx 0xFD 0x16 [v128] → [i32] validation execution
i8x16.replace_lane laneidx 0xFD 0x17 [v128 i32] → [v128] validation execution
i16x8.extract_lane_s laneidx 0xFD 0x18 [v128] → [i32] validation execution
i16x8.extract_lane_u laneidx 0xFD 0x19 [v128] → [i32] validation execution
i16x8.replace_lane laneidx 0xFD 0x1A [v128 i32] → [v128] validation execution
i32x4.extract_lane laneidx 0xFD 0x1B [v128] → [i32] validation execution
i32x4.replace_lane laneidx 0xFD 0x1C [v128 i32] → [v128] validation execution
i64x2.extract_lane laneidx 0xFD 0x1D [v128] → [i64] validation execution
i64x2.replace_lane laneidx 0xFD 0x1E [v128 i64] → [v128] validation execution
f32x4.extract_lane laneidx 0xFD 0x1F [v128] → [f32] validation execution
f32x4.replace_lane laneidx 0xFD 0x20 [v128 f32] → [v128] validation execution

continues on next page

7.9. Index of Instructions 293

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
f64x2.extract_lane laneidx 0xFD 0x21 [v128] → [f64] validation execution
f64x2.replace_lane laneidx 0xFD 0x22 [v128 f64] → [v128] validation execution
i8x16.eq 0xFD 0x23 [v128 v128] → [v128] validation execution (operator)
i8x16.ne 0xFD 0x24 [v128 v128] → [v128] validation execution (operator)
i8x16.lt_s 0xFD 0x25 [v128 v128] → [v128] validation execution (operator)
i8x16.lt_u 0xFD 0x26 [v128 v128] → [v128] validation execution (operator)
i8x16.gt_s 0xFD 0x27 [v128 v128] → [v128] validation execution (operator)
i8x16.gt_u 0xFD 0x28 [v128 v128] → [v128] validation execution (operator)
i8x16.le_s 0xFD 0x29 [v128 v128] → [v128] validation execution (operator)
i8x16.le_u 0xFD 0x2A [v128 v128] → [v128] validation execution (operator)
i8x16.ge_s 0xFD 0x2B [v128 v128] → [v128] validation execution (operator)
i8x16.ge_u 0xFD 0x2C [v128 v128] → [v128] validation execution (operator)
i16x8.eq 0xFD 0x2D [v128 v128] → [v128] validation execution (operator)
i16x8.ne 0xFD 0x2E [v128 v128] → [v128] validation execution (operator)
i16x8.lt_s 0xFD 0x2F [v128 v128] → [v128] validation execution (operator)
i16x8.lt_u 0xFD 0x30 [v128 v128] → [v128] validation execution (operator)
i16x8.gt_s 0xFD 0x31 [v128 v128] → [v128] validation execution (operator)
i16x8.gt_u 0xFD 0x32 [v128 v128] → [v128] validation execution (operator)
i16x8.le_s 0xFD 0x33 [v128 v128] → [v128] validation execution (operator)
i16x8.le_u 0xFD 0x34 [v128 v128] → [v128] validation execution (operator)
i16x8.ge_s 0xFD 0x35 [v128 v128] → [v128] validation execution (operator)
i16x8.ge_u 0xFD 0x36 [v128 v128] → [v128] validation execution (operator)
i32x4.eq 0xFD 0x37 [v128 v128] → [v128] validation execution (operator)
i32x4.ne 0xFD 0x38 [v128 v128] → [v128] validation execution (operator)
i32x4.lt_s 0xFD 0x39 [v128 v128] → [v128] validation execution (operator)
i32x4.lt_u 0xFD 0x3A [v128 v128] → [v128] validation execution (operator)
i32x4.gt_s 0xFD 0x3B [v128 v128] → [v128] validation execution (operator)
i32x4.gt_u 0xFD 0x3C [v128 v128] → [v128] validation execution (operator)
i32x4.le_s 0xFD 0x3D [v128 v128] → [v128] validation execution (operator)
i32x4.le_u 0xFD 0x3E [v128 v128] → [v128] validation execution (operator)
i32x4.ge_s 0xFD 0x3F [v128 v128] → [v128] validation execution (operator)
i32x4.ge_u 0xFD 0x40 [v128 v128] → [v128] validation execution (operator)
f32x4.eq 0xFD 0x41 [v128 v128] → [v128] validation execution (operator)
f32x4.ne 0xFD 0x42 [v128 v128] → [v128] validation execution (operator)
f32x4.lt 0xFD 0x43 [v128 v128] → [v128] validation execution (operator)
f32x4.gt 0xFD 0x44 [v128 v128] → [v128] validation execution (operator)
f32x4.le 0xFD 0x45 [v128 v128] → [v128] validation execution (operator)
f32x4.ge 0xFD 0x46 [v128 v128] → [v128] validation execution (operator)
f64x2.eq 0xFD 0x47 [v128 v128] → [v128] validation execution (operator)
f64x2.ne 0xFD 0x48 [v128 v128] → [v128] validation execution (operator)
f64x2.lt 0xFD 0x49 [v128 v128] → [v128] validation execution (operator)
f64x2.gt 0xFD 0x4A [v128 v128] → [v128] validation execution (operator)
f64x2.le 0xFD 0x4B [v128 v128] → [v128] validation execution (operator)
f64x2.ge 0xFD 0x4C [v128 v128] → [v128] validation execution (operator)
v128.not 0xFD 0x4D [v128] → [v128] validation execution (operator)
v128.and 0xFD 0x4E [v128 v128] → [v128] validation execution (operator)
v128.andnot 0xFD 0x4F [v128 v128] → [v128] validation execution (operator)
v128.or 0xFD 0x50 [v128 v128] → [v128] validation execution (operator)
v128.xor 0xFD 0x51 [v128 v128] → [v128] validation execution (operator)
v128.bitselect 0xFD 0x52 [v128 v128 v128] → [v128] validation execution (operator)
v128.any_true 0xFD 0x53 [v128] → [i32] validation execution
v128.load8_lane memarg laneidx 0xFD 0x54 [i32 v128] → [v128] validation execution
v128.load16_lane memarg laneidx 0xFD 0x55 [i32 v128] → [v128] validation execution
v128.load32_lane memarg laneidx 0xFD 0x56 [i32 v128] → [v128] validation execution
v128.load64_lane memarg laneidx 0xFD 0x57 [i32 v128] → [v128] validation execution

continues on next page

294 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
v128.store8_lane memarg laneidx 0xFD 0x58 [i32 v128] → [] validation execution
v128.store16_lane memarg laneidx 0xFD 0x59 [i32 v128] → [] validation execution
v128.store32_lane memarg laneidx 0xFD 0x5A [i32 v128] → [] validation execution
v128.store64_lane memarg laneidx 0xFD 0x5B [i32 v128] → [] validation execution
v128.load32_zero memarg 0xFD 0x5C [i32] → [v128] validation execution
v128.load64_zero memarg 0xFD 0x5D [i32] → [v128] validation execution
f32x4.demote_f64x2_zero 0xFD 0x5E [v128] → [v128] validation execution (operator)
f64x2.promote_low_f32x4 0xFD 0x5F [v128] → [v128] validation execution (operator)
i8x16.abs 0xFD 0x60 [v128] → [v128] validation execution (operator)
i8x16.neg 0xFD 0x61 [v128] → [v128] validation execution (operator)
i8x16.popcnt 0xFD 0x62 [v128] → [v128] validation execution (operator)
i8x16.all_true 0xFD 0x63 [v128] → [i32] validation execution
i8x16.bitmask 0xFD 0x64 [v128] → [i32] validation execution
i8x16.narrow_i16x8_s 0xFD 0x65 [v128 v128] → [v128] validation execution
i8x16.narrow_i16x8_u 0xFD 0x66 [v128 v128] → [v128] validation execution
f32x4.ceil 0xFD 0x67 [v128] → [v128] validation execution (operator)
f32x4.floor 0xFD 0x68 [v128] → [v128] validation execution (operator)
f32x4.trunc 0xFD 0x69 [v128] → [v128] validation execution (operator)
f32x4.nearest 0xFD 0x6A [v128] → [v128] validation execution (operator)
i8x16.shl 0xFD 0x6B [v128 i32] → [v128] validation execution (operator)
i8x16.shr_s 0xFD 0x6C [v128 i32] → [v128] validation execution (operator)
i8x16.shr_u 0xFD 0x6D [v128 i32] → [v128] validation execution (operator)
i8x16.add 0xFD 0x6E [v128 v128] → [v128] validation execution (operator)
i8x16.add_sat_s 0xFD 0x6F [v128 v128] → [v128] validation execution (operator)
i8x16.add_sat_u 0xFD 0x70 [v128 v128] → [v128] validation execution (operator)
i8x16.sub 0xFD 0x71 [v128 v128] → [v128] validation execution (operator)
i8x16.sub_sat_s 0xFD 0x72 [v128 v128] → [v128] validation execution (operator)
i8x16.sub_sat_u 0xFD 0x73 [v128 v128] → [v128] validation execution (operator)
f64x2.ceil 0xFD 0x74 [v128] → [v128] validation execution (operator)
f64x2.floor 0xFD 0x75 [v128] → [v128] validation execution (operator)
i8x16.min_s 0xFD 0x76 [v128 v128] → [v128] validation execution (operator)
i8x16.min_u 0xFD 0x77 [v128 v128] → [v128] validation execution (operator)
i8x16.max_s 0xFD 0x78 [v128 v128] → [v128] validation execution (operator)
i8x16.max_u 0xFD 0x79 [v128 v128] → [v128] validation execution (operator)
f64x2.trunc 0xFD 0x7A [v128] → [v128] validation execution (operator)
i8x16.avgr_u 0xFD 0x7B [v128 v128] → [v128] validation execution (operator)
i16x8.extadd_pairwise_i8x16_s 0xFD 0x7C [v128] → [v128] validation execution
i16x8.extadd_pairwise_i8x16_u 0xFD 0x7D [v128] → [v128] validation execution
i32x4.extadd_pairwise_i16x8_s 0xFD 0x7E [v128] → [v128] validation execution
i32x4.extadd_pairwise_i16x8_u 0xFD 0x7F [v128] → [v128] validation execution
i16x8.abs 0xFD 0x80 0x01 [v128] → [v128] validation execution (operator)
i16x8.neg 0xFD 0x81 0x01 [v128] → [v128] validation execution (operator)
i16x8.q15mulr_sat_s 0xFD 0x82 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.all_true 0xFD 0x83 0x01 [v128] → [i32] validation execution
i16x8.bitmask 0xFD 0x84 0x01 [v128] → [i32] validation execution
i16x8.narrow_i32x4_s 0xFD 0x85 0x01 [v128 v128] → [v128] validation execution
i16x8.narrow_i32x4_u 0xFD 0x86 0x01 [v128 v128] → [v128] validation execution
i16x8.extend_low_i8x16_s 0xFD 0x87 0x01 [v128] → [v128] validation execution
i16x8.extend_high_i8x16_s 0xFD 0x88 0x01 [v128] → [v128] validation execution
i16x8.extend_low_i8x16_u 0xFD 0x89 0x01 [v128] → [v128] validation execution
i16x8.extend_high_i8x16_u 0xFD 0x8A 0x01 [v128] → [v128] validation execution
i16x8.shl 0xFD 0x8B 0x01 [v128 i32] → [v128] validation execution (operator)
i16x8.shr_s 0xFD 0x8C 0x01 [v128 i32] → [v128] validation execution (operator)
i16x8.shr_u 0xFD 0x8D 0x01 [v128 i32] → [v128] validation execution (operator)
i16x8.add 0xFD 0x8E 0x01 [v128 v128] → [v128] validation execution (operator)

continues on next page

7.9. Index of Instructions 295

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i16x8.add_sat_s 0xFD 0x8F 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.add_sat_u 0xFD 0x90 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.sub 0xFD 0x91 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.sub_sat_s 0xFD 0x92 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.sub_sat_u 0xFD 0x93 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.nearest 0xFD 0x94 0x01 [v128] → [v128] validation execution (operator)
i16x8.mul 0xFD 0x95 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.min_s 0xFD 0x96 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.min_u 0xFD 0x97 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.max_s 0xFD 0x98 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.max_u 0xFD 0x99 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0x9A 0x01

i16x8.avgr_u 0xFD 0x9B 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.extmul_low_i8x16_s 0xFD 0x9C 0x01 [v128 v128] → [v128] validation execution
i16x8.extmul_high_i8x16_s 0xFD 0x9D 0x01 [v128 v128] → [v128] validation execution
i16x8.extmul_low_i8x16_u 0xFD 0x9E 0x01 [v128 v128] → [v128] validation execution
i16x8.extmul_high_i8x16_u 0xFD 0x9F 0x01 [v128 v128] → [v128] validation execution
i32x4.abs 0xFD 0xA0 0x01 [v128] → [v128] validation execution (operator)
i32x4.neg 0xFD 0xA1 0x01 [v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xA2 0x01

i32x4.all_true 0xFD 0xA3 0x01 [v128] → [i32] validation execution
i32x4.bitmask 0xFD 0xA4 0x01 [v128] → [i32] validation execution
(reserved) 0xFD 0xA5 0x01

(reserved) 0xFD 0xA6 0x01

i32x4.extend_low_i16x8_s 0xFD 0xA7 0x01 [v128] → [v128] validation execution
i32x4.extend_high_i16x8_s 0xFD 0xA8 0x01 [v128] → [v128] validation execution
i32x4.extend_low_i16x8_u 0xFD 0xA9 0x01 [v128] → [v128] validation execution
i32x4.extend_high_i16x8_u 0xFD 0xAA 0x01 [v128] → [v128] validation execution
i32x4.shl 0xFD 0xAB 0x01 [v128 i32] → [v128] validation execution (operator)
i32x4.shr_s 0xFD 0xAC 0x01 [v128 i32] → [v128] validation execution (operator)
i32x4.shr_u 0xFD 0xAD 0x01 [v128 i32] → [v128] validation execution (operator)
i32x4.add 0xFD 0xAE 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xAF 0x01

(reserved) 0xFD 0xB0 0x01

i32x4.sub 0xFD 0xB1 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xB2 0x01

(reserved) 0xFD 0xB3 0x01

(reserved) 0xFD 0xB4 0x01

i32x4.mul 0xFD 0xB5 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.min_s 0xFD 0xB6 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.min_u 0xFD 0xB7 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.max_s 0xFD 0xB8 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.max_u 0xFD 0xB9 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.dot_i16x8_s 0xFD 0xBA 0x01 [v128 v128] → [v128] validation execution
i32x4.extmul_low_i16x8_s 0xFD 0xBC 0x01 [v128 v128] → [v128] validation execution
i32x4.extmul_high_i16x8_s 0xFD 0xBD 0x01 [v128 v128] → [v128] validation execution
i32x4.extmul_low_i16x8_u 0xFD 0xBE 0x01 [v128 v128] → [v128] validation execution
i32x4.extmul_high_i16x8_u 0xFD 0xBF 0x01 [v128 v128] → [v128] validation execution
i64x2.abs 0xFD 0xC0 0x01 [v128] → [v128] validation execution (operator)
i64x2.neg 0xFD 0xC1 0x01 [v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xC2 0x01

i64x2.all_true 0xFD 0xC3 0x01 [v128] → [i32] validation execution
i64x2.bitmask 0xFD 0xC4 0x01 [v128] → [i32] validation execution
(reserved) 0xFD 0xC5 0x01

(reserved) 0xFD 0xC6 0x01

continues on next page

296 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i64x2.extend_low_i32x4_s 0xFD 0xC7 0x01 [v128] → [v128] validation execution
i64x2.extend_high_i32x4_s 0xFD 0xC8 0x01 [v128] → [v128] validation execution
i64x2.extend_low_i32x4_u 0xFD 0xC9 0x01 [v128] → [v128] validation execution
i64x2.extend_high_i32x4_u 0xFD 0xCA 0x01 [v128] → [v128] validation execution
i64x2.shl 0xFD 0xCB 0x01 [v128 i32] → [v128] validation execution (operator)
i64x2.shr_s 0xFD 0xCC 0x01 [v128 i32] → [v128] validation execution (operator)
i64x2.shr_u 0xFD 0xCD 0x01 [v128 i32] → [v128] validation execution (operator)
i64x2.add 0xFD 0xCE 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xCF 0x01

(reserved) 0xFD 0xD0 0x01

i64x2.sub 0xFD 0xD1 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xD2 0x01

(reserved) 0xFD 0xD3 0x01

(reserved) 0xFD 0xD4 0x01

i64x2.mul 0xFD 0xD5 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.eq 0xFD 0xD6 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.ne 0xFD 0xD7 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.lt_s 0xFD 0xD8 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.gt_s 0xFD 0xD9 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.le_s 0xFD 0xDA 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.ge_s 0xFD 0xDB 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.extmul_low_i32x4_s 0xFD 0xDC 0x01 [v128 v128] → [v128] validation execution
i64x2.extmul_high_i32x4_s 0xFD 0xDD 0x01 [v128 v128] → [v128] validation execution
i64x2.extmul_low_i32x4_u 0xFD 0xDE 0x01 [v128 v128] → [v128] validation execution
i64x2.extmul_high_i32x4_u 0xFD 0xDF 0x01 [v128 v128] → [v128] validation execution
f32x4.abs 0xFD 0xE0 0x01 [v128] → [v128] validation execution (operator)
f32x4.neg 0xFD 0xE1 0x01 [v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xE2 0x01

f32x4.sqrt 0xFD 0xE3 0x01 [v128] → [v128] validation execution (operator)
f32x4.add 0xFD 0xE4 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.sub 0xFD 0xE5 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.mul 0xFD 0xE6 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.div 0xFD 0xE7 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.min 0xFD 0xE8 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.max 0xFD 0xE9 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.pmin 0xFD 0xEA 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.pmax 0xFD 0xEB 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.abs 0xFD 0xEC 0x01 [v128] → [v128] validation execution (operator)
f64x2.neg 0xFD 0xED 0x01 [v128] → [v128] validation execution (operator)
f64x2.sqrt 0xFD 0xEF 0x01 [v128] → [v128] validation execution (operator)
f64x2.add 0xFD 0xF0 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.sub 0xFD 0xF1 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.mul 0xFD 0xF2 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.div 0xFD 0xF3 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.min 0xFD 0xF4 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.max 0xFD 0xF5 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.pmin 0xFD 0xF6 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.pmax 0xFD 0xF7 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.trunc_sat_f32x4_s 0xFD 0xF8 0x01 [v128] → [v128] validation execution (operator)
i32x4.trunc_sat_f32x4_u 0xFD 0xF9 0x01 [v128] → [v128] validation execution (operator)
f32x4.convert_i32x4_s 0xFD 0xFA 0x01 [v128] → [v128] validation execution (operator)
f32x4.convert_i32x4_u 0xFD 0xFB 0x01 [v128] → [v128] validation execution (operator)
i32x4.trunc_sat_f64x2_s_zero 0xFD 0xFC 0x01 [v128] → [v128] validation execution (operator)
i32x4.trunc_sat_f64x2_u_zero 0xFD 0xFD 0x01 [v128] → [v128] validation execution (operator)
f64x2.convert_low_i32x4_s 0xFD 0xFE 0x01 [v128] → [v128] validation execution (operator)

continues on next page

7.9. Index of Instructions 297

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
f64x2.convert_low_i32x4_u 0xFD 0xFF 0x01 [v128] → [v128] validation execution (operator)
(reserved) 0xFD 0x00 0x02 . . .
(reserved) 0xFE

(reserved) 0xFF

Note: Multi-byte opcodes are given with the shortest possible encoding in the table. However, what is following
the first byte is actually a u32 with variable-length encoding and consequently has multiple possible representations.

7.10 Index of Semantic Rules

7.10.1 Well-formedness of Types

Construct Judgement
Numeric type 𝐶 ⊢ numtype ok
Vector type 𝐶 ⊢ vectype ok
Heap type 𝐶 ⊢ heaptype ok
Reference type 𝐶 ⊢ reftype ok
Value type 𝐶 ⊢ valtype ok
Packed type 𝐶 ⊢ packedtype ok
Storage type 𝐶 ⊢ storagetype ok
Field type 𝐶 ⊢ fieldtype ok
Result type 𝐶 ⊢ resulttype ok
Instruction type 𝐶 ⊢ instrtype ok
Function type 𝐶 ⊢ functype ok
Structure type 𝐶 ⊢ structtype ok
Array type 𝐶 ⊢ arraytype ok
Composite type 𝐶 ⊢ comptype ok
Sub type 𝐶 ⊢ subtype ok
Recursive type 𝐶 ⊢ rectype ok
Defined type 𝐶 ⊢ deftype ok
Block type 𝐶 ⊢ blocktype : instrtype
Table type 𝐶 ⊢ tabletype ok
Memory type 𝐶 ⊢ memtype ok
Global type 𝐶 ⊢ globaltype ok
Tag type 𝐶 ⊢ tagtype ok
External type 𝐶 ⊢ externtype ok
Type definitions 𝐶 ⊢ type* ok

298 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.10.2 Typing of Static Constructs

Construct Judgement
Instruction 𝑆;𝐶 ⊢ instr : functype
Instruction sequence 𝑆;𝐶 ⊢ instr* : functype
Catch clause 𝐶 ⊢ catch ok
Expression 𝐶 ⊢ expr : resulttype
Function 𝐶 ⊢ func : functype
Local 𝐶 ⊢ local : localtype
Table 𝐶 ⊢ table : tabletype
Memory 𝐶 ⊢ mem : memtype
Limits 𝐶 ⊢ limits : 𝑘
Global 𝐶 ⊢ global : globaltype
Tag 𝐶 ⊢ tag : tagtype
Element segment 𝐶 ⊢ elem : reftype
Element mode 𝐶 ⊢ elemmode : reftype
Data segment 𝐶 ⊢ data ok
Data mode 𝐶 ⊢ datamode ok
Start function 𝐶 ⊢ start ok
Export 𝐶 ⊢ export : externtype
Export description 𝐶 ⊢ exportdesc : externtype
Import 𝐶 ⊢ import : externtype
Import description 𝐶 ⊢ importdesc : externtype
Module ⊢ module : externtype* → externtype*

7.10.3 Typing of Runtime Constructs

Construct Judgement
Value 𝑆 ⊢ val : valtype
Result 𝑆 ⊢ result : resulttype
Packed value 𝑆 ⊢ packedval : packedtype
Field value 𝑆 ⊢ fieldval : storagetype
External value 𝑆 ⊢ externval : externtype
Function instance 𝑆 ⊢ funcinst : functype
Table instance 𝑆 ⊢ tableinst : tabletype
Memory instance 𝑆 ⊢ meminst : memtype
Global instance 𝑆 ⊢ globalinst : globaltype
Tag instance 𝑆 ⊢ taginst : tagtype
Element instance 𝑆 ⊢ eleminst : 𝑡
Data instance 𝑆 ⊢ datainst ok
Structure instance 𝑆 ⊢ structinst ok
Array instance 𝑆 ⊢ arrayinst ok
Export instance 𝑆 ⊢ exportinst ok
Module instance 𝑆 ⊢ moduleinst : 𝐶
Store ⊢ store ok
Configuration ⊢ config ok
Thread 𝑆; resulttype? ⊢ thread : resulttype
Frame 𝑆 ⊢ frame : 𝐶

7.10. Index of Semantic Rules 299

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.10.4 Defaultability

Construct Judgement
Defaultable value type 𝐶 ⊢ valtype defaultable

7.10.5 Constantness

Construct Judgement
Constant expression 𝐶 ⊢ expr const
Constant instruction 𝐶 ⊢ instr const

7.10.6 Matching

Construct Judgement
Number type 𝐶 ⊢ numtype1 ≤ numtype2
Vector type 𝐶 ⊢ vectype1 ≤ vectype2
Heap type 𝐶 ⊢ heaptype1 ≤ heaptype2
Reference type 𝐶 ⊢ reftype1 ≤ reftype2
Value type 𝐶 ⊢ valtype1 ≤ valtype2
Packed type 𝐶 ⊢ packedtype1 ≤ packedtype2
Storage type 𝐶 ⊢ storagetype1 ≤ storagetype2
Field type 𝐶 ⊢ fieldtype1 ≤ fieldtype2
Result type 𝐶 ⊢ resulttype1 ≤ resulttype2
Instruction type 𝐶 ⊢ instrtype1 ≤ instrtype2
Function type 𝐶 ⊢ functype1 ≤ functype2
Structure type 𝐶 ⊢ structtype1 ≤ structtype2
Array type 𝐶 ⊢ arraytype1 ≤ arraytype2
Composite type 𝐶 ⊢ comptype1 ≤ comptype2
Defined type 𝐶 ⊢ deftype1 ≤ deftype2
Table type 𝐶 ⊢ tabletype1 ≤ tabletype2
Memory type 𝐶 ⊢ memtype1 ≤ memtype2
Global type 𝐶 ⊢ globaltype1 ≤ globaltype2
Tag type 𝐶 ⊢ tagtype1 ≤ tagtype2
External type 𝐶 ⊢ externtype1 ≤ externtype2
Limits 𝐶 ⊢ limits1 ≤ limits2

300 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

7.10.7 Store Extension

Construct Judgement
Function instance ⊢ funcinst1 ⪯ funcinst2
Table instance ⊢ tableinst1 ⪯ tableinst2
Memory instance ⊢ meminst1 ⪯ meminst2
Global instance ⊢ globalinst1 ⪯ globalinst2
Tag instance ⊢ taginst1 ⪯ taginst2
Element instance ⊢ eleminst1 ⪯ eleminst2
Data instance ⊢ datainst1 ⪯ datainst2
Structure instance ⊢ structinst1 ⪯ structinst2
Array instance ⊢ arrayinst1 ⪯ arrayinst2
Store ⊢ store1 ⪯ store2

7.10.8 Execution

Construct Judgement
Instruction 𝑆;𝐹 ; instr* →˓ 𝑆′;𝐹 ′; instr ′

*

Expression 𝑆;𝐹 ; expr →˓ 𝑆′;𝐹 ′; expr ′

7.10. Index of Semantic Rules 301

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

302 Chapter 7. Appendix

Index

Symbols
: abstract syntax

administrative instruction, 91

A
abbreviations, 214
abstract syntax, 5, 187, 213, 254

array address, 86
array instance, 89
array type, 12, 34
block type, 20, 33
byte, 7
composite type, 12, 34
data, 25, 76
data address, 86
data index, 22
data instance, 89
defined type, 28, 36, 43
element, 24, 75
element address, 86
element index, 22
element instance, 89
element mode, 24
exception address, 86
exception instance, 90
export, 25, 77
export instance, 89
expression, 22, 71, 176
external type, 13, 38
external value, 89
field index, 22
field type, 12, 34, 35
field value, 89
floating-point number, 7
frame, 90
function, 23, 73
function address, 86
function index, 22
function instance, 87
function type, 12, 34
global, 24, 74
global address, 86
global index, 22

global instance, 88
global type, 13, 38
grammar, 5
handler, 90
heap type, 9, 27, 32
host address, 86
import, 26, 79
instruction, 14, 15, 17–20, 46, 47, 53, 56–58,

60, 62, 121, 123, 138, 146–148, 154, 163
instruction type, 29, 34
integer, 7
label, 90
label index, 22
limits, 12, 37
local, 23, 73
local index, 22
local type, 29
memory, 24, 74
memory address, 86
memory index, 22
memory instance, 88
memory type, 13, 37
module, 22, 80
module instance, 87
mutability, 13
name, 8
notation, 5
number type, 9, 32
packed type, 12, 35
packed value, 89
recursive type, 12, 35
recursive type index, 27
reference type, 10, 33
result, 86
result type, 11, 34
signed integer, 7
start function, 25, 77
storage type, 12, 35
store, 86
structure address, 86
structure instance, 89
structure type, 12, 34
sub type, 12, 27, 35
table, 24, 74

303

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

table address, 86
table index, 22
table instance, 88
table type, 13, 37
tag, 13, 24, 75
tag address, 86
tag index, 22
tag instance, 88
tag type, 37
type, 9, 72
type definition, 23
type index, 22
uninterpreted integer, 7
unsigned integer, 7
value, 6, 85
value type, 11, 27, 33, 35
vector, 6, 8
vector type, 32

abstract type, 9, 27
activation, 90
active, 24, 25
address, 86, 147, 148, 154, 163, 176

array, 86
data, 86
element, 86
exception, 86
function, 86
global, 86
host, 86
memory, 86
structure, 86
table, 86
tag, 86

administrative instruction, 265, 266
: abstract syntax, 91

administrative instructions, 91
aggreagate type, 12
aggregate reference, 48
aggregate type, 12, 23, 34, 42, 192, 220

binary format, 192
text format, 220
validation, 34

algorithm, 273
allocation, 86, 176, 246, 255
arithmetic NaN, 7
array, 85, 118

address, 86
instance, 89

array address
abstract syntax, 86

array instance, 86, 89, 118, 259, 262, 270
abstract syntax, 89

array type, 12, 12, 34, 40, 42, 89, 118, 192, 220, 221,
259, 273, 285, 286

abstract syntax, 12
binary format, 192
text format, 220
validation, 34

ASCII, 215, 216, 218

B
binary format, 8, 187, 246, 254, 273, 281
aggregate type, 192
array type, 192
block type, 193
byte, 189
composite type, 192
custom section, 207
data, 210
data count, 210
data index, 206
element, 209
element index, 206
export, 209
expression, 206
field index, 206
field type, 192
floating-point number, 189
function, 208, 210
function index, 206
function type, 191
global, 208
global index, 206
global type, 193
grammar, 187
heap type, 190
import, 208
instruction, 193–197, 200
integer, 189
label index, 206
limits, 192
local, 210
local index, 206
memory, 208
memory index, 206
memory type, 192
module, 211
mutability, 193
name, 189
notation, 187
number type, 190
packed type, 192
recursive type, 192
reference type, 191
result type, 191
section, 206
signed integer, 189
start function, 209
storage type, 192
structure type, 192
sub type, 192
table, 208
table index, 206
table type, 193
tag, 211
tag index, 206

304 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

tag type, 193
type, 190
type index, 206
type section, 207
uninterpreted integer, 189
unsigned integer, 189
value, 188
value type, 191
vector, 188
vector type, 190

bit, 95
bit width, 7, 9, 12, 94, 154
block, 20, 62, 163, 172, 193, 222, 283

type, 20
block context, 92
block type, 20, 33, 62, 193

abstract syntax, 20
binary format, 193
validation, 33

Boolean, 3, 95, 96
bottom type, 27, 256
branch, 20, 62, 92, 163, 193, 222
byte, 7, 8, 25, 76, 88, 89, 96, 178, 187, 189, 210, 218,

239, 241, 250, 261, 262
abstract syntax, 7
binary format, 189
text format, 218

C
call, 90, 91, 174
canonical NaN, 7
cast, 17
catch clause, 93
catching try block, 20
caught, 91
caught exception, 91
changes, 283
character, 2, 8, 215, 215, 216, 218, 254, 255

text format, 215
closed type, 27
closure, 87
code, 14, 254
section, 210

code section, 210
comment, 215, 216
composite type, 12, 12, 34, 35, 192, 221, 273, 285,

286
abstract syntax, 12
binary format, 192
text format, 221
validation, 34

composite types, 42
compositionality, 273
concepts, 3
concrete type, 9, 27
configuration, 84, 93, 265, 270
constant, 22, 24, 25, 71, 74–76, 85

context, 30, 45, 57, 58, 60, 62, 80, 211, 256, 263, 265,
266

control instruction, 20
control instructions, 62, 163, 193, 222
custom section, 207, 281
binary format, 207

D
data, 22, 24, 25, 76, 80, 91, 179, 210, 211, 239, 241,

242, 254
abstract syntax, 25
address, 86
binary format, 210
index, 22
instance, 89
section, 210
segment, 25, 76, 210, 239, 241
text format, 239, 241
validation, 76

data address, 87, 179
abstract syntax, 86

data count, 210
binary format, 210
section, 210

data count section, 210
data index, 22, 25, 206, 236
abstract syntax, 22
binary format, 206
text format, 236

data instance, 86, 87, 89, 179, 262, 269
abstract syntax, 89

data section, 210
data segment, 88, 89, 210, 284
declarative, 24
decoding, 4
default value, 85
defaultable, 39, 74
defined type, 13, 28, 29, 36, 40, 43, 72, 89, 117, 259,

262, 273
abstract syntax, 28, 36, 43

design goals, 1
determinism, 94, 121
dynamic type, 117

E
element, 13, 22, 24, 24, 75, 80, 91, 179, 209, 211, 238,

240, 242, 249, 254
abstract syntax, 24
address, 86
binary format, 209
index, 22
instance, 89
mode, 24
section, 209
segment, 24, 75, 209, 238, 240
text format, 238, 240
validation, 75

element address, 87, 148, 179

Index 305

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

abstract syntax, 86
element expression, 89
element index, 22, 24, 206, 236

abstract syntax, 22
binary format, 206
text format, 236

element instance, 86, 87, 89, 148, 179, 262, 269
abstract syntax, 89

element mode, 24
abstract syntax, 24

element section, 209
element segment, 88, 89, 283, 284
element type, 43
embedder, 2, 3, 86, 88, 89, 245
embedding, 245
evaluation context, 84, 93
exception, 20, 86, 90, 91, 93, 172, 173, 183, 186, 258,

286
address, 86
instance, 90

exception address, 86
abstract syntax, 86

exception handler, 90
exception handling, 193
exception instance, 86, 90, 263, 270

abstract syntax, 90
exception tag, 13, 37, 75, 88, 120, 173, 193, 211,

239
tag, 13

execution, 4, 9, 11, 83, 255
expression, 176
instruction, 121, 123, 138, 146–148, 154, 163

expand, 36
expansion, 29
exponent, 7, 96
export, 22, 25, 77, 80, 89, 180, 186, 209, 211, 237–

240, 242, 247, 248, 254, 284
abstract syntax, 25
binary format, 209
instance, 89
section, 209
text format, 237–240
validation, 77

export instance, 87, 89, 180, 248, 263
abstract syntax, 89

export section, 209
expression, 22, 23–25, 71, 73–76, 176, 206, 208–210,

235, 238–241
abstract syntax, 22
binary format, 206
constant, 22, 71, 206, 235
execution, 176
text format, 235
validation, 71

extern type, 266
extern value, 266
external
type, 13

value, 89
external reference, 53, 85
external type, 13, 38, 44, 120, 180, 253, 263
abstract syntax, 13
validation, 38

external value, 13, 89, 89, 120, 180, 263
abstract syntax, 89

F
field, 22, 283

index, 22
field index, 22, 206, 283
abstract syntax, 22
binary format, 206

field type, 12, 34, 35, 42, 192, 220, 262, 263, 270,
273, 285, 286

abstract syntax, 12
binary format, 192
text format, 220
validation, 35

field value, 89, 262, 263, 270
abstract syntax, 89

file extension, 187, 213
final, 12, 35
floating point, 2
floating-point, 3, 7, 8, 9, 14, 85, 94, 95, 104, 283
floating-point number, 189, 217

abstract syntax, 7
binary format, 189
text format, 217

folded instruction, 235
frame, 90, 91, 93, 147, 148, 154, 163, 174, 255, 265–

267, 273
abstract syntax, 90

function, 2, 3, 10–12, 20, 22, 23, 25, 26, 30, 73, 80,
87, 89–91, 118, 174, 177, 180, 186, 208, 210,
211, 237, 242, 248, 254, 255, 282, 283, 285

abstract syntax, 23, 73
address, 86
binary format, 208, 210
export, 25
import, 26
index, 22
instance, 87
section, 208
text format, 237
type, 12

function address, 88, 89, 91, 120, 177, 180, 186,
248, 249, 261, 266

abstract syntax, 86
function index, 20, 22, 23–26, 62, 73, 75, 77, 163,

180, 193, 206, 209, 222, 236–238, 240, 282
abstract syntax, 22
binary format, 206
text format, 236

function instance, 86, 87, 87, 91, 118, 174, 177,
180, 186, 248, 255, 259, 260, 267, 268

abstract syntax, 87

306 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

function section, 208
function type, 10, 12, 12, 13, 20, 22, 23, 26, 27, 30,

34, 37, 38, 40, 41, 44, 73, 75, 79, 80, 87, 118,
120, 121, 177, 186, 191–193, 208, 210, 211,
220, 221, 237, 239, 242, 248, 251, 259, 260,
266, 273, 285

abstract syntax, 12
binary format, 191
text format, 220
validation, 34

function type index, 211

G
global, 13, 19, 22, 24, 25, 26, 30, 74, 80, 88, 89, 178,

180, 208, 211, 239, 242, 252, 254
abstract syntax, 24
address, 86
binary format, 208
export, 25
import, 26
index, 22
instance, 88
mutability, 13
section, 208
text format, 239
type, 13
validation, 74

global address, 87, 89, 120, 147, 178, 180, 252
abstract syntax, 86

global index, 19, 22, 24–26, 57, 77, 147, 180, 195,
206, 209, 224, 236, 239, 240

abstract syntax, 22
binary format, 206
text format, 236

global instance, 86, 87, 88, 147, 178, 180, 252, 255,
259, 261, 267, 269

abstract syntax, 88
global section, 208
global type, 13, 13, 24, 26, 27, 30, 38, 44, 74, 79,

120, 178, 193, 208, 222, 237, 239, 252, 259,
261

abstract syntax, 13
binary format, 193
text format, 222
validation, 38

grammar notation, 5, 187, 213
greatest lower bound, 272
grow, 179, 180

H
handler, 90, 91, 93, 173, 267, 286
abstract syntax, 90

heap type, 9, 10, 17, 18, 27, 32, 33, 40, 190, 219, 238,
256, 258, 285, 286

abstract syntax, 9, 27
binary format, 190
text format, 219
validation, 32

host, 2, 86, 245
address, 86

host address, 85
abstract syntax, 86

host function, 87, 175, 177, 248, 260

I
identifier, 213, 214, 237–239, 242, 255
identifier context, 214, 242
identifiers, 218
text format, 218

IEEE 754, 2, 3, 7, 9, 96, 104
implementation, 245, 253
implementation limitations, 253
import, 2, 13, 22–24, 26, 73, 79, 80, 120, 180, 208,

211, 237–240, 242, 247, 254, 284
abstract syntax, 26
binary format, 208
section, 208
text format, 237–240
validation, 79

import section, 208
index, 22, 25, 26, 77, 87, 206, 209, 214, 222, 236–240,

282
data, 22
element, 22
field, 22
function, 22
global, 22
label, 22
local, 22
memory, 22
table, 22
tag, 22
type, 22

index space, 22, 26, 27, 30, 214, 282
instance, 87, 183
array, 89
data, 89
element, 89
exception, 90
export, 89
function, 87
global, 88
memory, 88
module, 87
structure, 89
table, 88
tag, 88

instantiation, 4, 9, 25, 26, 183, 247, 270
instantiation. module, 27
instruction, 3, 11, 14, 22, 29, 45, 70, 88, 90–93, 121,

172, 193, 222, 254, 265, 267, 271, 273, 283–
287

abstract syntax, 14, 15, 17–20
binary format, 193–197, 200
execution, 121, 123, 138, 146–148, 154, 163
text format, 222–225, 227, 230

Index 307

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

type, 29
validation, 46, 47, 53, 56–58, 60, 62

instruction sequence, 70, 172
instruction type, 29, 33, 34, 41, 45, 89, 271–273,

285
abstract syntax, 29
validation, 34

instructions, 284
integer, 3, 7, 8, 9, 14, 85, 94–96, 148, 154, 189, 217,

283
abstract syntax, 7
binary format, 189
signed, 7
text format, 217
uninterpreted, 7
unsigned, 7

invocation, 4, 87, 186, 249, 270

K
keyword, 215

L
label, 20, 62, 90, 91, 93, 163, 174, 193, 222, 255, 267,

273
abstract syntax, 90
index, 22

label index, 20, 22, 62, 163, 193, 206, 222, 236
abstract syntax, 22
binary format, 206
text format, 222, 236

lane, 8, 96
least upper bound, 272
LEB128, 189, 193
lexical format, 215
limits, 12, 13, 24, 37, 43, 148, 154, 177–180, 192,

193, 221, 222, 261
abstract syntax, 12
binary format, 192
memory, 13
table, 13
text format, 221
validation, 37

linear memory, 3
little endian, 19, 96, 189
local, 19, 22, 23, 29, 73, 90, 210, 237, 254, 266, 282,

285
abstract syntax, 23
binary format, 210
index, 22
text format, 237
type, 29
validation, 73

local index, 19, 22, 23, 29, 57, 73, 147, 195, 206,
224, 236, 282

abstract syntax, 22
binary format, 206
text format, 236

local type, 29, 30, 70, 73, 285

abstract syntax, 29

M
magnitude, 7
matching, 39, 180, 285
memory, 3, 9, 13, 19, 22, 24, 25, 26, 30, 74, 76, 80, 88,

89, 91, 96, 178, 180, 208, 210, 211, 238, 239,
241, 242, 250, 254, 284

abstract syntax, 24
address, 86
binary format, 208
data, 25, 76, 210, 239, 241
export, 25
import, 26
index, 22
instance, 88
limits, 12, 13
section, 208
text format, 238
type, 13
validation, 74

memory address, 87, 89, 120, 154, 178, 180, 250
abstract syntax, 86

memory index, 19, 22, 24–26, 60, 76, 77, 154, 180,
196, 206, 209, 210, 225, 236, 239–241

abstract syntax, 22
binary format, 206
text format, 236

memory instance, 86, 87, 88, 91, 154, 178, 180, 250,
255, 259, 261, 267, 269

abstract syntax, 88
memory instruction, 19, 60, 154, 196, 225
memory section, 208
memory type, 12, 13, 13, 24, 26, 27, 30, 37, 38, 43, 44,

74, 79, 88, 120, 178, 192, 208, 221, 237, 238,
250, 259, 261

abstract syntax, 13
binary format, 192
text format, 221
validation, 37

module, 2, 3, 22, 30, 80, 86, 87, 180, 183, 186, 187,
211, 242, 246, 248, 254, 270, 273, 282

abstract syntax, 22
binary format, 211
instance, 87
text format, 242
validation, 80

module instance, 87, 90, 117, 177, 180, 186, 247,
248, 255, 263, 266

abstract syntax, 87
module instruction, 93
mutability, 13, 13, 24, 35, 38, 42, 44, 88, 120, 178,

192, 193, 220, 222, 261, 269
abstract syntax, 13
binary format, 193
global, 13
text format, 222

308 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

N
name, 2, 8, 25, 26, 77, 79, 87, 89, 189, 208, 209, 218,

237–240, 254, 263, 281
abstract syntax, 8
binary format, 189
text format, 218

name map, 282
name section, 242, 281
NaN, 7, 94, 105, 121

arithmetic, 7
canonical, 7
payload, 7

notation, 5, 187, 213
abstract syntax, 5
binary format, 187
text format, 213

null, 10, 17, 18
null reference, 118
number, 15, 85
type, 9

number type, 9, 11, 32, 33, 39, 41, 85, 190, 191, 219,
220, 273

abstract syntax, 9
binary format, 190
text format, 219
validation, 32

numeric instruction, 14, 46, 121, 197, 227
numeric vector, 8, 15, 95, 96

O
offset, 22
opcode, 193, 273, 278
operand, 14
operand stack, 14, 45

P
packed type, 12, 35, 42, 95, 192, 220, 263, 273

abstract syntax, 12
binary format, 192
text format, 220
validation, 35

packed value, 89, 263
abstract syntax, 89

page size, 13, 19, 24, 88, 192, 221, 239
parameter, 12, 22, 254
parametric instruction, 18, 195, 224
parametric instructions, 56, 146
passive, 24, 25
payload, 7
phases, 4
polymorphism, 45, 56, 62, 193, 195, 222, 224, 271
portability, 1
preservation, 270
principal types, 271
progress, 270

R
reachability, 260

recursive type, 12, 28, 29, 35, 36, 43, 72, 192, 207,
221, 256, 258, 273, 285, 286

abstract syntax, 12, 35
binary format, 192
text format, 221

recursive type index, 12, 27, 256, 258
abstract syntax, 27

reduction rules, 84
reference, 10, 17, 18, 85, 123, 148, 222, 252, 262,

283–286
type, 10

reference instruction, 17, 18, 194, 223
reference instructions, 47, 123
reference type, 10, 11, 13, 17, 18, 33, 37, 39–41,

47, 74, 85, 148, 191, 193, 219, 220, 222, 238,
252, 256, 273, 283, 285, 286

abstract syntax, 10
binary format, 191
text format, 219
validation, 33

reftype, 91
result, 12, 86, 249, 254, 258
abstract syntax, 86
type, 11

result type, 11, 12, 20, 27, 29, 30, 34, 41, 62, 71,
163, 191, 193, 220, 222, 258, 265, 267, 283

abstract syntax, 11
binary format, 191
validation, 34

rewrite rule, 214
roll, 12
rolling, 27, 29
rounding, 104
runtime, 85, 299

S
S-expression, 213, 235
scalar reference, 52, 118
section, 206, 211, 254, 281
binary format, 206
code, 210
custom, 207
data, 210
data count, 210
element, 209
export, 209
function, 208
global, 208
import, 208
memory, 208
name, 242
start, 209
table, 208
tag, 211
type, 207

security, 2
segment, 91
shape, 96

Index 309

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

sign, 96
signed integer, 7, 96, 189, 217

abstract syntax, 7
binary format, 189
text format, 217

significand, 7, 96
SIMD, 8, 9, 15, 284
soundness, 256, 270
source text, 215, 215, 255
stack, 83, 90, 186, 273
stack machine, 14
start function, 22, 25, 77, 80, 209, 211, 240, 242
abstract syntax, 25
binary format, 209
section, 209
text format, 240
validation, 77

start section, 209
storage type, 12, 35, 42, 192, 220, 262, 285, 286

abstract syntax, 12
binary format, 192
text format, 220
validation, 35

store, 9, 83, 86, 86, 89, 90, 93, 118, 120, 121, 147, 148,
154, 163, 175, 176, 183, 186, 246, 248–252,
259, 263, 265–267

abstract syntax, 86
store extension, 267
string, 218

text format, 218
structure, 85, 118
address, 86
instance, 89

structure address
abstract syntax, 86

structure instance, 86, 89, 118, 259, 262, 270
abstract syntax, 89

structure type, 12, 12, 34, 40, 42, 89, 118, 192, 220,
221, 259, 273, 285, 286

abstract syntax, 12
binary format, 192
text format, 220
validation, 34

structured control, 20, 62, 163, 193, 222
structured control instruction, 254
sub type, 12, 27, 29, 35, 192, 221, 256, 273, 285, 286

abstract syntax, 12, 27, 35
binary format, 192
text format, 221

substitution, 28
subtyping, 12, 27, 35, 39, 253, 271–273, 285
syntax, 271

T
table, 3, 10, 13, 19, 20, 22, 24, 24–26, 30, 74, 75, 80,

88, 89, 91, 177, 179, 180, 208, 211, 238, 242,
249, 254, 284, 285

abstract syntax, 24

address, 86
binary format, 208
element, 24, 75, 209, 238, 240
export, 25
import, 26
index, 22
instance, 88
limits, 12, 13
section, 208
text format, 238
type, 13
validation, 74

table address, 87, 89, 120, 148, 163, 177, 179, 180,
249

abstract syntax, 86
table index, 19, 22, 24–26, 58, 75, 77, 148, 180, 196,

206, 209, 224, 236, 238, 240, 284
abstract syntax, 22
binary format, 206
text format, 236

table instance, 86, 87, 88, 91, 148, 163, 177, 179,
180, 249, 255, 259, 261, 267, 269

abstract syntax, 88
table instruction, 19, 58, 148, 196, 224
table section, 208
table type, 12, 13, 13, 24, 26, 27, 30, 37–39, 43, 44,

74, 79, 88, 120, 177, 193, 208, 222, 237, 238,
249, 259, 261, 284

abstract syntax, 13
binary format, 193
text format, 222
validation, 37

tag, 13, 20, 22, 24, 25, 26, 30, 75, 80, 88–91, 93, 173,
178, 180, 211, 239, 240, 242, 251, 254, 263,
283, 286

abstract syntax, 13, 24
address, 86
binary format, 211
exception tag, 13
export, 25
import, 26
index, 22
instance, 88
section, 211
text format, 239
type; exception, 13
validation, 75

tag address, 87, 89–91, 120, 178, 180, 251, 263
abstract syntax, 86

tag index, 20, 22, 25, 26, 62, 77, 180, 193, 206, 209,
222, 236, 240, 283

abstract syntax, 22
binary format, 206
text format, 236

tag instance, 86, 87, 88, 91, 178, 180, 251, 259, 261,
269

abstract syntax, 88
tag section, 211

310 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

tag type, 13, 20, 22, 24, 26, 27, 30, 37, 44, 75, 79, 88,
120, 178, 193, 208, 211, 237, 239, 251, 259,
261, 286

binary format, 193
validation, 37

terminal configuration, 270
text format, 2, 213, 246, 255

aggregate type, 220
array type, 220
byte, 218
character, 215
comment, 216
composite type, 221
data, 239, 241
data index, 236
element, 238, 240
element index, 236
export, 237–240
expression, 235
field type, 220
floating-point number, 217
function, 237
function index, 236
function type, 220
global, 239
global index, 236
global type, 222
grammar, 213
heap type, 219
identifiers, 218
import, 237–240
instruction, 222–225, 227, 230
integer, 217
label index, 222, 236
limits, 221
local, 237
local index, 236
memory, 238
memory index, 236
memory type, 221
module, 242
mutability, 222
name, 218
notation, 213
number type, 219
packed type, 220
recursive type, 221
reference type, 219
signed integer, 217
start function, 240
storage type, 220
string, 218
structure type, 220
sub type, 221
table, 238
table index, 236
table type, 222
tag, 239

tag index, 236
token, 215
type, 219
type index, 236
type use, 236
uninterpreted integer, 217
unsigned integer, 217
value, 216
value type, 220
vector, 215
vector type, 219
white space, 216

thread, 93, 265, 270
throw, 258
throw address, 93
throw context, 93, 173, 267
token, 215, 255
trap, 3, 19, 20, 86, 91, 93, 121, 172, 183, 186, 258,

266, 283
try block, 20
two's complement, 3, 7, 14, 96, 189
type, 9, 72, 117, 180, 190, 219, 254, 282, 283, 286, 298
abstract syntax, 9, 72
binary format, 190
block, 20
external, 13
function, 12
global, 13
index, 22
instruction, 29
local, 29
memory, 13
number, 9
reference, 10
result, 11
section, 207
table, 13
text format, 219
value, 11

type closure, 31
type definition, 22, 23, 80, 207, 211, 242
abstract syntax, 23

type equivalence, 29, 43
type identifier, 32
type index, 9, 20, 22, 23, 24, 26, 27, 62, 72, 73, 117,

163, 193, 206, 208, 210, 222, 236, 237, 282,
283

abstract syntax, 22
binary format, 206
text format, 236

type instance, 86, 87
type instantiation, 117
type lattice, 272
type section, 207
binary format, 207

type system, 27, 256, 271
type use, 236
text format, 236

Index 311

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2024-07-23)

typing rules, 31

U
unboxed scalar, 9, 85
unboxed scalar type, 40
Unicode, 2, 8, 189, 213, 215, 218, 254
unicode, 255
Unicode UTF-8, 281
uninterpreted integer, 7, 96, 189, 217
abstract syntax, 7
binary format, 189
text format, 217

unroll, 12, 36, 43
unrolling, 27, 29
unsigned integer, 7, 96, 189, 217
abstract syntax, 7
binary format, 189
text format, 217

UTF-8, 2, 8, 189, 213, 218

V
validation, 4, 9, 27, 118, 120, 121, 247, 255, 263,

273, 298
aggregate type, 34
array type, 34
block type, 33
composite type, 34
data, 76
element, 75
export, 77
expression, 71
external type, 38
field type, 35
function type, 34
global, 74
global type, 38
heap type, 32
import, 79
instruction, 46, 47, 53, 56–58, 60, 62
instruction type, 34
limits, 37
local, 73
memory, 74
memory type, 37
module, 80
number type, 32
packed type, 35
reference type, 33
result type, 34
start function, 77
storage type, 35
structure type, 34
table, 74
table type, 37
tag, 75
tag type, 37
value type, 33
vector type, 32

validity, 270
value, 3, 6, 14, 15, 24, 45, 85, 86, 88, 93, 94, 117, 118,

121, 146–148, 154, 178, 186, 188, 216, 249,
252, 255, 258, 261, 266, 269

abstract syntax, 6, 85
binary format, 188
external, 89
text format, 216
type, 11

value type, 11, 11–15, 18, 20, 23, 27, 29, 30, 33–35,
38, 39, 41, 42, 44, 56, 73, 85, 95, 118, 120,
121, 154, 178, 191–193, 195, 220, 222, 224,
253, 256, 258, 266, 273, 283–285

abstract syntax, 11, 27
binary format, 191
text format, 220
validation, 33

variable instruction, 19
variable instructions, 57, 147, 195, 224
vector, 6, 12, 20, 24, 25, 62, 163, 188, 193, 215, 222
abstract syntax, 6, 8
binary format, 188
text format, 215

vector instruction, 15, 53, 138, 200, 230
vector number, 85
vector type, 9, 11, 32, 33, 39, 85, 190, 219, 220, 273,

284
binary format, 190
text format, 219
validation, 32

version, 211

W
white space, 215, 216

312 Index

	Introduction
	Introduction
	Design Goals
	Scope
	Security Considerations
	Dependencies

	Overview
	Concepts
	Semantic Phases

	Structure
	Conventions
	Grammar Notation
	Auxiliary Notation
	Vectors

	Values
	Bytes
	Conventions

	Integers
	Conventions

	Floating-Point
	Conventions

	Vectors
	Names
	Convention

	Types
	Number Types
	Conventions

	Vector Types
	Conventions

	Heap Types
	Reference Types
	Conventions

	Value Types
	Conventions

	Result Types
	Function Types
	Aggregate Types
	Conventions

	Composite Types
	Recursive Types
	Limits
	Memory Types
	Table Types
	Global Types
	Tag Types
	External Types
	Conventions

	Instructions
	Numeric Instructions
	Conventions

	Vector Instructions
	Conventions

	Reference Instructions
	Aggregate Instructions
	Parametric Instructions
	Variable Instructions
	Table Instructions
	Memory Instructions
	Control Instructions
	Expressions

	Modules
	Indices
	Conventions

	Types
	Functions
	Tables
	Memories
	Globals
	Tags
	Element Segments
	Data Segments
	Start Function
	Exports
	Conventions

	Imports

	Validation
	Conventions
	Types
	Convention

	Defined Types
	Conventions

	Rolling and Unrolling
	Instruction Types
	Local Types
	Contexts
	Convention

	Prose Notation
	Formal Notation

	Types
	Number Types
	Vector Types
	Heap Types
	[syntax/types:syntax-absheaptype]absheaptype
	[syntax/modules:syntax-typeidx]typeidx

	Reference Types
	[syntax/types:syntax-reftype]ref [syntax/types:syntax-reftype]null? [syntax/types:syntax-heaptype]heaptype

	Value Types
	Block Types
	[syntax/modules:syntax-typeidx]typeidx
	[[syntax/types:syntax-valtype]valtype?]

	Result Types
	[t]

	Instruction Types
	[t1] x [t2]

	Function Types
	[t1] [syntax/types:syntax-functype] [t2]

	Composite Types
	[syntax/types:syntax-comptype]func [syntax/types:syntax-functype]functype
	[syntax/types:syntax-comptype]struct [syntax/types:syntax-fieldtype]fieldtype
	[syntax/types:syntax-comptype]array [syntax/types:syntax-fieldtype]fieldtype

	Field Types
	[syntax/types:syntax-mut]mut [syntax/types:syntax-storagetype]storagetype
	[syntax/types:syntax-packedtype]packedtype

	Recursive Types
	[syntax/types:syntax-rectype]rec [syntax/types:syntax-subtype]subtype
	[syntax/types:syntax-subtype]sub [syntax/types:syntax-subtype]final? y [syntax/types:syntax-comptype]comptype

	Defined Types
	[syntax/types:syntax-rectype]rectype.i

	Limits
	{ [syntax/types:syntax-limits]min n, [syntax/types:syntax-limits]max m? }

	Table Types
	[syntax/types:syntax-limits]limits [syntax/types:syntax-reftype]reftype

	Memory Types
	[syntax/types:syntax-limits]limits

	Tag Types
	[t1n] [syntax/types:syntax-instrtype] [t2m]

	Global Types
	[syntax/types:syntax-mut]mut [syntax/types:syntax-valtype]valtype

	External Types
	[syntax/types:syntax-externtype]func [valid/conventions:syntax-deftype]deftype
	[syntax/types:syntax-externtype]table [syntax/types:syntax-tabletype]tabletype
	[syntax/types:syntax-externtype]mem [syntax/types:syntax-memtype]memtype
	[syntax/types:syntax-tagtype]tag [syntax/types:syntax-tagtype]tagtype
	[syntax/types:syntax-externtype]global [syntax/types:syntax-globaltype]globaltype

	Defaultable Types
	Value Types

	Matching
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Value Types
	Result Types
	Instruction Types
	Function Types
	Composite Types
	Field Types
	Defined Types
	Limits
	Table Types
	Memory Types
	Global Types
	Tag Types
	External Types
	Functions
	Tables
	Memories
	Globals
	Tags

	Instructions
	Numeric Instructions
	t.[syntax/instructions:syntax-instr-numeric]const c
	t.[syntax/instructions:syntax-unop]unop
	t.[syntax/instructions:syntax-binop]binop
	t.[syntax/instructions:syntax-testop]testop
	t.[syntax/instructions:syntax-relop]relop
	t2.[syntax/instructions:syntax-cvtop]cvtop_t1_[syntax/instructions:syntax-sx]sx?

	Reference Instructions
	[syntax/instructions:syntax-instr-ref]ref.null ht
	[syntax/instructions:syntax-instr-ref]ref.func x
	[syntax/instructions:syntax-instr-ref]ref.is_null
	[syntax/instructions:syntax-instr-ref]ref.as_non_null
	[syntax/instructions:syntax-instr-ref]ref.eq
	[syntax/instructions:syntax-instr-ref]ref.test rt
	[syntax/instructions:syntax-instr-ref]ref.cast rt

	Aggregate Reference Instructions
	[syntax/instructions:syntax-instr-struct]struct.new x
	[syntax/instructions:syntax-instr-struct]struct.new_default x
	[syntax/instructions:syntax-instr-struct]struct.get_[syntax/instructions:syntax-sx]sx? x y
	[syntax/instructions:syntax-instr-struct]struct.set x y
	[syntax/instructions:syntax-instr-array]array.new x
	[syntax/instructions:syntax-instr-array]array.new_default x
	[syntax/instructions:syntax-instr-array]array.new_fixed x n
	[syntax/instructions:syntax-instr-array]array.new_elem x y
	[syntax/instructions:syntax-instr-array]array.new_data x y
	[syntax/instructions:syntax-instr-array]array.get_[syntax/instructions:syntax-sx]sx? x
	[syntax/instructions:syntax-instr-array]array.set x
	[syntax/instructions:syntax-instr-array]array.len
	[syntax/instructions:syntax-instr-aray]array.fill x
	[syntax/instructions:syntax-instr-aray]array.copy x y
	[syntax/instructions:syntax-instr-aray]array.init_data x y
	[syntax/instructions:syntax-instr-aray]array.init_elem x y

	Scalar Reference Instructions
	[syntax/instructions:syntax-instr-i31]ref.i31
	[syntax/instructions:syntax-instr-i31]i31.get_[syntax/instructions:syntax-sx]sx

	External Reference Instructions
	[syntax/instructions:syntax-instr-extern]any.convert_extern
	[syntax/instructions:syntax-instr-extern]extern.convert_any

	Vector Instructions
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-instr-vec]const c
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-vvunop]vvunop
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-vvbinop]vvbinop
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-vvternop]vvternop
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-vvtestop]vvtestop
	i8x16.[syntax/instructions:syntax-instr-vec]swizzle
	i8x16.[syntax/instructions:syntax-instr-vec]shuffle [syntax/instructions:syntax-laneidx]laneidx16
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]splat
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]extract_lane_[syntax/instructions:syntax-sx]sx? [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]replace_lane [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vunop]vunop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vbinop]vbinop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vrelop]vrelop
	[syntax/instructions:syntax-shape]ishape.[syntax/instructions:syntax-vishiftop]vishiftop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vtestop]vtestop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vcvtop]vcvtop_[syntax/instructions:syntax-half]half?_[syntax/instructions:syntax-shape]shape_[syntax/instructions:syntax-sx]sx?_zero?
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-instr-vec]narrow_[syntax/instructions:syntax-shape]ishape2_[syntax/instructions:syntax-sx]sx
	[syntax/instructions:syntax-shape]ishape.[syntax/instructions:syntax-instr-vec]bitmask
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-instr-vec]dot_[syntax/instructions:syntax-shape]ishape2_s
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-instr-vec]extmul_[syntax/instructions:syntax-half]half_[syntax/instructions:syntax-shape]ishape2_[syntax/instructions:syntax-sx]sx
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-instr-vec]extadd_pairwise_[syntax/instructions:syntax-shape]ishape2_[syntax/instructions:syntax-sx]sx

	Parametric Instructions
	[syntax/instructions:syntax-instr-parametric]drop
	[syntax/instructions:syntax-instr-parametric]select (t)?

	Variable Instructions
	[syntax/instructions:syntax-instr-variable]local.get x
	[syntax/instructions:syntax-instr-variable]local.set x
	[syntax/instructions:syntax-instr-variable]local.tee x
	[syntax/instructions:syntax-instr-variable]global.get x
	[syntax/instructions:syntax-instr-variable]global.set x

	Table Instructions
	[syntax/instructions:syntax-instr-table]table.get x
	[syntax/instructions:syntax-instr-table]table.set x
	[syntax/instructions:syntax-instr-table]table.size x
	[syntax/instructions:syntax-instr-table]table.grow x
	[syntax/instructions:syntax-instr-table]table.fill x
	[syntax/instructions:syntax-instr-table]table.copy x y
	[syntax/instructions:syntax-instr-table]table.init x y
	[syntax/instructions:syntax-instr-table]elem.drop x

	Memory Instructions
	t.[syntax/instructions:syntax-instr-memory]load x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-sx]sx x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]store x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]storeN x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadNxM_[syntax/instructions:syntax-sx]sx x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_splat x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_zero x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_lane x [syntax/instructions:syntax-memarg]memarg [syntax/instructions:syntax-laneidx]laneidx
	v128.[syntax/instructions:syntax-instr-memory]storeN_lane x [syntax/instructions:syntax-memarg]memarg [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-instr-memory]memory.size x
	[syntax/instructions:syntax-instr-memory]memory.grow x
	[syntax/instructions:syntax-instr-memory]memory.fill x
	[syntax/instructions:syntax-instr-memory]memory.copy x y
	[syntax/instructions:syntax-instr-memory]memory.init x y
	[syntax/instructions:syntax-instr-memory]data.drop x

	Control Instructions
	[syntax/instructions:syntax-instr-control]nop
	[syntax/instructions:syntax-instr-control]unreachable
	[syntax/instructions:syntax-instr-control]block [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]loop [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]if [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr1 [syntax/instructions:syntax-instr-control]else [syntax/instructions:syntax-instr]instr2 [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]try_table [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-catch]catch [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]catch x l
	[syntax/instructions:syntax-instr-control]catch_ref x l
	[syntax/instructions:syntax-instr-control]catch_all l
	[syntax/instructions:syntax-instr-control]catch_all_ref l
	[syntax/instructions:syntax-instr-control]br l
	[syntax/instructions:syntax-instr-control]br_if l
	[syntax/instructions:syntax-instr-control]br_table l lN
	[syntax/instructions:syntax-instr-control]br_on_null l
	[syntax/instructions:syntax-instr-control]br_on_non_null l
	[syntax/instructions:syntax-instr-control]br_on_cast l rt1 rt2
	[syntax/instructions:syntax-instr-control]br_on_cast_fail l rt1 rt2
	[syntax/instructions:syntax-instr-control]return
	[syntax/instructions:syntax-instr-control]call x
	[syntax/instructions:syntax-instr-control]call_ref x
	[syntax/instructions:syntax-instr-control]call_indirect x y
	[syntax/instructions:syntax-instr-control]return_call x
	[syntax/instructions:syntax-instr-control]return_call_ref x
	[syntax/instructions:syntax-instr-control]return_call_indirect x y
	[syntax/instructions:syntax-instr-control]throw x
	[syntax/instructions:syntax-instr-control]throw_ref

	Instruction Sequences
	Empty Instruction Sequence:
	Non-empty Instruction Sequence: [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr]instr'
	Subsumption for [syntax/instructions:syntax-instr]instr

	Expressions
	[syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	Constant Expressions

	Modules
	Types
	[syntax/types:syntax-rectype]type

	Functions
	{ [syntax/modules:syntax-func]type x, [syntax/modules:syntax-func]locals t, [syntax/modules:syntax-func]body [syntax/instructions:syntax-expr]expr }

	Locals
	{ [syntax/modules:syntax-local]type [syntax/types:syntax-valtype]valtype }

	Tables
	{ [syntax/modules:syntax-table]type [syntax/types:syntax-tabletype]tabletype, [syntax/modules:syntax-table]init [syntax/instructions:syntax-expr]expr }

	Memories
	{ [syntax/modules:syntax-mem]type [syntax/types:syntax-memtype]memtype }

	Globals
	{ [syntax/modules:syntax-global]type [syntax/types:syntax-mut]mut t, [syntax/modules:syntax-global]init [syntax/instructions:syntax-expr]expr }
	[syntax/modules:syntax-global]global

	Tags
	{ [syntax/modules:syntax-tag]type x }

	Element Segments
	{ [syntax/modules:syntax-elem]type t, [syntax/modules:syntax-elem]init e, [syntax/modules:syntax-elem]mode [syntax/modules:syntax-elemmode]elemmode }
	[syntax/modules:syntax-elemmode]passive
	[syntax/modules:syntax-elemmode]active { [syntax/modules:syntax-elem]table x, [syntax/modules:syntax-elem]offset [syntax/instructions:syntax-expr]expr }
	[syntax/modules:syntax-elemmode]declarative

	Data Segments
	{ [syntax/modules:syntax-data]init b, [syntax/modules:syntax-data]mode [syntax/modules:syntax-datamode]datamode }
	[syntax/modules:syntax-datamode]passive
	[syntax/modules:syntax-datamode]active { [syntax/modules:syntax-data]memory x, [syntax/modules:syntax-data]offset [syntax/instructions:syntax-expr]expr }

	Start Function
	{ [syntax/modules:syntax-start]func x }

	Exports
	{ [syntax/modules:syntax-export]name [syntax/values:syntax-name]name, [syntax/modules:syntax-export]desc [syntax/modules:syntax-exportdesc]exportdesc }
	[syntax/modules:syntax-exportdesc]func x
	[syntax/modules:syntax-exportdesc]table x
	[syntax/modules:syntax-exportdesc]mem x
	[syntax/modules:syntax-exportdesc]global x
	[syntax/modules:syntax-exportdesc]tag x

	Imports
	{ [syntax/modules:syntax-import]module [syntax/values:syntax-name]name1, [syntax/modules:syntax-import]name [syntax/values:syntax-name]name2, [syntax/modules:syntax-import]desc [syntax/modules:syntax-importdesc]importdesc }
	[syntax/modules:syntax-importdesc]func x
	[syntax/modules:syntax-importdesc]table [syntax/types:syntax-tabletype]tabletype
	[syntax/modules:syntax-importdesc]mem [syntax/types:syntax-memtype]memtype
	[syntax/modules:syntax-importdesc]global [syntax/types:syntax-globaltype]globaltype
	[syntax/modules:syntax-importdesc]tag [syntax/modules:syntax-tag]tag

	Modules

	Execution
	Conventions
	Prose Notation
	Formal Notation

	Runtime Structure
	Values
	Convention

	Results
	Store
	Convention

	Addresses
	Conventions

	Module Instances
	Function Instances
	Table Instances
	Memory Instances
	Global Instances
	Tag Instances
	Element Instances
	Data Instances
	Export Instances
	External Values
	Conventions

	Aggregate Instances
	Conventions

	Exception Instances
	Stack
	Values
	Labels
	Activation Frames
	Exception Handlers
	Conventions

	Administrative Instructions
	Block Contexts
	Throw Contexts
	Configurations
	Evaluation Contexts

	Numerics
	Representations
	Integers
	Floating-Point
	Vectors
	Storage

	Integer Operations
	Sign Interpretation
	Boolean Interpretation
	[exec/numerics:op-iadd]iaddN(i1, i2)
	[exec/numerics:op-isub]isubN(i1, i2)
	[exec/numerics:op-imul]imulN(i1, i2)
	[exec/numerics:op-idiv-u]idiv_uN(i1, i2)
	[exec/numerics:op-idiv-s]idiv_sN(i1, i2)
	[exec/numerics:op-irem-u]irem_uN(i1, i2)
	[exec/numerics:op-irem-s]irem_sN(i1, i2)
	[exec/numerics:op-inot]inotN(i)
	[exec/numerics:op-iand]iandN(i1, i2)
	[exec/numerics:op-iandnot]iandnotN(i1, i2)
	[exec/numerics:op-ior]iorN(i1, i2)
	[exec/numerics:op-ixor]ixorN(i1, i2)
	[exec/numerics:op-ishl]ishlN(i1, i2)
	[exec/numerics:op-ishr-u]ishr_uN(i1, i2)
	[exec/numerics:op-ishr-s]ishr_sN(i1, i2)
	[exec/numerics:op-irotl]irotlN(i1, i2)
	[exec/numerics:op-irotr]irotrN(i1, i2)
	[exec/numerics:op-iclz]iclzN(i)
	[exec/numerics:op-ictz]ictzN(i)
	[exec/numerics:op-ipopcnt]ipopcntN(i)
	[exec/numerics:op-ieqz]ieqzN(i)
	[exec/numerics:op-ieq]ieqN(i1, i2)
	[exec/numerics:op-ine]ineN(i1, i2)
	[exec/numerics:op-ilt-u]ilt_uN(i1, i2)
	[exec/numerics:op-ilt-s]ilt_sN(i1, i2)
	[exec/numerics:op-igt-u]igt_uN(i1, i2)
	[exec/numerics:op-igt-s]igt_sN(i1, i2)
	[exec/numerics:op-ile-u]ile_uN(i1, i2)
	[exec/numerics:op-ile-s]ile_sN(i1, i2)
	[exec/numerics:op-ige-u]ige_uN(i1, i2)
	[exec/numerics:op-ige-s]ige_sN(i1, i2)
	[exec/numerics:op-iextendn-s]iextendM_sN(i)
	[exec/numerics:op-ibitselect]ibitselectN(i1, i2, i3)
	[exec/numerics:op-iabs]iabsN(i)
	[exec/numerics:op-ineg]inegN(i)
	[exec/numerics:op-imin-u]imin_uN(i1, i2)
	[exec/numerics:op-imin-s]imin_sN(i1, i2)
	[exec/numerics:op-imax-u]imax_uN(i1, i2)
	[exec/numerics:op-imax-s]imax_sN(i1, i2)
	[exec/numerics:op-iaddsat-u]iaddsat_uN(i1, i2)
	[exec/numerics:op-iaddsat-s]iaddsat_sN(i1, i2)
	[exec/numerics:op-isubsat-u]isubsat_uN(i1, i2)
	[exec/numerics:op-isubsat-s]isubsat_sN(i1, i2)
	[exec/numerics:op-iavgr-u]iavgr_uN(i1, i2)
	[exec/numerics:op-iq15mulrsat-s]iq15mulrsat_sN(i1, i2)

	Floating-Point Operations
	Rounding
	NaN Propagation
	[exec/numerics:op-fadd]faddN(z1, z2)
	[exec/numerics:op-fsub]fsubN(z1, z2)
	[exec/numerics:op-fmul]fmulN(z1, z2)
	[exec/numerics:op-fdiv]fdivN(z1, z2)
	[exec/numerics:op-fmin]fminN(z1, z2)
	[exec/numerics:op-fmax]fmaxN(z1, z2)
	[exec/numerics:op-fcopysign]fcopysignN(z1, z2)
	[exec/numerics:op-fabs]fabsN(z)
	[exec/numerics:op-fneg]fnegN(z)
	[exec/numerics:op-fsqrt]fsqrtN(z)
	[exec/numerics:op-fceil]fceilN(z)
	[exec/numerics:op-ffloor]ffloorN(z)
	[exec/numerics:op-ftrunc]ftruncN(z)
	[exec/numerics:op-fnearest]fnearestN(z)
	[exec/numerics:op-feq]feqN(z1, z2)
	[exec/numerics:op-fne]fneN(z1, z2)
	[exec/numerics:op-flt]fltN(z1, z2)
	[exec/numerics:op-fgt]fgtN(z1, z2)
	[exec/numerics:op-fle]fleN(z1, z2)
	[exec/numerics:op-fge]fgeN(z1, z2)
	[exec/numerics:op-fpmin]fpminN(z1, z2)
	[exec/numerics:op-fpmax]fpmaxN(z1, z2)

	Conversions
	[exec/numerics:op-extend-u]extenduM,N(i)
	[exec/numerics:op-extend-s]extendsM,N(i)
	[exec/numerics:op-wrap]wrapM,N(i)
	[exec/numerics:op-trunc-u]truncuM,N(z)
	[exec/numerics:op-trunc-s]truncsM,N(z)
	[exec/numerics:op-trunc-sat-u]trunc_sat_uM,N(z)
	[exec/numerics:op-trunc-sat-s]trunc_sat_sM,N(z)
	[exec/numerics:op-promote]promoteM,N(z)
	[exec/numerics:op-demote]demoteM,N(z)
	[exec/numerics:op-convert-u]convertuM,N(i)
	[exec/numerics:op-convert-s]convertsM,N(i)
	[exec/numerics:op-reinterpret]reinterprett1,t2(c)
	[exec/numerics:op-narrow-s]narrowsM,N(i)
	[exec/numerics:op-narrow-u]narrowuM,N(i)

	Types
	Instantiation

	Values
	Value Typing
	Numeric Values t.[syntax/instructions:syntax-instr-numeric]const c
	Vector Values t.[syntax/instructions:syntax-instr-numeric]const c
	Null References [syntax/instructions:syntax-instr-ref]ref.null t
	Scalar References [exec/runtime:syntax-ref]ref.i31 i
	Structure References [exec/runtime:syntax-ref]ref.struct a
	Array References [exec/runtime:syntax-ref]ref.array a
	Exception References [exec/runtime:syntax-ref]ref.exn a
	Function References [exec/runtime:syntax-ref]ref.func a
	Host References [exec/runtime:syntax-ref]ref.host a
	External References [exec/runtime:syntax-ref]ref.extern [exec/runtime:syntax-ref]ref
	Subsumption

	External Typing
	[exec/runtime:syntax-externval]func a
	[exec/runtime:syntax-externval]table a
	[exec/runtime:syntax-externval]mem a
	[exec/runtime:syntax-externval]global a
	[exec/runtime:syntax-externval]tag a
	Subsumption

	Instructions
	Numeric Instructions
	t.[syntax/instructions:syntax-instr-numeric]const c
	t.[syntax/instructions:syntax-unop]unop
	t.[syntax/instructions:syntax-binop]binop
	t.[syntax/instructions:syntax-testop]testop
	t.[syntax/instructions:syntax-relop]relop
	t2.[syntax/instructions:syntax-cvtop]cvtop_t1_[syntax/instructions:syntax-sx]sx?

	Reference Instructions
	[syntax/instructions:syntax-instr-ref]ref.null x
	[syntax/instructions:syntax-instr-ref]ref.func x
	[syntax/instructions:syntax-instr-ref]ref.is_null
	[syntax/instructions:syntax-instr-ref]ref.as_non_null
	[syntax/instructions:syntax-instr-ref]ref.eq
	[syntax/instructions:syntax-instr-ref]ref.test rt
	[syntax/instructions:syntax-instr-ref]ref.cast rt
	[syntax/instructions:syntax-instr-i31]ref.i31
	[syntax/instructions:syntax-instr-i31]i31.get_[syntax/instructions:syntax-sx]sx
	[syntax/instructions:syntax-instr-struct]struct.new x
	[syntax/instructions:syntax-instr-struct]struct.new_default x
	[syntax/instructions:syntax-instr-struct]struct.get_[syntax/instructions:syntax-sx]sx? x y
	[syntax/instructions:syntax-instr-struct]struct.set x y
	[syntax/instructions:syntax-instr-array]array.new x
	[syntax/instructions:syntax-instr-array]array.new_default x
	[syntax/instructions:syntax-instr-array]array.new_fixed x n
	[syntax/instructions:syntax-instr-array]array.new_data x y
	[syntax/instructions:syntax-instr-array]array.new_elem x y
	[syntax/instructions:syntax-instr-array]array.get_[syntax/instructions:syntax-sx]sx? x
	[syntax/instructions:syntax-instr-array]array.set x
	[syntax/instructions:syntax-instr-array]array.len
	[syntax/instructions:syntax-instr-aray]array.fill x
	[syntax/instructions:syntax-instr-aray]array.copy x y
	[syntax/instructions:syntax-instr-aray]array.init_data x y
	[syntax/instructions:syntax-instr-aray]array.init_elem x y
	[syntax/instructions:syntax-instr-extern]any.convert_extern
	[syntax/instructions:syntax-instr-extern]extern.convert_any

	Vector Instructions
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-instr-vec]const c
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-vvunop]vvunop
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-vvbinop]vvbinop
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-vvternop]vvternop
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-instr-vec]any_true
	i8x16.[syntax/instructions:syntax-instr-vec]swizzle
	i8x16.[syntax/instructions:syntax-instr-vec]shuffle x
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]splat
	t1xN.[syntax/instructions:syntax-instr-vec]extract_lane_[syntax/instructions:syntax-sx]sx? x
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]replace_lane x
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vunop]vunop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vbinop]vbinop
	txN.[syntax/instructions:syntax-vrelop]vrelop
	txN.[syntax/instructions:syntax-vishiftop]vishiftop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]all_true
	txN.[syntax/instructions:syntax-instr-vec]bitmask
	t2xN.[syntax/instructions:syntax-instr-vec]narrow_t1xM_[syntax/instructions:syntax-sx]sx
	t2xN.[syntax/instructions:syntax-vcvtop]vcvtop_t1xM_[syntax/instructions:syntax-sx]sx
	t2xN.[syntax/instructions:syntax-vcvtop]vcvtop_[syntax/instructions:syntax-half]half_t1xM_[syntax/instructions:syntax-sx]sx?
	t2xN.[syntax/instructions:syntax-vcvtop]vcvtop_t1xM_[syntax/instructions:syntax-sx]sx?_zero
	i32x4.[syntax/instructions:syntax-instr-vec]dot_i16x8_s
	t2xN.[syntax/instructions:syntax-instr-vec]extmul_[syntax/instructions:syntax-half]half_t1xM_[syntax/instructions:syntax-sx]sx
	t2xN.[syntax/instructions:syntax-instr-vec]extadd_pairwise_t1xM_[syntax/instructions:syntax-sx]sx

	Parametric Instructions
	[syntax/instructions:syntax-instr-parametric]drop
	[syntax/instructions:syntax-instr-parametric]select (t)?

	Variable Instructions
	[syntax/instructions:syntax-instr-variable]local.get x
	[syntax/instructions:syntax-instr-variable]local.set x
	[syntax/instructions:syntax-instr-variable]local.tee x
	[syntax/instructions:syntax-instr-variable]global.get x
	[syntax/instructions:syntax-instr-variable]global.set x

	Table Instructions
	[syntax/instructions:syntax-instr-table]table.get x
	[syntax/instructions:syntax-instr-table]table.set x
	[syntax/instructions:syntax-instr-table]table.size x
	[syntax/instructions:syntax-instr-table]table.grow x
	[syntax/instructions:syntax-instr-table]table.fill x
	[syntax/instructions:syntax-instr-table]table.copy x y
	[syntax/instructions:syntax-instr-table]table.init x y
	[syntax/instructions:syntax-instr-table]elem.drop x

	Memory Instructions
	t.[syntax/instructions:syntax-instr-memory]load x [syntax/instructions:syntax-memarg]memarg and t.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-sx]sx x [syntax/instructions:syntax-memarg]memarg
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-instr-memory]loadMxN_[syntax/instructions:syntax-sx]sx x [syntax/instructions:syntax-memarg]memarg
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-instr-memory]loadN_splat x [syntax/instructions:syntax-memarg]memarg
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-instr-memory]loadN_zero x [syntax/instructions:syntax-memarg]memarg
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-instr-memory]loadN_lane x [syntax/instructions:syntax-memarg]memarg y
	t.[syntax/instructions:syntax-instr-memory]store x [syntax/instructions:syntax-memarg]memarg and t.[syntax/instructions:syntax-instr-memory]storeN x [syntax/instructions:syntax-memarg]memarg
	[syntax/types:syntax-valtype]v128.[syntax/instructions:syntax-instr-memory]storeN_lane x [syntax/instructions:syntax-memarg]memarg y
	[syntax/instructions:syntax-instr-memory]memory.size x
	[syntax/instructions:syntax-instr-memory]memory.grow x
	[syntax/instructions:syntax-instr-memory]memory.fill x
	[syntax/instructions:syntax-instr-memory]memory.copy x y
	[syntax/instructions:syntax-instr-memory]memory.init x y
	[syntax/instructions:syntax-instr-memory]data.drop x

	Control Instructions
	[syntax/instructions:syntax-instr-control]nop
	[syntax/instructions:syntax-instr-control]unreachable
	[syntax/instructions:syntax-instr-control]block [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]loop [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]if [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr1 [syntax/instructions:syntax-instr-control]else [syntax/instructions:syntax-instr]instr2 [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]throw x
	[syntax/instructions:syntax-instr-control]throw_ref
	[syntax/instructions:syntax-instr-control]try_table [syntax/instructions:syntax-blocktype]blocktype [syntax/instructions:syntax-catch]catch [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	[syntax/instructions:syntax-instr-control]br l
	[syntax/instructions:syntax-instr-control]br_if l
	[syntax/instructions:syntax-instr-control]br_table l lN
	[syntax/instructions:syntax-instr-control]br_on_null l
	[syntax/instructions:syntax-instr-control]br_on_non_null l
	[syntax/instructions:syntax-instr-control]br_on_cast l rt1 rt2
	[syntax/instructions:syntax-instr-control]br_on_cast_fail l rt1 rt2
	[syntax/instructions:syntax-instr-control]return
	[syntax/instructions:syntax-instr-control]call x
	[syntax/instructions:syntax-instr-control]call_ref x
	[syntax/instructions:syntax-instr-control]call_indirect x y
	[syntax/instructions:syntax-instr-control]return_call x
	[syntax/instructions:syntax-instr-control]return_call_ref x
	[syntax/instructions:syntax-instr-control]return_call_indirect x y

	Blocks
	Entering [syntax/instructions:syntax-instr]instr with label L
	Exiting [syntax/instructions:syntax-instr]instr with label L

	Exception Handling
	Entering [syntax/instructions:syntax-instr]instr with label L and exception handler H
	Exiting an exception handler

	Function Calls
	Invocation of function address a
	Tail-invocation of function address a
	Returning from a function
	Host Functions

	Expressions

	Modules
	Allocation
	Functions
	Host Functions
	Tables
	Memories
	Tags
	Globals
	Element segments
	Data segments
	Growing tables
	Growing memories
	Modules

	Instantiation
	Invocation

	Binary Format
	Conventions
	Grammar
	Auxiliary Notation
	Vectors

	Values
	Bytes
	Integers
	Floating-Point
	Names

	Types
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Value Types
	Result Types
	Function Types
	Aggregate Types
	Composite Types
	Recursive Types
	Limits
	Memory Types
	Table Types
	Global Types
	Tag Types

	Instructions
	Control Instructions
	Reference Instructions
	Parametric Instructions
	Variable Instructions
	Table Instructions
	Memory Instructions
	Numeric Instructions
	Vector Instructions
	Expressions

	Modules
	Indices
	Sections
	Custom Section
	Type Section
	Import Section
	Function Section
	Table Section
	Memory Section
	Global Section
	Export Section
	Start Section
	Element Section
	Code Section
	Data Section
	Data Count Section
	Tag Section
	Modules

	Text Format
	Conventions
	Grammar
	Abbreviations
	Contexts
	Conventions

	Vectors

	Lexical Format
	Characters
	Tokens
	White Space
	Comments

	Values
	Integers
	Floating-Point
	Strings
	Names
	Identifiers
	Conventions

	Types
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Abbreviations

	Value Types
	Function Types
	Abbreviations

	Aggregate Types
	Abbreviations

	Composite Types
	Recursive Types
	Abbreviations

	Limits
	Memory Types
	Table Types
	Global Types

	Instructions
	Labels
	Control Instructions
	Abbreviations

	Reference Instructions
	Parametric Instructions
	Variable Instructions
	Table Instructions
	Abbreviations

	Memory Instructions
	Abbreviations

	Numeric Instructions
	Vector Instructions
	Folded Instructions
	Expressions

	Modules
	Indices
	Type Uses
	Abbreviations

	Imports
	Abbreviations

	Functions
	Abbreviations

	Tables
	Abbreviations

	Memories
	Abbreviations

	Globals
	Abbreviations

	Tags
	Abbreviations

	Exports
	Abbreviations

	Start Function
	Element Segments
	Abbreviations

	Data Segments
	Abbreviations

	Modules
	Abbreviations

	Appendix
	Embedding
	Types
	Booleans
	Errors
	Pre- and Post-Conditions
	Store
	store_init() : [exec/runtime:syntax-store]store

	Modules
	module_decode([syntax/values:syntax-byte]byte) : [syntax/modules:syntax-module]module | [appendix/embedding:embed-error]error
	module_parse([syntax/values:syntax-name]char) : [syntax/modules:syntax-module]module | [appendix/embedding:embed-error]error
	module_validate([syntax/modules:syntax-module]module) : [appendix/embedding:embed-error]error?
	module_instantiate([exec/runtime:syntax-store]store, [syntax/modules:syntax-module]module, [exec/runtime:syntax-externval]externval) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-moduleinst]moduleinst | [appendix/embedding:embed-error]error)
	module_imports([syntax/modules:syntax-module]module) : ([syntax/values:syntax-name]name, [syntax/values:syntax-name]name, [syntax/types:syntax-externtype]externtype)
	module_exports([syntax/modules:syntax-module]module) : ([syntax/values:syntax-name]name, [syntax/types:syntax-externtype]externtype)

	Module Instances
	instance_export([exec/runtime:syntax-moduleinst]moduleinst, [syntax/values:syntax-name]name) : [exec/runtime:syntax-externval]externval | [appendix/embedding:embed-error]error

	Functions
	func_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-functype]functype, [exec/runtime:syntax-hostfunc]hostfunc) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr)
	func_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr) : [syntax/types:syntax-functype]functype
	func_invoke([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr, [exec/runtime:syntax-val]val) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-val]val | [appendix/embedding:embed-error]error)

	Tables
	table_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-tabletype]tabletype, [exec/runtime:syntax-ref]ref) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr)
	table_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr) : [syntax/types:syntax-tabletype]tabletype
	table_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, i:[syntax/values:syntax-int]u32) : [exec/runtime:syntax-ref]ref | [appendix/embedding:embed-error]error
	table_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, i:[syntax/values:syntax-int]u32, [exec/runtime:syntax-ref]ref) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error
	table_size([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr) : [syntax/values:syntax-int]u32
	table_grow([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, n:[syntax/values:syntax-int]u32, [exec/runtime:syntax-ref]ref) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	Memories
	mem_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-memtype]memtype) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr)
	mem_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr) : [syntax/types:syntax-memtype]memtype
	mem_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, i:[syntax/values:syntax-int]u32) : [syntax/values:syntax-byte]byte | [appendix/embedding:embed-error]error
	mem_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, i:[syntax/values:syntax-int]u32, [syntax/values:syntax-byte]byte) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error
	mem_size([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr) : [syntax/values:syntax-int]u32
	mem_grow([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, n:[syntax/values:syntax-int]u32) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	Tags
	tag_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-tagtype]tagtype) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-tagaddr]tagaddr)

	Globals
	global_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-globaltype]globaltype, [exec/runtime:syntax-val]val) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr)
	global_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr) : [syntax/types:syntax-globaltype]globaltype
	global_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr) : [exec/runtime:syntax-val]val
	global_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr, [exec/runtime:syntax-val]val) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	References
	ref_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-ref]ref) : [syntax/types:syntax-reftype]reftype

	Matching
	match_valtype([syntax/types:syntax-valtype]valtype1, [syntax/types:syntax-valtype]valtype2) : [appendix/embedding:embed-bool]bool
	match_externtype([syntax/types:syntax-externtype]externtype1, [syntax/types:syntax-externtype]externtype2) : [appendix/embedding:embed-bool]bool

	Implementation Limitations
	Syntactic Limits
	Structure
	Binary Format
	Text Format

	Validation
	Execution

	Type Soundness
	Contexts
	Types
	Heap Type [valid/conventions:syntax-heaptype-ext]bot
	Heap Type [syntax/types:syntax-heaptype]rec i
	Value Type [valid/conventions:syntax-valtype-ext]bot
	Recursive Types [syntax/types:syntax-rectype]rec [syntax/types:syntax-subtype]subtype
	Sub types [syntax/types:syntax-subtype]sub [syntax/types:syntax-subtype]final? ht [syntax/types:syntax-comptype]comptype

	Subtyping
	Results
	Results [exec/runtime:syntax-val]val
	Results [exec/runtime:syntax-ctxt-throw]T[([exec/runtime:syntax-ref]ref.exn a) [syntax/instructions:syntax-instr-control]throw_ref]
	Results [exec/runtime:syntax-trap]trap

	Store Validity
	Store S
	Function Instances {[exec/runtime:syntax-funcinst]type [syntax/types:syntax-functype]functype, [exec/runtime:syntax-funcinst]module [exec/runtime:syntax-moduleinst]moduleinst, [exec/runtime:syntax-funcinst]code [syntax/modules:syntax-func]func}
	Host Function Instances {[exec/runtime:syntax-funcinst]type [syntax/types:syntax-functype]functype, [exec/runtime:syntax-funcinst]hostcode hf}
	Table Instances { [exec/runtime:syntax-tableinst]type ([syntax/types:syntax-limits]limits t), [exec/runtime:syntax-tableinst]elem [exec/runtime:syntax-ref]ref}
	Memory Instances { [exec/runtime:syntax-meminst]type [syntax/types:syntax-limits]limits, [exec/runtime:syntax-meminst]data b}
	Global Instances { [exec/runtime:syntax-globalinst]type ([syntax/types:syntax-mut]mut t), [exec/runtime:syntax-globalinst]value [exec/runtime:syntax-val]val }
	Tag Instances { [exec/runtime:syntax-taginst]type [syntax/types:syntax-tagtype]tagtype }
	Element Instances { [exec/runtime:syntax-eleminst]type t, [exec/runtime:syntax-eleminst]elem [exec/runtime:syntax-ref]ref}
	Data Instances { [exec/runtime:syntax-datainst]data b}
	Structure Instances { [exec/runtime:syntax-structinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-structinst]fields [exec/runtime:syntax-fieldval]fieldval}
	Array Instances { [exec/runtime:syntax-arrayinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-arrayinst]fields [exec/runtime:syntax-fieldval]fieldval}
	Field Values [exec/runtime:syntax-fieldval]fieldval
	Exception Instances { [exec/runtime:syntax-exninst]tag a, [exec/runtime:syntax-exninst]fields [exec/runtime:syntax-val]val}
	Export Instances { [exec/runtime:syntax-exportinst]name [syntax/values:syntax-name]name, [exec/runtime:syntax-exportinst]value [exec/runtime:syntax-externval]externval }
	Module Instances [exec/runtime:syntax-moduleinst]moduleinst

	Configuration Validity
	Configurations S;T
	Threads F;[syntax/instructions:syntax-instr]instr
	Frames {[exec/runtime:syntax-frame]locals [exec/runtime:syntax-val]val, [exec/runtime:syntax-frame]module [exec/runtime:syntax-moduleinst]moduleinst}

	Administrative Instructions
	[exec/runtime:syntax-trap]trap
	[exec/runtime:syntax-val]val
	[exec/runtime:syntax-invoke]invoke [exec/runtime:syntax-funcaddr]funcaddr
	[exec/runtime:syntax-label]labeln{[syntax/instructions:syntax-instr]instr0} [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	[exec/runtime:syntax-handler]handlern{[syntax/instructions:syntax-catch]catch} [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end
	[exec/runtime:syntax-frame]framen{F} [syntax/instructions:syntax-instr]instr [syntax/instructions:syntax-instr-control]end

	Store Extension
	Store S
	Function Instance [exec/runtime:syntax-funcinst]funcinst
	Table Instance [exec/runtime:syntax-tableinst]tableinst
	Memory Instance [exec/runtime:syntax-meminst]meminst
	Global Instance [exec/runtime:syntax-globalinst]globalinst
	Tag Instance [exec/runtime:syntax-taginst]taginst
	Element Instance [exec/runtime:syntax-eleminst]eleminst
	Data Instance [exec/runtime:syntax-datainst]datainst
	Structure Instance [exec/runtime:syntax-structinst]structinst
	Array Instance [exec/runtime:syntax-arrayinst]arrayinst
	Exception Instance [exec/runtime:syntax-exninst]exninst

	Theorems

	Type System Properties
	Principal Types
	Type Lattice
	Compositionality

	Validation Algorithm
	Data Structures
	Types
	Context
	Stacks

	Validation of Opcode Sequences

	Custom Sections
	Name Section
	Subsections
	Name Maps
	Module Names
	Function Names
	Local Names
	Type Names
	Field Names
	Tag Names

	Change History
	Release 2.0
	Sign extension instructions
	Non-trapping float-to-int conversions
	Multiple values
	Reference types
	Table instructions
	Multiple tables
	Bulk memory and table instructions
	Vector instructions

	Release 3.0
	Tail Calls
	Typeful References
	Garbage Collection
	Exception Handling
	Garbage collection

	Index of Types
	Index of Instructions
	Index of Semantic Rules
	Well-formedness of Types
	Typing of Static Constructs
	Typing of Runtime Constructs
	Defaultability
	Constantness
	Matching
	Store Extension
	Execution

	Index

