WebAssembly Specification
Release 3.0 + stack-switching (Draft 2025-08-11)

WebAssembly Community Group

Andreas Rossberg (editor)

Aug 11, 2025

Contents

Introduction

1.1 Introduction e e e e

1.2 OVerview e e e e e e e e e e e e e e e e e e
Structure 5
2.1 ConventionsS e e e e e e e e e e e e e e e e 5
2.2 Values e e e e 7
23 TYPES . . i e e 9
2.4 INnStructions e e e e e e 14
2.5 Modules e e 23
Validation 29
3.1 ConventionsS i e e e e e e e e e e 29
3.2 TYPES v v o e e e e e e e e e e e e e e e 34
3.3 Matching L e e e e e e e 39
34 INStructions L. e e e e e e e e e e e e 47
3.5 Modules e e e e e e 74
Execution 83
4.1 ConventionS e e e e e e e e e e e e e e e e e e e 83
4.2 Runtime Structure e e e e e e e e e 85
4.3 NUMETICS v o e e e e e e e e e e e e e e e e e 94
44 TYPES « v e 121
45 Values . ..o e e e e e e e 122
4.6 InStructions L e e e e e e e e e e e 125
477 Modules e e e e e e e e e e 180
Binary Format 193
5.1 Conventions i i e e e e e e e e e e e e e e 193
52 Values e e e e 195
53 TYPES . v v e e e e e e 196
5.4 INStructions ot e e e e e e e e e e e 199
5.5 Modules e e 214
Text Format 221
6.1 ConventionsS e e e e e e e e e e e e e e 221
6.2 Lexical Format e e e e 223
6.3 Values e e e e 225
6.4 TYPEs e e e e e e e e e 227
6.5 InStructions e e e e 231
6.6 Modules e e 246

7 Appendix 253

7.1 Embedding e e e e e e e 253
7.2 Profiles e 261
7.3 Implementation Limitations L 263
74 TypeSoundness e 266
7.5 Type System Properties e e e 280
7.6 Validation Algorithm e e e e 282
7.7 Custom Sections and Annotations oLl 290
7.8 Change History o e e e e e e e e e 295
7.9 Index of Types o . L e 306
7.10 Index of Instructions e e e e 306
7.11 Index of SemanticRules e 318
Index 321

CHAPTER 1

Introduction

1.1 Introduction

WebAssembly (abbreviated Wasm?) is a safe, portable, low-level code format designed for efficient execution and
compact representation. Its main goal is to enable high performance applications on the Web, but it does not make
any Web-specific assumptions or provide Web-specific features, so it can be employed in other environments as

well.

WebAssembly is an open standard developed by a W3C Community Group'.

This document describes version 3.0 + stack-switching (Draft 2025-08-11) of the core WebAssembly standard. It
is intended that it will be superseded by new incremental releases with additional features in the future.

1.1.1 Design Goals

The design goals of WebAssembly are the following:

¢ Fast,

safe, and portable semantics:

Fast: executes with near native code performance, taking advantage of capabilities common to all
contemporary hardware.

Safe: code is validated and executes in a memory-safe’, sandboxed environment preventing data cor-
ruption or security breaches.

Well-defined: fully and precisely defines valid programs and their behavior in a way that is easy to
reason about informally and formally.

Hardware-independent: can be compiled on all modern architectures, desktop or mobile devices and
embedded systems alike.

Language-independent: does not privilege any particular language, programming model, or object
model.

Platform-independent: can be embedded in browsers, run as a stand-alone VM, or integrated in other
environments.

Open: programs can interoperate with their environment in a simple and universal manner.

2 A contraction of “WebAssembly”, not an acronym, hence not using all-caps.

! https://www.w3.org/community/webassembly/

3 No program can break WebAssembly’s memory model. Of course, it cannot guarantee that an unsafe language compiling to WebAssembly
does not corrupt its own memory layout, e.g. inside WebAssembly’s linear memory.

https://www.w3.org/community/webassembly/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

« Efficient and portable representation:

— Compact: has a binary format that is fast to transmit by being smaller than typical text or native code
formats.

— Modular: programs can be split up in smaller parts that can be transmitted, cached, and consumed
separately.

— Efficient: can be decoded, validated, and compiled in a fast single pass, equally with either just-in-time
(JIT) or ahead-of-time (AOT) compilation.

— Streamable: allows decoding, validation, and compilation to begin as soon as possible, before all data
has been seen.

— Parallelizable: allows decoding, validation, and compilation to be split into many independent parallel
tasks.

— Portable: makes no architectural assumptions that are not broadly supported across modern hardware.

WebAssembly code is also intended to be easy to inspect and debug, especially in environments like web browsers,
but such features are beyond the scope of this specification.

1.1.2 Scope

At its core, WebAssembly is a virtual instruction set architecture (virtual ISA). As such, it has many use cases
and can be embedded in many different environments. To encompass their variety and enable maximum reuse, the
WebAssembly specification is split and layered into several documents.

This document is concerned with the core ISA layer of WebAssembly. It defines the instruction set, binary en-
coding, validation, and execution semantics, as well as a textual representation. It does not, however, define how
WebAssembly programs can interact with a specific environment they execute in, nor how they are invoked from
such an environment.

Instead, this specification is complemented by additional documents defining interfaces to specific embedding
environments such as the Web. These will each define a WebAssembly application programming interface (API)
suitable for a given environment.

1.1.3 Security Considerations

WebAssembly provides no ambient access to the computing environment in which code is executed. Any inter-
action with the environment, such as I/O, access to resources, or operating system calls, can only be performed
by invoking functions provided by the embedder and imported into a WebAssembly module. An embedder can
establish security policies suitable for a respective environment by controlling or limiting which functional capa-
bilities it makes available for import. Such considerations are an embedder’s responsibility and the subject of API
definitions for a specific environment.

Because WebAssembly is designed to be translated into machine code running directly on the host’s hardware, it
is potentially vulnerable to side channel attacks on the hardware level. In environments where this is a concern, an
embedder may have to put suitable mitigations into place to isolate WebAssembly computations.

1.1.4 Dependencies

WebAssembly depends on two existing standards:
* IEEE 754%, for the representation of floating-point data and the semantics of respective numeric operations.
« Unicode?, for the representation of import/export names and the text format.

However, to make this specification self-contained, relevant aspects of the aforementioned standards are defined
and formalized as part of this specification, such as the binary representation and rounding of floating-point values,
and the value range and UTF-8 encoding of Unicode characters.

4 https://ieeexplore.ieee.org/document/8766229
3 https://www.unicode.org/versions/latest/

2 Chapter 1. Introduction

https://ieeexplore.ieee.org/document/8766229
https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The aforementioned standards are the authoritative source of all respective definitions. Formalizations given in
this specification are intended to match these definitions. Any discrepancy in the syntax or semantics described
is to be considered an error.

1.2 Overview

1.2.1 Concepts

WebAssembly encodes a low-level, assembly-like programming language. This language is structured around the
following concepts.

Values
WebAssembly provides only four basic number types. These are integers and IEEE 754° numbers, each in
32 and 64 bit width. 32-bit integers also serve as Booleans and as memory addresses. The usual operations
on these types are available, including the full matrix of conversions between them. There is no distinction
between signed and unsigned integer types. Instead, integers are interpreted by respective operations as
either unsigned or signed in two’s complement representation.

In addition to these basic number types, there is a single 128 bit wide vector type representing different types
of packed data. The supported representations are four 32-bit, or two 64-bit IEEE 7547 numbers, or different
widths of packed integer values, specifically two 64-bit integers, four 32-bit integers, eight 16-bit integers,
or sixteen 8-bit integers.

Finally, values can consist of opaque references that represent pointers towards different sorts of entities.
Unlike with other types, their size or representation is not observable.

Instructions
The computational model of WebAssembly is based on a stack machine. Code consists of sequences of
instructions that are executed in order. Instructions manipulate values on an implicit operand stack® and
fall into two main categories. Simple instructions perform basic operations on data. They pop arguments
from the operand stack and push results back to it. Control instructions alter control flow. Control flow
is structured, meaning it is expressed with well-nested constructs such as blocks, loops, and conditionals.
Branches can only target such constructs.

Traps
Under some conditions, certain instructions may produce a trap, which immediately aborts execution. Traps
cannot be handled by WebAssembly code, but are reported to the outside environment, where they typically
can be caught.

Functions
Code is organized into separate functions. Each function takes a sequence of values as parameters and returns
a sequence of values as results. Functions can call each other, including recursively, resulting in an implicit
call stack that cannot be accessed directly. Functions may also declare mutable local variables that are usable
as virtual registers.

Tables
A table is an array of opaque values of a particular reference type. It allows programs to select such values
indirectly through a dynamic index operand. Thereby, for example, a program can call functions indirectly
through a dynamic index into a table. This allows emulating function pointers by way of table indices.

Linear Memory
A linear memory is a contiguous, mutable array of raw bytes. Such a memory is created with an initial size
but can be grown dynamically. A program can load and store values from/to a linear memory at any byte
address (including unaligned). Integer loads and stores can specify a storage size which is smaller than the

6 https://ieeexplore.ieee.org/document/8766229

7 https://ieeexplore.ieee.org/document/8766229

8 In practice, implementations need not maintain an actual operand stack. Instead, the stack can be viewed as a set of anonymous registers
that are implicitly referenced by instructions. The type system ensures that the stack height, and thus any referenced register, is always known
statically.

1.2. Overview 3

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

size of the respective value type. A trap occurs if an access is not within the bounds of the current memory
size.

Modules
A WebAssembly binary takes the form of a module that contains definitions for functions, tables, and linear
memories, as well as mutable or immutable global variables. Definitions can also be imported, specifying a
module/name pair and a suitable type. Each definition can optionally be exported under one or more names.
In addition to definitions, modules can define initialization data for their memories or tables that takes the
form of segments copied to given offsets. They can also define a start function that is automatically executed.

Embedder
A WebAssembly implementation will typically be embedded into a host environment. This environment
defines how loading of modules is initiated, how imports are provided (including host-side definitions), and
how exports can be accessed. However, the details of any particular embedding are beyond the scope of this
specification, and will instead be provided by complementary, environment-specific API definitions.

1.2.2 Semantic Phases

Conceptually, the semantics of WebAssembly is divided into three phases. For each part of the language, the
specification specifies each of them.

Decoding
WebAssembly modules are distributed in a binary format. Decoding processes that format and converts it
into an internal representation of a module. In this specification, this representation is modelled by abstract
syntax, but a real implementation could compile directly to machine code instead.

Validation
A decoded module has to be valid. Validation checks a number of well-formedness conditions to guaran-
tee that the module is meaningful and safe. In particular, it performs type checking of functions and the
instruction sequences in their bodies, ensuring for example that the operand stack is used consistently.

Execution
Finally, a valid module can be executed. Execution can be further divided into two phases:

Instantiation. A module instance is the dynamic representation of a module, complete with its own state
and execution stack. Instantiation executes the module body itself, given definitions for all its imports. It
initializes globals, memories and tables and invokes the module’s start function if defined. It returns the
instances of the module’s exports.

Invocation. Once instantiated, further WebAssembly computations can be initiated by invoking an exported
function on a module instance. Given the required arguments, that executes the respective function and
returns its results.

Instantiation and invocation are operations within the embedding environment.

4 Chapter 1. Introduction

CHAPTER 2

Structure

2.1

Conventions

WebAssembly is a programming language that has multiple concrete representations (its binary format and the text
format). Both map to a common structure. For conciseness, this structure is described in the form of an abstract
syntax. All parts of this specification are defined in terms of this abstract syntax.

2.1.1 Grammar Notation

The following conventions are adopted in defining grammar rules for abstract syntax.

Terminal symbols (atoms) are written in sans-serif font or in symbolic form: i32, nop, —, [,].

Nonterminal symbols are written in italic font: valtype, instr.

A™ is a sequence of n. > 0 iterations of A.

A* is a possibly empty sequence of iterations of A. (This is a shorthand for A™ used where n is not relevant.)
AT is a non-empty sequence of iterations of A. (This is a shorthand for A™ where n > 1.)

A’ is an optional occurrence of A. (This is a shorthand for A™ where n < 1.)

Productions are written sym ::= Ay | ... | A,.

Large productions may be split into multiple definitions, indicated by ending the first one with explicit el-
lipses, sym ::= A; | ..., and starting continuations with ellipses, sym ::=... | As.

Some productions are augmented with side conditions, “if condition”, that provide a shorthand for a com-
binatorial expansion of the production into many separate cases.

If the same meta variable or non-terminal symbol appears multiple times in a production, then all those
occurrences must have the same instantiation. (This is a shorthand for a side condition requiring multiple
different variables to be equal.)

2.1.2 Auxiliary Notation

When dealing with syntactic constructs the following notation is also used:

e denotes the empty sequence.
|s| denotes the length of a sequence s.

s[i] denotes the i-th element of a sequence s, starting from 0.

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* sli : n] denotes the sub-sequence s[i] ... s[¢ + n — 1] of a sequence s.

* s[[{] = A] denotes the same sequence as s, except that the i-th element is replaced with A.

* s[[i : n] = A™] denotes the same sequence as s, except that the sub-sequence s[i : n] is replaced with A™.
* 51 @ s denotes the sequence s concatenated with so; this is equivalent to s; so, but used for clarity.

* P s* denotes the flattened sequence, formed by concatenating all sequences s; in s*.

e A € s denotes that A is a member of the sequence s, that is, s is of the form s; A so for some sequences sy,
S9.

Moreover, the following conventions are employed:

e The notation x", where x is a non-terminal symbol, is treated as a meta variable ranging over respective
sequences of z (similarly for z*, z T, x9).

* When given a sequence z", then the occurrences of x in an iterated sequence (...x...)" are assumed to
denote the individual elements of x™, respectively (similarly for z*, =,). This implicitly expresses a
form of mapping syntactic constructions over a sequence.

* <" denotes the same sequence as ", but implicitly also defines i" to be the sequence of values 0 to (n—1).

Note

For example, if 2™ is the sequence a b ¢, then (f(z) + 1)™ denotes the sequence (f(a) +1) (£(b) +1) (f(¢) +1).

The form <" additionally gives access to an index variable inside the iteration. For example, (f(z) +4)*<"

denotes the sequence (f(a) + 0) (f(b) + 1) (f(c) + 2).

Productions of the following form are interpreted as records that map a fixed set of fields field; to “values” A;,
respectively:

rooli= {fle|d1 A17 fle|d2 AQ, ce }

The following notation is adopted for manipulating such records:
* Where the type of a record is clear from context, empty fields with value € are often omitted.
« r.field denotes the contents of the field component of 7.
* r[.field = A] denotes the same record as r, except that the value of the field component is replaced with A.

o r[.field =® A*] denotes the same record as r, except that A* is appended to the sequence value of the field
component, that is, it is short for r[.field = r.field & A*].

* 71 & 72 denotes the composition of two identically shaped records by concatenating each field of sequences

point-wise:

{field; A}, fieldy A3, ...} @ {field; B, fieldy B}, ...} = {field; (AT & BY), fieldy (A3 @ B3), ...}

* P r* denotes the composition of a sequence of records, respectively; if the sequence is empty, then all fields
of the resulting record are empty.

The update notation for sequences and records generalizes recursively to nested components accessed by “paths”
pth = ([i] | .field)*:

* s[[i]pth = A] is short for s[[i] = s[i][pth = A]],
o r[.field pth = A] is short for r[.field = r.field[pth = A]].

6 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.1.3 Lists

Lists are bounded sequences of the form A™ (or A*), where the A can either be values or complex constructions.
A list can have at most 232 — 1 elements.

list(X) == X* if|[X*| < 232

2.2 Values

WebAssembly programs operate on primitive numeric values. Moreover, in the definition of programs, immutable
sequences of values occur to represent more complex data, such as text strings or other vectors.

2.2.1 Bytes

The simplest form of value are raw uninterpreted bytes. In the abstract syntax they are represented as hexadecimal
literals.

byte == 0x00 | ... | OXFF

Conventions
* The meta variable b ranges over bytes.

* Bytes are sometimes interpreted as natural numbers n < 256.

2.2.2 Integers

Different classes of integers with different value ranges are distinguished by their bit width N and by whether they
are unsigned or signed.

uN == 0] ... |2N—1
sN o= =2N=L | | =1 0| +1]| ... | 4+2V"1-1
iIN = uN

The class i defines uninterpreted integers, whose signedness interpretation can vary depending on context. In the
abstract syntax, they are represented as unsigned values. However, some operations convert them to signed based
on a two’s complement interpretation.

Note

The main integer types occurring in this specification are us, u32, us4, and ui2s. However, other sizes occur
as auxiliary constructions, e.g., in the definition of floating-point numbers.

Conventions
* The meta variables m, n, ¢, j range over integers.

* Numbers may be denoted by simple arithmetics, as in the grammar above. In order to distinguish arithmetics
like 2V from sequences like (1)7, the latter is distinguished with parentheses.

2.2.3 Floating-Point

Floating-point data represents 32 or 64 bit values that correspond to the respective binary formats of the IEEE
754 standard (Section 3.3).

Every value has a sign and a magnitude. Magnitudes can either be expressed as normal numbers of the form
mo . M1 Ma ... M- 2% where e is the exponent and m is the significand whose most significant bit m is 1, or as
a subnormal number where the exponent is fixed to the smallest possible value and m is 0; among the subnormals

9 https://ieeexplore.ieee.org/document/8766229

2.2. Values 7

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

are positive and negative zero values. Since the significands are binary values, normals are represented in the form
(14 m -27M) . 2¢ in the abstract syntax, where M is the bit width of m; similarly for subnormals.

Possible magnitudes also include the special values oo (infinity) and nan (NaN, not a number). NaN values have a
payload that describes the mantissa bits in the underlying binary representation. No distinction is made between
signalling and quiet NaNs.

IN == +fmagn | —fmagn
fmagn = (T+m-27M).2¢ ifm<2MpA2-2F-1 <e<2P-1
| (0+m-27M).2¢ ifm<2M A2 -2E-1=¢
| oo
| nan(m) if1 <m<2M

where M = signif(N) and E = expon(N) with

signif(32) = 23
signif(64) = 52
expon(32) = 8

expon(64) = 11

A canonical NaN is a floating-point value +nan(canon) where canony is a payload whose most significant bit
is 1 while all others are 0:

canony = 2signif(V)—1

An arithmetic NaN is a floating-point value +nan(m) with m > canony, such that the most significant bit is 1
while all others are arbitrary.

Note

In the abstract syntax, subnormals are distinguished by the leading O of the significand. The exponent of
subnormals has the same value as the smallest possible exponent of a normal number. Only in the binary
representation the exponent of a subnormal is encoded differently than the exponent of any normal number.

The notion of canonical NaN defined here is unrelated to the notion of canonical NaN that the IEEE 75410
standard (Section 3.5.2) defines for decimal interchange formats.

Conventions
* The meta variable z ranges over floating-point values where clear from context.

 Where clear from context, shorthands like +1 denote floating point values like +(1 + 1 -27) . 20,

2.2.4 Vectors

Numeric vectors are 128-bit values that are processed by vector instructions (also known as SIMD instructions,
single instruction multiple data). They are represented in the abstract syntax using u:2s. The interpretation of
lane types (integer or floating-point numbers) and lane sizes are determined by the specific instruction operating
on them.

2.2.5 Names

Names are sequences of characters, which are scalar values as defined by Unicode!! (Section 2.4).

name = char® if [utfs(char®)| < 232
char == U+00 | ... | U+D7FF | U+E000 | ... | U+10FFFF

Due to the limitations of the binary format, the length of a name is bounded by the length of its UTF-8 encoding.

10 https://ieeexplore.ieee.org/document/8766229
I https://www.unicode.org/versions/latest/

8 Chapter 2. Structure

https://ieeexplore.ieee.org/document/8766229
https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Convention

* Characters (Unicode scalar values) are sometimes used interchangeably with natural numbers n < 1114112.

2.3 Types

Various entities in WebAssembly are classified by types. Types are checked during validation, instantiation, and
possibly execution.

2.3.1 Number Types
Number types classify numeric values.
numtype == 32 | ies | f32 | fes
The types i32 and i64 classify 32 and 64 bit integers, respectively. Integers are not inherently signed or unsigned,

their interpretation is determined by individual operations.

The types f32 and fe4 classify 32 and 64 bit floating-point data, respectively. They correspond to the respective
binary floating-point representations, also known as single and double precision, as defined by the IEEE 754!
standard (Section 3.3).

Number types are transparent, meaning that their bit patterns can be observed. Values of number type can be stored
in memories.

Conventions

* The notation |¢| denotes the bit width of a number type ¢. That is, |i32| = |f32| = 32 and |ie4| = |fe4| = 64.

2.3.2 Vector Types

Vector types classify vectors of numeric values processed by vector instructions (also known as SIMD instructions,
single instruction multiple data).

vectype = V128

The type vi2s corresponds to a 128 bit vector of packed integer or floating-point data. The packed data can be
interpreted as signed or unsigned integers, single or double precision floating-point values, or a single 128 bit type.
The interpretation is determined by individual operations.

Vector types, like number types are transparent, meaning that their bit patterns can be observed. Values of vector
type can be stored in memories.

Conventions

* The notation |¢| for bit width extends to vector types as well, that is, |vizg| = 128.

2.3.3 Type Uses

A type use is the use site of a type index referencing a composite type defined in a module. It classifies objects of
the respective type.

typeuse = typeidr | ...

The syntax of type uses is extended with additional forms for the purpose of specifying validation and execution.

12 https://ieeexplore.ieee.org/document/8766229

2.3. Types 9

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.4 Heap Types

Heap types classify objects in the runtime store. There are three disjoint hierarchies of heap types:
* function types classify functions,
* aggregate types classify dynamically allocated managed data, such as structures, arrays, or unboxed scalars,
* external types classify external references possibly owned by the embedder.

The values from the latter two hierarchies are interconvertible by ways of the extern.convert_any and
any.convert_extern instructions. That is, both type hierarchies are inhabited by an isomorphic set of values, but
may have different, incompatible representations in practice.

absheaptype = any | eq | i31 | struct | array | none
| func | nofunc
| exn | noexn
| extern | noextern
| cont | nocont
heaptype = absheaptype | typeuse

A heap type is either abstract or concrete. A concrete heap type consists of a type use that classifies an object of
the respective type defined in a module. Abstract types are denoted by individual keywords.

The type func denotes the common supertype of all function types, regardless of their concrete definition. Dually,
the type nofunc denotes the common subtype of all function types, regardless of their concrete definition. This
type has no values.

The type exn denotes the common supertype of all exception references. This type has no concrete subtypes.
Dually, the type noexn denotes the common subtype of all forms of exception references. This type has no values.

The type cont denotes the common supertype of all continuation references, regardless of their concrete definition.
Dually, the type nocont denotes the common subtype of all continuation references. This type has no values.

The type extern denotes the common supertype of all external references received through the embedder. This
type has no concrete subtypes. Dually, the type noextern denotes the common subtype of all forms of external
references. This type has no values.

The type any denotes the common supertype of all aggregate types, as well as possibly abstract values produced by
internalizing an external reference of type extern. Dually, the type none denotes the common subtype of all forms
of aggregate types. This type has no values.

The type eq is a subtype of any that includes all types for which references can be compared, i.e., aggregate values
and i31.

The types struct and array denote the common supertypes of all structure and array aggregates, respectively.

The type i31 denotes unboxed scalars, that is, integers injected into references. Their observable value range is
limited to 31 bits.

Note

Values of type i31 are not actually allocated in the store, but represented in a way that allows them to be mixed
with actual references into the store without ambiguity. Engines need to perform some form of pointer tagging
to achieve this, which is why one bit is reserved. Since this type is to be reliably unboxed on all hardware
platforms supported by WebAssembly, it cannot be wider than 32 bits minus the tag bit.

Although the types none, nofunc, noexn, and noextern are not inhabited by any values, they can be used to
form the types of all null references in their respective hierarchy. For example, (ref null nofunc) is the generic
type of a null reference compatible with all function reference types.

The syntax of abstract heap types is extended with additional forms for the purpose of specifying validation and
execution.

10 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.5 Reference Types

Reference types classify values that are first-class references to objects in the runtime store.
reftype = ref null” heaptype

A reference type is characterised by the heap type it points to.

In addition, a reference type of the form ref null ht is nullable, meaning that it can either be a proper reference to
ht or null. Other references are non-null.

Reference types are opaque, meaning that neither their size nor their bit pattern can be observed. Values of reference
type can be stored in tables but not in memories.
Conventions
* The reference type anyref is an abbreviation for (ref null any).
* The reference type eqref is an abbreviation for (ref null eq).
* The reference type isiref is an abbreviation for (ref null is1).
o The reference type structref is an abbreviation for (ref null struct).
* The reference type arrayref is an abbreviation for (ref null array).
* The reference type funcref is an abbreviation for (ref null func).
* The reference type exnref is an abbreviation for (ref null exn).
* The reference type contref is an abbreviation for (ref null cont).
* The reference type externref is an abbreviation for (ref null extern).
* The reference type nullref is an abbreviation for (ref null none).
* The reference type nullfuncref is an abbreviation for (ref null nofunc).
¢ The reference type nullexnref is an abbreviation for (ref null noexn).
* The reference type nullcontref is an abbreviation for (ref null nocont).

o The reference type nullexternref is an abbreviation for (ref null noextern).

2.3.6 Value Types

Value types classify the individual values that WebAssembly code can compute with and the values that a variable
accepts. They are either number types, vector types, or reference types.

consttype = numtype | vectype
valtype == numtype | vectype | reftype | ...

The syntax of value types is extended with additional forms for the purpose of specifying validation.

Conventions

* The meta variable ¢ ranges over value types or subclasses thereof where clear from context.

2.3.7 Result Types

Result types classify the result of executing instructions or functions, which is a sequence of values, written with
brackets.

resulttype = list(valtype)

2.3. Types 11

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.8 Block Types

Block types classify the input and output of structured control instructions delimiting blocks of instructions.

blocktype = ’ualtype?
| funcidz

They are given either as a type index that refers to a suitable function type reinterpreted as an instruction type, or
as an optional value type inline, which is a shorthand for the instruction type € — ’ualtype?.
2.3.9 Composite Types

Composite types are all types composed from simpler types, including function types, structure types and array
types.

comptype == struct list(fieldtype)
| array fieldtype
| func resulttype — resulttype
| cont typeuse
fieldtype = mut’ storagetype
storagetype = wvaltype | packtype
packtype = 8 | i16

Function types classify the signature of functions, mapping a list of parameters to a list of results. They are also
used to classify the inputs and outputs of instructions.

Aggregate types like structure or array types consist of a list of possibly mutable, possibly packed field types de-
scribing their components. Structures are heterogeneous, but require static indexing, while arrays need to be ho-
mogeneous, but allow dynamic indexing.

Conventions

* The notation |¢| for the bit width of a value type ¢ extends to packed types as well, that is, |is| = 8 and
lite] = 16.

* The auxiliary function unpack maps a storage type to the value type obtained when accessing a field:

2.3.10 Recursive Types

Recursive types denote a group of mutually recursive composite types, each of which can optionally declare a list
of type uses of supertypes that it matches. Each type can also be declared final, preventing further subtyping.

rectype = rec list(subtype)
subtype == subfinal’ typeuse* comptype

In a module, each member of a recursive type is assigned a separate type index.

2.3.11 Address Types

Address types are a subset of number types that classify the values that can be used as offsets into memories and
tables.

addrtype == 32 | ies

Conventions

The minimum of two address types is defined as the address type whose bit width is the minimum of the two.

min(aty, ats) = aty if |at1]| < |ats
min(aty, ats) = aty otherwise

12 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.12 Limits

Limits classify the size range of resizeable storage associated with memory types and table types.

limits = [u64 .. u64)

2.3.13 Tag Types

Tag types classify the signature tags with a type use referring to the definition of a function type that declares the
types of parameter and result values associated with the tag. The result type is empty for exception tags.

tagtype = typeuse

2.3.14 Global Types

Global types classify global variables, which hold a value and can either be mutable or immutable.

globaltype = mut’ valtype

2.3.15 Memory Types

Memory types classify linear memories and their size range.
memtype = addrtype limits page

The limits constrain the minimum and optionally the maximum size of a memory. The limits are given in units of
page size.

2.3.16 Table Types
Table types classify tables over elements of reference type within a size range.
tabletype = addrtype limits reftype

Like memories, tables are constrained by limits for their minimum and optionally maximum size. The limits are
given in numbers of entries.

2.3.17 Data Types

Data types classify data segments. Since the contents of a data segment requires no further classification, they
merely consist of a universal marker ok indicating well-formedness.

datatype = ok

2.3.18 Element Types

Element types classify element segments by the reference type of its elements.

elemtype = reftype

2.3. Types 13

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.19 External Types

External types classify imports and external addresses with their respective types.
externtype = tag tagtype | global globaltype | mem memtype | table tabletype | func typeuse

For functions, the type use has to refer to the definition of a function type.

Note

Future versions of WebAssembly may have additional uses for tags, and may allow non-empty result types in
the function types of tags.

Conventions

The following auxiliary notation is defined for sequences of external types. It filters out entries of a specific kind
in an order-preserving fashion:

funcs(e) = €
funcs((func dt) at*) = dt funcs(zt*)
funcs(externtype xt*) = funcs(azt*) otherwise
tables(e) = €
tables((table tt) zt*) = tt tables(at*)
tables(externtype xt*) = tables(at*) otherwise
mems(€) = €
mems((mem m¢) zt*) = mt mems(zt*)
mems(externtype 2t*) = mems(xt*) otherwise
globals(e) = €
globals((global gt) at*) = gt globals(xt*)
globals(externtype 2t*) = globals(at*) otherwise
tags(e) = €
tags((tag jt) at™) = jt tags(at®)
tags(externtype xt*) = tags(at*) otherwise

2.4 Instructions

WebAssembly code consists of sequences of instructions. Its computational model is based on a stack machine
in that instructions manipulate values on an implicit operand stack, consuming (popping) argument values and
producing or returning (pushing) result values.

In addition to dynamic operands from the stack, some instructions also have static immediate arguments, typically
indices or type annotations, which are part of the instruction itself.

Some instructions are structured in that they contain nested sequences of instructions.
The following sections group instructions into a number of different categories.

The syntax of instruction is further extended with additional forms for the purpose of specifying execution.

2.4.1 Parametric Instructions

Instructions in this group can operate on operands of any value type.
mnstr nop

unreachable

drop

select (valtype™)?

14 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The nop instruction does nothing.
The unreachable instruction causes an unconditional trap.
The drop instruction simply throws away a single operand.

The select instruction selects one of its first two operands based on whether its third operand is zero or not. It may
include a value type determining the type of these operands. If missing, the operands must be of numeric or vector

type.

Note

In future versions of WebAssembly, the type annotation on select may allow for more than a single value being
selected at the same time.

2.4.2 Control Instructions

Instructions in this group affect the flow of control.

mstr = ...

| block blocktype instr*

| loop blocktype instr*

| if blocktype instr* else instr*

| brlabelidz

| br_if labelidx

| br_table labelidz™ labelidx

| br_on_null labelidzx

| br_on_non_null labelidz

| br_on_cast labelidz reftype reftype

| br_on_cast_fail labelidz reftype reftype
| call funcidz

| call_ref typeuse

| call_indirect tableidz typeuse

| return

| return_call funcidx

| return_call_ref typeuse

| return_call_indirect tableidz typeuse
| throw tagidz

| throw_ref

| try_table blocktype list(catch) instr
| cont.new typeidx

| cont.bind typeidx typeidz

| resume typeidx hdl*

| resume_throw typeidzr tagidz hdl*
| suspend tagidz

| switch typeidz tagidz

|

*

catch tagidz labelidx
catch_ref tagidx labelidz
catch_all labelidx

catch

hdl =
|

catch_all_ref labelidz

on tagidx labelidx
on tagidx switch

The block, loop, if and try_table instructions are structured instructions. They bracket nested sequences of in-
structions, called blocks. As the grammar prescribes, they must be well-nested.

A structured instruction can consume input and produce output on the operand stack according to its annotated

block type.

2.4. Instructions

15

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Each structured control instruction introduces an implicit label. Labels are targets for branch instructions that
reference them with label indices. Unlike with other index spaces, indexing of labels is relative by nesting depth,
that is, label O refers to the innermost structured control instruction enclosing the referring branch instruction, while
increasing indices refer to those farther out. Consequently, labels can only be referenced from within the associated
structured control instruction. This also implies that branches can only be directed outwards, “breaking” from the
block of the control construct they target. The exact effect depends on that control construct. In case of block or
if it is a forward jump, resuming execution after the end of the block. In case of loop it is a backward jump to the
beginning of the loop.

Note

This enforces structured control flow. Intuitively, a branch targeting a block or if behaves like a break statement
in most C-like languages, while a branch targeting a loop behaves like a continue statement.

Branch instructions come in several flavors: br performs an unconditional branch, br_if performs a conditional
branch, and br_table performs an indirect branch through an operand indexing into the label list that is an immediate
to the instruction, or to a default target if the operand is out of bounds. The br_on_null and br_on_non_null
instructions check whether a reference operand is null and branch if that is the case or not the case, respectively.
Similarly, br_on_cast and br_on_cast_fail attempt a downcast on a reference operand and branch if that succeeds,
or fails, respectively.

The return instruction is a shortcut for an unconditional branch to the outermost block, which implicitly is the body
of the current function. Taking a branch unwinds the operand stack up to the height where the targeted structured
control instruction was entered. However, branches may additionally consume operands themselves, which they
push back on the operand stack after unwinding. Forward branches require operands according to the output of
the targeted block’s type, i.e., represent the values produced by the terminated block. Backward branches require
operands according to the input of the targeted block’s type, i.e., represent the values consumed by the restarted
block.

The call instruction invokes another function, consuming the necessary arguments from the stack and returning
the result values of the call. The call_ref instruction invokes a function indirectly through a function reference
operand. The call_indirect instruction calls a function indirectly through an operand indexing into a table that is
denoted by a table index and must contain function references. Since it may contain functions of heterogeneous
type, the callee is dynamically checked against the function type indexed by the instruction’s second immediate,
and the call is aborted with a trap if it does not match.

The return_call, return_call_ref, and return_call_indirect instructions are tail-call variants of the previous ones.
That is, they first return from the current function before actually performing the respective call. It is guaranteed
that no sequence of nested calls using only these instructions can cause resource exhaustion due to hitting an
implementation’s limit on the number of active calls.

The instructions throw, throw_ref, and try_table are concerned with exceptions. The throw and throw_ref instruc-
tions raise and reraise an exception, respectively, and transfers control to the innermost enclosing exception handler
that has a matching catch clause. The try_table instruction installs an exception handler that handles exceptions
as specified by its catch clauses.

The instructions cont.new, cont.bind, resume, resume_throw, suspend and switch are stack-switching instructions.
TODO(lyl): description

2.4.3 Variable Instructions

Variable instructions are concerned with access to local or global variables.

mnstr
local.get localidz
local.set localidx
local.tee localidz
global.get globalidz
global.set globalidz

16 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

These instructions get or set the values of respective variables. The local.tee instruction is like local.set but also
returns its argument.

2.4.4 Table Instructions

Instructions in this group are concerned with tables table.

mstr n= ...

| table.get tableidx

| table.set tableidz

| table.size tableidx

| table.grow tableidx

| table.fill tableidx

| table.copy tableidz tableidx
| table.init tableidz elemidx

| elem.drop elemidx

|

The table.get and table.set instructions load or store an element in a table, respectively.

The table.size instruction returns the current size of a table. The table.grow instruction grows table by a given
delta and returns the previous size, or —1 if enough space cannot be allocated. It also takes an initialization value
for the newly allocated entries.

The table.fill instruction sets all entries in a range to a given value. The table.copy instruction copies elements
from a source table region to a possibly overlapping destination region; the first index denotes the destination. The
table.init instruction copies elements from a passive element segment into a table.

The elem.drop instruction prevents further use of a passive element segment. This instruction is intended to be
used as an optimization hint. After an element segment is dropped its elements can no longer be retrieved, so the
memory used by this segment may be freed.

Note

An additional instruction that accesses a table is the control instruction call_indirect.

2.4. Instructions 17

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.4.5 Memory Instructions

Instructions in this group are concerned with linear memory.

memarg = {align usz,offset usz}
loadopyy = sz_sz if sz <N
storeopyy = sz if sz <N
vloadop yecrype = s2xM_sz if sz - M = |vectype|/2
| sz_splat
| sz_zero if s2 > 32
mstr =

? - , -

’!L’z{;/m,typu memidz memarg

mwn/,yp(i.Storesf,m’(’,op;wmt,l/pe memaidz memarg
2 !

vectype

numtype.loadloadop

|

|

| wectype.loadvloadop memidx memarg

| wvectype.loadsz_lane memidz memarg laneidx
| wvectype.store memidz memarg

| wvectype.storesz_lane memidz memarg laneidz
| memory.size memidx

| memory.grow memidz

| memory fill memidz

| memory.copy memidz memidz

| memory.init memidx dataidx

| data.drop dataidz

|

Memory is accessed with load and store instructions for the different number types and vector types <syntax-
vectype>. They all take a memory index and a memory argument memarg that contains an address offset and the
expected alignment (expressed as the exponent of a power of 2).

Integer loads and stores can optionally specify a storage size sz that is smaller than the bit width of the respective
value type. In the case of loads, a sign extension mode sz is then required to select appropriate behavior.

Vector loads can specify a shape that is half the bit width of vi2s. Each lane is half its usual size, and the sign
extension mode sz then specifies how the smaller lane is extended to the larger lane. Alternatively, vector loads
can perform a splat, such that only a single lane of the specified storage size is loaded, and the result is duplicated
to all lanes.

The static address offset is added to the dynamic address operand, yielding a 33-bit or 65-bit effective address that
is the zero-based index at which the memory is accessed. All values are read and written in little endian'? byte
order. A trap results if any of the accessed memory bytes lies outside the address range implied by the memory’s
current size.

The memory.size instruction returns the current size of a memory. The memory.grow instruction grows a memory
by a given delta and returns the previous size, or —1 if enough memory cannot be allocated. Both instructions
operate in units of page size.

The memory.fill instruction sets all values in a regionof a memory to a given byte. The memory.copy instruction
copies data from a source memory region to a possibly overlapping destination region in another or the same
memory; the first index denotes the destination The memory.init instruction copies data from a passive data segment
into a memory.

The data.drop instruction prevents further use of a passive data segment. This instruction is intended to be used
as an optimization hint. After a data segment is dropped its data can no longer be retrieved, so the memory used
by this segment may be freed.

13 https://en.wikipedia.org/wiki/Endianness#Little-endian

18 Chapter 2. Structure

https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.4.6 Reference Instructions

Instructions in this group are concerned with accessing references.

mstr = ...

| ref.func funcidx
| ref.null heaptype
| ref.is_null

| ref.as_non_null

| refeq

| ref.test reftype

| ref.cast reftype

|

The ref.null and ref.func instructions produce a null reference or a reference to a given function, respectively.

The instruction ref.is_null checks for null, while ref.as_non_null converts a nullable to a non-null one, and traps
if it encounters null.

The ref.eq compares two references.

The instructions ref.test and ref.cast test the dynamic type of a reference operand. The former merely returns the
result of the test, while the latter performs a downcast and traps if the operand’s type does not match.

Note

The br_on_null and br_on_non_null instructions provide versions of ref.as_null that branch depending on the
success of failure of a null test instead of trapping. Similarly, the br_on_cast and br_on_cast_fail instructions
provides versions of ref.cast that branch depending on the success of the downcast instead of trapping.

An additional instruction operating on function references is the control instruction call_ref.

2.4.7 Aggregate Instructions
Instructions in this group are concerned with creating and accessing references to aggregate types.

mstr =
| struct.new typeidz
| struct.new_default typeidz
| struct.get_sz’ typeidz usz
| struct.set typeidz us2
| array.new typeidz
| array.new_default typeidz
| array.new_fixed typeidz us2
| array.new_data typeidz dataidx
| array.new_elem typeidx elemidx
| array.get_sz’ typeids
| array.set typeidz
| array.len

| array fill typeidz

| array.copy typeidz typeidz

| array.init_data typeidz dataidz

| array.init_elem typeidx elemidx

| ref.is

| isi.get_sz

| extern.convert_any

| any.convert_extern

|

The instructions struct.new and struct.new_default allocate a new structure, initializing them either with operands
or with default values. The remaining instructions on structs access individual fields, allowing for different sign
extension modes in the case of packed storage types.

2.4. Instructions 19

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Similarly, arrays can be allocated either with an explicit initialization operand or a default value. Furthermore,
array.new_fixed allocates an array with statically fixed size, and array.new_data and array.new_elem allocate an
array and initialize it from a data or element segment, respectively. The instructions array.get, array.get sz, and
array.set access individual slots, again allowing for different sign extension modes in the case of a packed storage
type; array.len produces the length of an array; array.fill fills a specified slice of an array with a given value and
array.copy, array.init_data, and array.init_elem copy elements to a specified slice of an array from a given array,
data segment, or element segment, respectively.

The instructions ref.i31 and i31.get sz convert between type i32 and an unboxed scalar.

The instructions any.convert_extern and extern.convert_any allow lossless conversion between references repre-
sented as type (ref null extern) and as (ref null any).

2.4.8 Numeric Instructions

Numeric instructions provide basic operations over numeric values of specific type. These operations closely match
respective operations available in hardware.

sz u= 8| 16 | 32| 64
st u= u|s
numiN = N
NUMEN = fN
nstr

numtype.const nUM umiype
NUMIYPE.UNOP pyym type
numtype.binop . miype
numtype.testop . miype
numtype.relop . miype

77/um/,,7/p(31 . C?)//Op numtype,numtype, —77/“’”7’/’(7}])62
unopyy = clz | ctz | popent | extendsz_s if sz <N
unopgy = abs | neg | sqrt | ceil | floor | trunc | nearest
binopyy = add | sub | mul | div_sz | rem_sxz
| and | or | xor | shl | shr_sz | rotl | rotr
binopegy = add | sub | mul | div | min | max | copysign
testopyy = eqz
relopyy, == eq | ne | It_sz | gt_sz | le_sx | ge_sx
relopgy = eq | ne | It | gt]| le| ge
cvtopin, iy, = extend_sz if Ny < N
| wrap if Ny > Ny
cvtopin, gv, 1= convert_sz
| reinterpret if Ny = N,
cvtopen, iy, = trunc_sz
| trunc_sat_sz
| reinterpret if Ny = N»
cvtopey, v, 2= Ppromote if N1 < N»
| demote if N1 > Ny

Numeric instructions are divided by number type. For each type, several subcategories can be distinguished:
e Constants: return a static constant.
* Unary Operations: consume one operand and produce one result of the respective type.
* Binary Operations: consume two operands and produce one result of the respective type.
* Tests: consume one operand of the respective type and produce a Boolean integer result.

» Comparisons: consume two operands of the respective type and produce a Boolean integer result.

20 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* Conversions: consume a value of one type and produce a result of another (the source type of the conversion
is the one after the “_").

Some integer instructions come in two flavors, where a signedness annotation sz distinguishes whether the operands
are to be interpreted as unsigned or signed integers. For the other integer instructions, the use of two’s complement
for the signed interpretation means that they behave the same regardless of signedness.

2.4.9 Vector Instructions

Vector instructions (also known as SIMD instructions, single instruction multiple data) provide basic operations
over values of vector type.

lanetype
dim
shape
1shape
bshape

half
zero
laneidx

nstr

numtype | packtype
1]2]4]|8] 16
lanetypexdim
shape

shape

low | high
zero

us

veclype.const Ve yectype
vectype.vvunop
vectype.vvbinop
vectype.vvternop
vectype.vvtestop
shape.vunop g, qpe
shape.vbinop g, qpe
shape.vternop
shape.vtestop
shape.vrelop g, ,pe
ishape.vshiftop ;s ape
ishape.bitmask
bshape.vswizzlop g, qpe
bshape.shuffle laneidz™
ishapeq . vextunop ;e qpe

shape

shape

_ishapes
_ishapeq

2 ishape;
ZSh(lpC 1 7;emtbmop ishape,,ishape,

ishape . VeTLErnop o ape, ishape, ~1Shapey
ishape, .narrow_ishape,_sz
shape,.vcvtop
shape.splat
shape.extract_lane_sm? laneidx

shape.replace_lane laneidz

shape,,shape; —Shape2

if |lanetype| - dim = 128
if lanetype(shape) = in
if lanetype(shape) = is

if |laneidz™| = dim(bshape)

if |lanetype(ishapes)| = 2 - [lanetype(ishape;)| < 32

if s1” = € & lanetype(shape) € i32 i64 f32 fos

Vector instructions have a naming convention involving a shape prefix that determines how their operands will be
interpreted, written ¢xN, and consisting of a lane type t, a possibly packed numeric type, and its dimension N,
which denotes the number of lanes of that type. Operations are performed point-wise on the values of each lane.

Instructions prefixed with vi2s do not involve a specific interpretation, and treat the vi2g as either an 7125 value or
a vector of 128 individual bits.

Note

For example, the shape i32x4 interprets the operand as four ¢32 values, packed into an 412s. The bit width of the
lane type ¢ times N always is 128.

2.4. Instructions

21

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

vvunop = not
vobinop = and | andnot | or | xor
vuternop = bitselect
vutestop = any_true
Vunopn = abs | neg
| popent ifN=s
vunopgyeys = abs | neg | sqrt | ceil | floor | trunc | nearest
vbinopinygpys = add
| sub
| add_sat_sz if N <16
| sub_sat_sz if N <16
| mul if N > 16
| avgr_u if N <16
| qismulr_sat_s if N =16
| relaxed_ql5mulr_s if N =16
| min_sz if N <32
| max_sx if N <32
vbinopenyas = add | sub | mul | div | min | max | pmin | pmax

relaxed_min | relaxed_max

vternopinyys = relaxed_laneselect
vternopenyyy = relaxed_madd | relaxed_nmadd
viestopinyeas = all_true
vrelopiyeys = €q | ne
| lt_sz ifN #6aVszr=s
| gt_sz if N #64Vszr=s
| le_sz if N#£6sVszr=s
| ge_sx if N#£6sVszr=s
vrelopegnes = €q | ne | It | gt | le | ge
vswizzlopigy = swizzle | relaxed_swizzle
vshiftopyas = shl | shr_sz
VETLUNOP N xpty iNoxM, = extadd_pairwise_sz if16 <2-N; = Ny <32
VexthinoOPiN pry iNaxM, = extmul_half _sx if2- Ny =Ny >16
| dot_s if2-N1:N2=32
| relaxed_dot_s if2- Ny =Ny =16
VeTLLeTnOPiN xa1, iNoxh, = relaxed_dot_add_s if4- Ny =Ny =32
VCVEOPiN My iNgxM, = extend_half _sz if No =2-N;
VCVLODIN My NoxMy = convert_ha,],f? if No = Ny =32A ha,lf? =eV Ny
1161)t0pr1XM17-lN2XM2 := trunc_sat_sz if Ny = Ny =32A zero? = eV Ny
| relaxed_trunc_sz if Ny = Ny =32A zero? = eV Ny
VCVLOPEN w0, fNoxM, -= demote_zero zero if Ny =2- Ny
| promote_low low if2- Ny = Ny

Vector instructions can be grouped into several subcategories:
* Constants: return a static constant.
* Unary Operations: consume one vi2s operand and produce one vi12g result.
* Binary Operations: consume two v12s operands and produce one vi12g result.
 Ternary Operations: consume three vi2g operands and produce one vi2g result.
* Tests: consume one vi2g operand and produce a Boolean integer result.

* Shifts: consume a vi2g operand and an i32 operand, producing one v128 result.

22 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* Splats: consume a value of numeric type and produce a vi2g result of a specified shape.

* Extract lanes: consume a vi2g operand and return the numeric value in a given lane.

* Replace lanes: consume a vi2g operand and a numeric value for a given lane, and produce a v128 result.
Some vector instructions have a signedness annotation sz which distinguishes whether the elements in the operands
are to be interpreted as unsigned or signed integers. For the other vector instructions, the use of two’s complement
for the signed interpretation means that they behave the same regardless of signedness.

Conventions
¢ The function lanetype(shape) extracts the lane type of a shape.
* The function dim(shape) extracts the dimension of a shape.

* The function zeroop(vcuvtop) extracts the zero flag from a vector conversion operator, or returns e if it does
not contain any.

¢ The function halfop(vcvtop) extracts the half flag from a vector conversion operator, or returns e if it does
not contain any.

2.4.10 Expressions

Function bodies, initialization values for globals, elements and offsets of element segments, and offsets of data
segments are given as expressions, which are sequences of instructions.

expr = instr*

In some places, validation restricts expressions to be constant, which limits the set of allowable instructions.

2.5 Modules

WebAssembly programs are organized into modules, which are the unit of deployment, loading, and compilation.

A module collects definitions for types, tags, and globals, memories, tables, functions. In addition, it can declare

imports and exports and provide initialization in the form of data and element segments, or a start function.
module = module type* import* tag* global® mem* table® func* data™ elem™ start® export*

Each of the lists — and thus the entire module — may be empty.

2.5.1 Indices

Definitions are referenced with zero-based indices. Each class of definition has its own index space, as distinguished
by the following classes.

typeide = idx
funcide = idzx
globalide = idx
tableide = idx
memidy = idr
tagide = idx
elemide = idx
dataidx = idx
labelide ::= idx
localide ::= idx
fieldide = idx

The index space for tags, globals, memories, tables, and functions includes respective imports declared in the same
module. The indices of these imports precede the indices of other definitions in the same index space.

Data indices reference data segments and element indices reference element segments.

2.5. Modules 23

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The index space for locals is only accessible inside a function and includes the parameters of that function, which
precede the local variables.

Label indices reference structured control instructions inside an instruction sequence.

Each aggregate type provides an index space for its fields.

Conventions
¢ The meta variable [ranges over label indices.
* The meta variables z, y range over indices in any of the other index spaces.

* For every index space abcidz, the notation abcidx(A) denotes the set of indices from that index space
occurring free in A. Sometimes this set is reinterpreted as the list of its elements.

Note

For example, if instr* is (data.drop 1) (memory.init 2 3), then dataidx;psss (instr™) = 1 3, or equivalently,
the set {1, 3}.

2.5.2 Types

The type section of a module defines a list of recursive types, each consisting of a list of sub types referenced by
individual type indices. All function, structure, or array types used in a module must be defined in this section.

lype = type rectype

2.5.3 Tags

The tag section of a module defines a list of tags:
tag = tag tagtype

The type index of a tag must refer to a function type that declares its tag type.

Tags are referenced through tag indices, starting with the smallest index not referencing a tag import.
2.5.4 Globals
The global section of a module defines a list of global variables (or globals for short):

global ::= global globaltype expr

Each global stores a single value of the type specified in the global type. It also specifies whether a global is
immutable or mutable. Moreover, each global is initialized with a value given by a constant initializer expression.

Globals are referenced through global indices, starting with the smallest index not referencing a global import.

2.5.5 Memories
The mem section of a module defines a list of linear memories (or memories for short) as described by their
memory type:

mem = memory memtype

A memory is a list of raw uninterpreted bytes. The minimum size in the limits of its memory type specifies the
initial size of that memory, while its maximum, if present, restricts the size to which it can grow later. Both are in
units of page size.

24 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Memories can be initialized through data segments.

Memories are referenced through memory indices, starting with the smallest index not referencing a memory
import. Most constructs implicitly reference memory index 0.

2.5.6 Tables

The table section of a module defines a list of tables described by their table type:
table ::= table tabletype expr

A table is an array of opaque values of a particular reference type that is specified by the table type. Each table
slot is initialized with a value given by a constant initializer expression. Tables can further be initialized through
element segments.

The minimum size in the limits of the table type specifies the initial size of that table, while its maximum restricts
the size to which it can grow later.

Tables are referenced through table indices, starting with the smallest index not referencing a table import. Most
constructs implicitly reference table index 0.

2.5.7 Functions

The func section of a module defines a list of functions with the following structure:

func = func typeidz local® expr
local local valtype

The type index of a function declares its signature by reference to a function type defined in the module. The
parameters of the function are referenced through 0-based local indices in the function’s body; they are mutable.

The locals declare a list of mutable local variables and their types. These variables are referenced through local
indices in the function’s body. The index of the first local is the smallest index not referencing a parameter.

A function’s expression is an instruction sequence that represents the body of the function. Upon termination it
must produce a stack matching the function type’s result type.

Functions are referenced through function indices, starting with the smallest index not referencing a function im-
port.

2.5.8 Data Segments

The data section of a module defines a list of data segments, which can be used to initialize a range of memory
from a static list of bytes.

data = data byte® datamode
datamode = active memidz expr | passive

Similar to element segments, data segments have a mode that identifies them as either active or passive. A passive
data segment’s contents can be copied into a memory using the memory.init instruction. An active data segment
copies its contents into a memory during instantiation, as specified by a memory index and a constant expression
defining an offset into that memory.

Data segments are referenced through data indices.

2.5.9 Element Segments

The elem section of a module defines a list of element segments, which can be used to initialize a subrange of a
table from a static list of elements.

elem = elem reftype expr* elemmode
elemmode ::= active tableidz expr | passive | declare

Each element segment defines a reference type and a corresponding list of constant element expressions.

2.5. Modules 25

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Element segments have a mode that identifies them as either active, passive, or declarative. A passive element
segment’s elements can be copied to a table using the table.init instruction. An active element segment copies
its elements into a table during instantiation, as specified by a table index and a constant expression defining an
offset into that table. A declarative element segment is not available at runtime but merely serves to forward-
declare references that are formed in code with instructions like ref.func. The offset is given by another constant
expression.

Element segments are referenced through element indices.

2.5.10 Start Function

The start section of a module declares the function index of a start function that is automatically invoked when
the module is instantiated, after tables and memories have been initialized.

start = start funcidz

Note

The start function is intended for initializing the state of a module. The module and its exports are not accessible
externally before this initialization has completed.

2.5.11 Imports

The import section of a module defines a set of imports that are required for instantiation.
import = import name name externtype

Each import is labeled by a two-level name space, consisting of a module name and an item name for an entity
within that module. Importable definitions are tags, globals, memories, tables, and functions. Each import is
specified by a respective external type that a definition provided during instantiation is required to match.

Every import defines an index in the respective index space. In each index space, the indices of imports go before
the first index of any definition contained in the module itself.

Note

Unlike export names, import names are not necessarily unique. It is possible to import the same module/item
name pair multiple times; such imports may even have different type descriptions, including different kinds of
entities. A module with such imports can still be instantiated depending on the specifics of how an embedder
allows resolving and supplying imports. However, embedders are not required to support such overloading, and
a WebAssembly module itself cannot implement an overloaded name.

2.5.12 Exports

The export section of a module defines a set of exports that become accessible to the host environment once the
module has been instantiated.

export = export name externidz

externide = func funcidz | global globalidx | table tableidz | memory memidx | tag tagidx

Each export is labeled by a unique name. Exportable definitions are tags, globals, memories, tables, and functions,
which are referenced through a respective index.

26 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Conventions

The following auxiliary notation is defined for sequences of exports, filtering out indices of a specific kind in an

order-preserving fashion:

funcs(e)
funcs((func) zz*)
funcs(e rf(’rde TT™)

tables(e)
tables((table z) zz*)
tables(externids zz*)

(

(

(

mems|(€)
mems((memory z) zz*)

mems(externidy zz*)

e
globals(e)
globals((global z) zz*)
globals(externidr zx*)
tags(e)

tags((tag x) zz*)
tags(externide zz*)

€
x funcs(zz*)
funcs(zz*)

€
x tables(zz*)
tables(zz*)

€
x mems(zz*)
mems(zz*)

€
x globals(zz*)
globals(xz*)

€

x tags(zz*)
tags(zz™)

otherwise

otherwise

otherwise

otherwise

otherwise

2.5. Modules

27

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

28 Chapter 2. Structure

CHAPTER 3

Validation

3.1 Conventions

Validation checks that a WebAssembly module is well-formed. Only valid modules can be instantiated.

Validity is defined by a type system over the abstract syntax of a module and its contents. For each piece of abstract
syntax, there is a typing rule that specifies the constraints that apply to it. All rules are given in two equivalent
forms:

1. In prose, describing the meaning in intuitive form.

2. In formal notation, describing the rule in mathematical form.'*

Note

The prose and formal rules are equivalent, so that understanding of the formal notation is not required to read this
specification. The formalism offers a more concise description in notation that is used widely in programming
languages semantics and is readily amenable to mathematical proof.

In both cases, the rules are formulated in a declarative manner. That is, they only formulate the constraints, they do
not define an algorithm. The skeleton of a sound and complete algorithm for type-checking instruction sequences
according to this specification is provided in the appendix.

3.1.1 Types

To define the semantics, the definition of some sorts of types is extended to include additional forms. By virtue
of not being representable in either the binary format or the text format, these forms cannot be used in a program;
they only occur during validation or execution.

valtype == ... | bot
absheaptype == ... | bot
typeuse = ... | deftype | rec.N

The unique value type bot is a botfom type that matches all value types. Similarly, bot is also used as a bottom
type of all heap types.

14 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan Gohman, Luke
Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly'>. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

15 https://dl.acm.org/citation.cfm?doid=3062341.3062363

29

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

No validation rule uses bottom types explicitly, but various rules can pick any value or heap type, including
bottom. This ensures the existence of principal types, and thus a validation algorithm without back tracking.

A type use can consist directly of a defined type. This occurs as the result of substituting a type index with its
definition.

A type use may also be a recursive type index. Such an index refers to the ¢-th component of a surrounding recursive
type. It occurs as the result of rolling up the definition of a recursive type.

Both extensions affect occurrences of type uses in concrete heap types, in sub types and in instructions.

A type of any form is closed when it does not contain a heap type that is a type index or a recursive type index
without a surrounding recursive type, i.e., all type indices have been substituted with their defined type and all free
recursive type indices have been unrolled.

Note

It is an invariant of the semantics that sub types occur only in one of two forms: either as “syntactic” types
as in a source module, where all supertypes are type indices, or as “semantic” types, where all supertypes are
resolved to either defined types or recursive type indices.

Recursive type indices are local to a recursive type. They are distinguished from regular type indices and rep-
resented such that two closed types are syntactically equal if and only if they have the same recursive structure.

Convention

* The difference rtq \ 1ty between two reference types is defined as follows:

(ref null? hty) \ (ref null hty) = (ref ht1)
(ref null? hty) \ (ref hty) = (ref null? hty)

Note

This definition computes an approximation of the reference type that is inhabited by all values from rt; except
those from rto. Since the type system does not have general union types, the defnition only affects the presence
of null and cannot express the absence of other values.

3.1.2 Defined Types

Defined types denote the individual types defined in a module. Each such type is represented as a projection from
the recursive type group it originates from, indexed by its position in that group.

deftype = rectype.n

Defined types do not occur in the binary or text format, but are formed by rolling up the recursive types defined in
a module.

Note

It is an invariant of the semantics that all recursive types occurring in defined types are rolled up.

30 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Conventions

o t[z* := dt*] denotes the parallel substitution of type indices z* with corresponding defined types dt™ in type
t, provided |z*| = |dt™|.

o t[(rec i)* := dt™] denotes the parallel substitution of recursive type indices (rec ¢)* with defined types dt*
in type ¢, provided |(rec ¢)*| = |dt*|. This substitution does not proceed under recursive types, since they
are considered local binders for all recursive type indices.

* t[:= dt”] is shorthand for the substitution ¢t[z* := d¢*], where z* =0 ... (|dt*| — 1).

Note

All recursive types formed by the semantics are closed with respect to recursive type indices that occur inside
them. Hence, substitution of recursive type indices never needs to modify the bodies of recursive types. In
addition, all types used for substitution are closed with respect to recursive type indices, such that name capture
of recursive type indices cannot occur.

3.1.3 Rolling and Unrolling

In order to allow comparing recursive types for equivalence, their representation is changed such that all type
indices internal to the same recursive type are replaced by recursive type indices.

Note

This representation is independent of the type index space, so that it is meaningful across module boundaries.
Moreover, this representation ensures that types with equivalent recursive structure are also syntactically equal,
hence allowing a simple equality check on (closed) types. It gives rise to an iso-recursive interpretation of

types.

The representation change is performed by two auxiliary operations on the syntax of recursive types:
* Rolling up a recursive type substitutes its internal type indices with corresponding recursive type indices.
» Unrolling a recursive type substitutes its recursive type indices with the corresponding defined types.

These operations are extended to defined types and defined as follows:

roll, (rectype) = rec (subtype[(z +1)*<" := (rec.i)"<"])" if rectype = rec subtype™
unroll(rectype) = rec (subtype[(rec.i)’<™ := (rectype.i)*<"])™ if rectype = rec subtype™

roll} (rectype) = ((rec subtype™).i)i <" if roll, (rectype) = rec subtype™
unroll(rectype.i) = subtype[i] if unroll(rectype) = rec subtype™

In addition, the following auxiliary relation denotes the expansion of a defined type or type use:

deftype ~ comptype if expand(deftype) = comptype

deftype =~¢c comptype if deftype =~ comptype
typeide ~c comptype if C.types[typeidz] =~ comptype

3.1.4 Instruction Types

Instruction types classify the behaviour of instructions or instruction sequences, by describing how they manipulate
the operand stack and the initialization status of locals:

mstrtype = resulttype —jocalidz* resulttype

Aninstruction type t] — - t5 describes the required input stack with argument values of types ¢] that an instruction
pops off and the provided output stack with result values of types ¢5 that it pushes back. Moreover, it enumerates
the indices x* of locals that have been set by the instruction or sequence.

3.1. Conventions 31

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

Instruction types are only used for validation, they do not occur in programs.

3.1.5 Local Types

Local types classify locals, by describing their value type as well as their initialization status:

localtype = init valtype
init = set | unset

Note

Local types are only used for validation, they do not occur in programs.

3.1.6 Contexts

Validity of an individual definition is specified relative to a context, which collects relevant information about the
surrounding module and the definitions in scope:

e Types: the list of types defined in the current module.
* Recursive Types: the list of sub types in the current group of recursive types.

* Functions: the list of functions declared in the current module, represented by a defined type that expands
to their function type.

* Tables: the list of tables declared in the current module, represented by their table type.

* Memories: the list of memories declared in the current module, represented by their memory type.
* Globals: the list of globals declared in the current module, represented by their global type.

* Tags: the list of tags declared in the current module, represented by their tag type.

» Element Segments: the list of element segments declared in the current module, represented by the elements’
reference type.

* Data Segments: the list of data segments declared in the current module, each represented by an ok entry.

e Locals: the list of locals declared in the current function (including parameters), represented by their local
type.

 Labels: the stack of labels accessible from the current position, represented by their result type.

* Return: the return type of the current function, represented as an optional result type that is absent when no
return is allowed, as in free-standing expressions.

* References: the list of function indices that occur in the module outside functions and can hence be used to
form references inside them.

In other words, a context contains a sequence of suitable types for each index space, describing each defined entry
in that space. Locals, labels and return type are only used for validating instructions in function bodies, and are
left empty elsewhere. The label stack is the only part of the context that changes as validation of an instruction
sequence proceeds.

32 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

More concretely, contexts are defined as records C' with abstract syntax:

context = {types deftype*
recs subtype™
tags tagtype*
globals globaltype™
mems memtype*
tables tabletype™
funcs deftype*
datas datatype™
elems elemtype™
locals localtype™
labels resulttype™
return 7'65'11,ltt;1/p6?
refs funcidz™}

Convention

A type of any shape can be closed to bring it into closed form relative to a context it is valid in, by substituting
each type index x occurring in it with its own corresponding defined type C'.types|z], after first closing the types
in C'.types themselves.

t[:= dt”] if dt™ = clos™(C.types)
€

dt’” dt,[:=dt’"] if dt’" = clos*(dt*)

closa(t)
clos™(e)
clos™(dt* dt,)

Note

Free type indices referring to types within the same recursive type are handled separately by rolling up recursive
types before closing them.

3.1.7 Prose Notation

Validation is specified by stylised rules for each relevant part of the abstract syntax. The rules not only state
constraints defining when a phrase is valid, they also classify it with a type. The following conventions are adopted
in stating these rules.

¢ A phrase A is said to be “valid with type 7" if and only if all constraints expressed by the respective rules
are met. The form of 7" depends on the syntactic class of A.

Note
For example, if A is a function, then 7" is a defined function type; for an A that is a global, T" is a global

type; and so on.

¢ The rules implicitly assume a given context C.

* In some places, this context is locally extended to a context C’ with additional entries. The formulation
“Under context C', ... statement ...” is adopted to express that the following statement must apply under
the assumptions embodied in the extended context.

3.1.8 Formal Notation

3.1. Conventions 33

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

This section gives a brief explanation of the notation for specifying typing rules formally. For the interested
reader, a more thorough introduction can be found in respective text books.'*

The proposition that a phrase A has a respective type T is written A : T'. In general, however, typing is dependent
on a context C. To express this explicitly, the complete form is a judgement C + A : T, which saysthat A : T
holds under the assumptions encoded in C'.

The formal typing rules use a standard approach for specifying type systems, rendering them into deduction rules.
Every rule has the following general form:

premise, premiseq .. premise,,

conclusion
Such a rule is read as a big implication: if all premises hold, then the conclusion holds. Some rules have
no premises; they are axioms whose conclusion holds unconditionally. The conclusion always is a judgment
C F A : T, and there usually is one respective rule for each relevant construct A of the abstract syntax.

Note

For example, the typing rule for the i32.add instruction can be given as an axiom:

C Fi32.add : i32i32 — 32

The instruction is always valid with type 132 i32 — i32 (saying that it consumes two i32 values and produces one),
independent of any side conditions.

An instruction like global.get can be typed as follows:

C.globals[z] = mut ¢
C - global.getz : e — ¢t

Here, the premise enforces that the immediate global index x exists in the context. The instruction produces a
value of its respective type ¢ (and does not consume any values). If C.globals[z] does not exist then the premise
does not hold, and the instruction is ill-typed.

Finally, a structured instruction requires a recursive rule, where the premise is itself a typing judgement:

C' = blocktype : t5 — t} {labels (¢3)} @ C & instr* : t7 — ¢}
C | block blocktype instr™ : t7 — t}

A block instruction is only valid when the instruction sequence in its body is. Moreover, the result type must
match the block’s annotation blocktype. If so, then the block instruction has the same type as the body. Inside
the body an additional label of the corresponding result type is available, which is expressed by extending the
context C' with the additional label information for the premise.

3.2 Types

Simple types, such as number types are universally valid. However, restrictions apply to most other types, such
as reference types, function types, as well as the limits of table types and memory types, which must be checked
during validation.

Moreover, block types are converted to instruction types for ease of processing.

16 For example: Benjamin Pierce. Types and Programming Languages'’. The MIT Press 2002
17 https://www.cis.upenn.edu/~bcpierce/tapl/

34 Chapter 3. Validation

https://www.cis.upenn.edu/~bcpierce/tapl/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.2.1 Number Types

The number type numtype is always valid.

C '+ numtype : ok

3.2.2 Vector Types

The vector type vectype is always valid.

C + vectype : ok

3.2.3 Type Uses
The type use typeidz is valid if:
* The type C.types[typeidzr] exists.

C'.types[typeidz] = dt
C I typeidx : ok

3.2.4 Heap Types
The heap type absheaptype is always valid.

C + absheaptype : ok

3.2.5 Reference Types

The reference type (ref null® heaptype) is valid if:

e The heap type heaptype is valid.
C t heaptype : ok

C' | ref null? heaptype : ok

3.2.6 Value Types
The value type valtype is valid if:
* Either:
— The value type valtype is of the form numtype.
— The number type numtype is valid.
e Or:
— The value type valtype is of the form vectype.
— The vector type vectype is valid.
* Or:
— The value type valtype is of the form reftype.
— The reference type reftype is valid.
* Or:
— The value type valtype is of the form bot.

3.2. Types

35

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.2.7 Result Types
The result type t* is valid if:
e Forall tint*:

— The value type ¢ is valid.
(CHt:ok)*
C = t* : ok

3.2.8 Block Types

Block types may be expressed in one of two forms, both of which are converted to instruction types by the following

rules.

The block type typeidz is valid as the instruction type t7 — 3 if:
* The type C.types[typeidzr] exists.
* The expansion of C.types|typeidz] is (func tf — t3).

C.types[typeidx] ~ func t] — t}
C F typeidz : t] — t5

The block type valtype” is valid as the instruction type e — valtype” if:
* If waltype is defined, then:
— The value type valtype is valid.

(C F waltype : ok)*
C + valtype” : € — valtype’

3.2.9 Instruction Types

The instruction type t7 —,« t5 is valid if:
* The result type ¢ is valid.
* The result type ¢35 is valid.
* Forall z in z*:

— The local C.locals[x] exists.

Ckt7: ok C+t5: ok (C.locals[x] = It)*

3.2.10 Composite Types
The composite type (struct fieldtype™) is valid if:
« For all fieldtype in fieldtype™:

— The field type fieldtype is valid.

(C F+ fieldtype : ok)*
C | struct fieldtype™ : ok

The composite type (array fieldtype) is valid if:

* The field type fieldtype is valid.
C + fieldtype : ok
C + array fieldtype : ok

The composite type (func 7 — ¢3) is valid if:

36

Chapter 3.

Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* The result type ¢ is valid.
* The result type ¢35 is valid.
C 1ty :ok CFt5:ok
C F functy — t4 : ok

The composite type (cont typeuse) is valid if:
* The heap type typeuse is valid.
¢ The expansion of typeuse is (funct; — t3).

C + typeuse : ok typeuse ~c functi — 5

C | cont typeuse : ok
The field type (mut’ storagetype) is valid if:
* The storage type storagetype is valid.
C I storagetype : ok

C + mut? storagetype : ok
The packed type packtype is always valid.

C' = packtype : ok

3.2.11 Recursive Types

Recursive types are validated with respect to the first type index defined by the recursive group.

rec subtype*
The recursive type (rec subtype™) is valid for the type index x if:
* Either:
— The sub type sequence subtype™ is empty.
* Or:
— The sub type sequence subtype™ is of the form subtype, subtype’”.
— The sub type subtype, is valid for the type index x.
— The recursive type (rec subtype’™) is valid for the type index x + 1.

C + subtype; : ok(x) C' = rec subtype™ : ok(x + 1)
C' |- rec e : ok(x) C' - rec (subtype; subtype™) : ok(x)

sub final® y* comptype
The sub type (sub final” 2* comptype) is valid for the type index z if:
* The length of z* is less than or equal to 1.
e For all z in z*:
— The index x is less than xg.
— The type C.types[z] exists.
— The sub type unroll(C'.types|[x]) is of the form (sub 2’ comptype’).
» comptype’™ is the concatenation of all such comptype’.
* The composite type comptype is valid.

« For all comptype’ in comptype’™:

3.2. Types 37

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— The composite type comptype matches the composite type comptype’.

lz*| <1 (x < mo)* (unroll(C.types[x]) = sub 2’ comptype’)*
C + comptype : ok (C F comptype < comptype’)*

C + sub final” x* comptype : ok(xq)

Note

The side condition on the index ensures that a declared supertype is a previously defined types, preventing
cyclic subtype hierarchies.

Future versions of WebAssembly may allow more than one supertype.

3.2.12 Limits
Limits must have meaningful bounds that are within a given range.
The limits range [n .. m] is valid within k if:

* n is less than or equal to m.

* m is less than or equal to k.

3.2.13 Tag Types
The tag type typeuse is valid if:
e The type use typeuse is valid.

* The expansion of typeuse is (func tj — t3).

C + typeuse : ok typeuse ~¢ functj — t5
C F typeuse : ok

3.2.14 Global Types
The global type (mut” #) is valid if:
* The value type ¢ is valid.

CkHt:ok
CF mut? t: ok

3.2.15 Memory Types
The memory type (addrtype limits page) is valid if:
o The limits range limits is valid within 216.
C F limits : 216
C = addrtype limits page : ok

38 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.2.16 Table Types
The table type (addrtype limits reftype) is valid if:

« The limits range limits is valid within 232 — 1.
* The reference type reftype is valid.

C F limits : 232 — 1 C = reftype : ok
C' = addrtype limits reftype : ok

3.2.17 External Types
The external type (tag tagtype) is valid if:

 The tag type tagtype is valid.
C F tagtype : ok
C - tag tagtype : ok

The external type (global globaltype) is valid if:

¢ The global type globaltype is valid.

C '+ globaltype : ok
C = global globaltype : ok

The external type (mem memtype) is valid if:

e The memory type memtype is valid.

C + memtype : ok

C = mem memtype : ok
The external type (table tabletype) is valid if:
¢ The table type tabletype is valid.

C = tabletype : ok
C - table tabletype : ok

The external type (func typeuse) is valid if:
* The type use typeuse is valid.

o The expansion of typeuse is (func tf — t3).

C + typeuse : ok typeuse ~¢ func tj — 3

C + func typeuse : ok

3.3 Matching

On most types, a notion of subtyping is defined that is applicable in validation rules, during module instantiation
when checking the types of imports, or during execution, when performing casts.

3.3.1 Number Types

The number type numtype matches only itself.

C + numtype < numtype

3.3. Matching 39

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.3.2 Vector Types

The vector type vectype matches only itself.

C' = vectype < vectype

3.3.3 Heap Types
The heap type heaptype; matches the heap type heaptype, if:
* Either:
— The heap type heaplypes is of the form heaptype; .
* Or:
— The heap type heaptype’ is valid.
— The heap type heaptype; matches the heap type heaptype’.
— The heap type heaptype’ matches the heap type heaptype,.

— The heap type heaptype, is of the form eq.
— The heap type heaplype, is of the form any.

— The heap type heaptype; is of the form i31.
— The heap type heaplypes, is of the form eq.

— The heap type heaptype, is of the form struct.

— The heap type heaplypes is of the form eq.

— The heap type heaptype; is of the form array.
— The heap type heaplype, is of the form eq.

— The heap type heaptype, is of the form deftype.
— The heap type heaptype, is of the form struct.

— The expansion of deftype is (struct fieldtype™).

— The heap type heaptype, is of the form deftype.
— The heap type heaptypes is of the form array.
— The expansion of deftype is (array fieldtype).

— The heap type heaptype, is of the form deftype.
— The heap type heaplype, is of the form func.

— The expansion of deftype is (funct] — t5).

— The heap type heaptype, is of the form deftype.

40 Chapter 3.

Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— The heap type heaplypes, is of the form cont.

— The expansion of deftype is (cont typeuse).

— The heap type heaptype, is of the form deftype.
— The heap type heaptype, is of the form deftype,.
— The defined type deftype; matches the defined type deftypes.

— The heap type heaptype; is of the form typeidz.
— The type C.types[typeidz] exists.
— The type C.types[typeidz] matches the heap type heaptype,.

— The heap type heaptypes, is of the form typeidz.

— The type C.types[typeidz] exists.

— The heap type heaptype; matches the type C.types[typeidz].
Or:

— The heap type heaptype, is of the form (rec.i).

— The length of typeuse* is greater than j.

— The heap type heaptype, is of the form typeuse*[j].

— The recursive type C'.recs[i] exists.

— The recursive type C.recs|i] is of the form (sub final” typeuse* ct).

— The heap type heaplype; is of the form none.
— The heap type heaptype, matches the heap type any.

— The heap type heaplype, is of the form nofunc.
— The heap type heaptype, matches the heap type func.

— The heap type heaptype, is of the form noexn.
— The heap type heaplypey matches the heap type exn.

— The heap type heaptype, is of the form noextern.

— The heap type heaptype, matches the heap type extern.

— The heap type heaptype, is of the form nocont.

— The heap type heaptypey matches the heap type cont.

— The heap type heaptype, is of the form bot.

3.3.

Matching a1

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

C & heaptype’ : ok C'+ heaptype,; < heaptype’ C & heaptype’ < heaptype

C' | heaptype < heaptype C + heaptype, < heaptypes

Cteq <any Christ<eq C F struct < eq C' I array < eq

deftype = struct fieldtype® deftype = array fieldtype deftype ~ funct] — 13 deftype =~ cont typeus
C I deftype < struct C I deftype < array C = deftype < func C I deftype < cont

C I C.types[typeidz] < heaptype C' I heaptype < C.types[typeidz]

C + typeidx < heaptype C + heaptype < typeidx

C.recs[i] = sub final” typeuse* ct

C F rec.i < typeuse*[j]
C' I heaptype < any C' I heaptype < func C' | heaptype < exn C' I heaptype < extern C' I heap

C + none < heaptype C + nofunc < heaptype C F noexn < heaptype C I noextern < heaptype C ' nocon

C + bot < heaptype

3.3.4 Reference Types

The reference type (ref nulli ht1) matches the reference type (ref nullg hts) if:
¢ The heap type ht; matches the heap type his.
* Either:
- nulli is absent.
- nuII; is absent.
* Or:
- nulli is of the form null®.

? .
— null,, is of the form null.

CF hty < htg CF ht; < htg
C |- ref ht; < ref hty C = ref null? hty < ref null hty

3.3.5 Value Types
The value type valtype; matches the value type valtype, if:
* FEither:
— The value type valtype; is of the form numtype,.
— The value type valtypey is of the form numtype,.
— The number type numtype; matches the number type numtype,.
* Or:
— The value type valtype; is of the form vectype;.
— The value type valtype, is of the form vectype,.
— The vector type vectype, matches the vector type vectype,.
* Or:
— The value type valtype; is of the form reftype;.
— The value type valtype, is of the form reftypes.
— The reference type reftype; matches the reference type reftype,.

e Or:

42 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— The value type valtype; is of the form bot.

C' I bot < wvaltype

3.3.6 Result Types

Subtyping is lifted to result types in a pointwise manner.
The result type ¢] matches the result type ¢5 if:
* For all £ in 7, and corresponding ¢ in ¢3:
— The value type t; matches the value type 5.

(C 1t < ty)*
CrHi; <t

3.3.7 Instruction Types
Subtyping is further lifted to instruction types.
The instruction type t]; —y: t]o matches the instruction type t3; —y3 t3, if:
* The result type t5; matches the result type 7.
* The result type ¢}, matches the result type ¢3,.
* The local index sequence z* is of the form 3 \ x7.
 For all z in z™:
— The local C.locals|x] exists.
— The local C.locals[z] is of the form (set ¢).

CrHit5 <1t} CHiiy <15 z* =i\ 2] (C.locals[z] = set t)*
Oty —ay tig < 151 —az 39

Note

Instruction types are contravariant in their input and covariant in their output. Moreover, the supertype may
ignore variables from the init set 27. It may also add variables to the init set, provided these are already set in
the context, i.e., are vacuously initialized.

3.3.8 Composite Types
The composite type comptype, matches the composite type comptype, if:
* FEither:
— The composite type comptype, is of the form (struct ft} ft'7).
— The composite type comptype, is of the form (struct ft3).
— For all ft; in ft], and corresponding ft, in ft3:
* The field type ft; matches the field type ft,.
* Or:
— The composite type comptype, is of the form (array ft;).
— The composite type comptype, is of the form (array ft,).
— The field type ft; matches the field type ft,.

3.3. Matching 43

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* Or:
— The composite type comptypey is of the form (func ti; — ti5).
— The composite type comptype, is of the form (func ts; — t35).
— The result type t3; matches the result type ¢7;.
— The result type t], matches the result type ¢3,.

* Or:

— The composite type comptype; is of the form (cont tuy).
— The composite type comptype, is of the form (cont tus).

— The heap type tu; matches the heap type tus.
(CEfty < fty)* CFEfty < fty CkHts <t} CEtyy <ts CF tuq

C + struct (ft} ft']) < struct ft} C Farray ft; < array fty C - functiy — t7, < functi, — t3, C' | cont tuq

3.3.9 Field Types

The field type (mut] zt1) matches the field type (mut} zts) if:
* The storage type zt; matches the storage type zts.
* Either:
— mut] is absent.
— mut} is absent.
* Or:
— mut! is of the form mut.
— mut} is of the form mut.

— The storage type zto matches the storage type zt;.

CE zty < ztg CE zty < ztg CE 2ty < 2ty
CF z2t; < 2ty C'F mut zt; < mut 2t

The storage type storagetype; matches the storage type storagetype, if:
* Either:

— The storage type storagetype, is of the form valtype,.
— The storage type storagelype, is of the form valtype,,.
— The value type valtype; matches the value type valtype,.
* Or:
— The storage type storagetype; is of the form packtype; .
— The storage type storagelypes is of the form packtype,.
— The packed type packtype; matches the packed type packtype,.
The packed type packtype matches only itself.

C + packtype < packtype

44 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.3.10 Defined Types

The defined type deftype; matches the defined type deftype, if:
* FEither:
— The defined type closc (deftype;) is of the form closa (deftypes,).

* Or:
— The sub type unroll(deftype,) is of the form (sub final? typeuse* ct).
— The length of typeuse™ is greater than i.
— The type use typeuse*[i] matches the heap type deftypes.
clos¢(deftype,) = closc (deftypes,)
C deftype, < deftypes,
unroll(deftype;) = sub final” typeuse* ct C = typeuse*[i] < deftype,
C'+ deftype, < deftype,
Note

Note that there is no explicit definition of type equivalence, since it coincides with syntactic equality, as used
in the premise of the former rule above.

3.3.11 Limits
The limits range [ng .. m;] matches the limits range [ng .. mo] if:
* nq is greater than or equal to n..

* my is less than or equal to mo.
ni = ng my < ma
cH [n1 . ml] S [ng .. mg]

3.3.12 Tag Types
The tag type deftype; matches the tag type deftype, if:
* The defined type deftype; matches the defined type deftype,.

 The defined type deftype, matches the defined type deftype;.
C + deftype, < deftype, C + deftypeq < deftypey

C + deftype, < deftypeq

Note

Although the conclusion of this rule looks identical to its premise, they in fact describe different relations: the
premise invokes subtyping on defined types, while the conclusion defines it on tag types that happen to be
expressed as defined types.

3.3.13 Global Types

The global type (mut} valtype,) matches the global type (mut valtype,) if:
 The value type valtype; matches the value type valtypes.
* FEither:

3.3. Matching 45

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— mut! is absent.

— mut} is absent.

— mut! is of the form mut.
— mut} is of the form mut.

— The value type valtype, matches the value type valtype; .
C + valtype; < valtype, C + valtype; < valtype, C F valtypey < wvaltypey

C F valtype; < valtypes C F mut valtype; < mut valtypeqy

3.3.14 Memory Types
The memory type (addrtype limits, page) matches the memory type (addrtype limitsy page) if:

* The limits range limits; matches the limits range limitss.
C + limitsy < limitsg
C & addrtype limits; page < addrtype limitss page

3.3.15 Table Types
The table type (addrtype limitsy reftype,) matches the table type (addrtype limitss reftypes) if:

* The limits range limits; matches the limits range limitss.
* The reference type reftype; matches the reference type reftypes.

 The reference type reftype, matches the reference type reftype; .

C + limitsy < limitsg C + reftype; < reftypeq C + reftypey < reftype,

C F addrtype limitsy reftype; < addrtype limitsy reftypes

3.3.16 External Types
The external type (tag tagtype;) matches the external type (tag tagtypes) if:
» The tag type tagtype; matches the tag type tagtype,.
C + tagtype; < tagtypes

C | tag tagtype, < tag tagtypes
The external type (global globaltype,) matches the external type (global globaltypes) if:
* The global type globaltype; matches the global type globaltype,.
C + globaltype, < globaltype,

C + global globaltype, < global globaltypes
The external type (mem memtype;) matches the external type (mem memtype,) if:
* The memory type memtype; matches the memory type memtype,.

C F memtype; < memtypes

C F mem memtype; < mem memtype,
The external type (table tabletype;) matches the external type (table tabletypes) if:
* The table type tabletype; matches the table type tabletypes.

C - tabletype, < tabletype,
C' | table tabletype; < table tabletypes

The external type (func deftype;) matches the external type (func deftype,) if:

46 Chapter 3

. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* The defined type deftype; matches the defined type deftype,.
C = deftype, < deftypes
C'F func deftype, < func deftype,

3.4 Instructions

Instructions are classified by instruction types that describe how they manipulate the operand stack and initialize
locals: A type t] — 4+ t5 describes the required input stack with argument values of types ¢] that an instruction
pops off and the provided output stack with result values of types ¢5 that it pushes back. Moreover, it enumerates
the indices x* of locals that have been set by the instruction. In most cases, this is empty.

Note

For example, the instruction i32.add has type 32 i32 — i32, consuming two i32 values and producing one. The
instruction (local.set x) has type t —, €, provided ¢ is the type declared for the local x.

Typing extends to instruction sequences instr*. Such a sequence has an instruction type ¢ — .« ¢} if the accumu-
lative effect of executing the instructions is consuming values of types ¢} off the operand stack, pushing new values
of types ¢35, and setting all locals z*.

For some instructions, the typing rules do not fully constrain the type, and therefore allow for multiple types. Such
instructions are called polymorphic. Two degrees of polymorphism can be distinguished:

* value-polymorphic: the value type t of one or several individual operands is unconstrained. That is the case
for all parametric instructions like drop and select.

* stack-polymorphic: the entire (or most of the) instruction type ¢ — t5 of the instruction is uncon-
strained. That is the case for all control instructions that perform an unconditional control transfer, such
as unreachable, br, or return.

In both cases, the unconstrained types or type sequences can be chosen arbitrarily, as long as they meet the con-
straints imposed for the surrounding parts of the program.

Note

For example, the select instruction is valid with type ¢ ¢ i32 — ¢, for any possible number type ¢. Consequently,
both instruction sequences

(i32.const 1) (i32.const 2) (i32.const 3) (select)
and
(fea.const +64) (fes.const +64) (fes.const +64) (select)

are valid, with ¢ in the typing of select being instantiated to i32 or fe4, respectively.

The unreachable instruction is stack-polymorphic, and hence valid with type t7 — ¢5 for any possible sequences
of value types ¢] and t5. Consequently,

(unreachable) (i32.add)
is valid by assuming type e — i32 for the unreachable instruction. In contrast,
(unreachable) (ie4.const 0) (i32.add)

is invalid, because there is no possible type to pick for the unreachable instruction that would make the sequence
well-typed.

3.4. Instructions 47

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The Appendix describes a type checking algorithm that efficiently implements validation of instruction sequences
as prescribed by the rules given here.

3.4.1 Parametric Instructions

nop

The instruction nop is valid with the instruction type ¢ — €.
Chtknop:e—e

unreachable
The instruction unreachable is valid with the instruction type t] — ¢35 if:
* The instruction type tj — 3 is valid.

CHty —15:0k
C I unreachable : t7 — ¢}

Note

The unreachable instruction is stack-polymorphic.

drop
The instruction drop is valid with the instruction type t — € if:

* The value type ¢ is valid.

Chkt:ok
Chtdrop:t—e¢

Note

Both drop and select without annotation are value-polymorphic instructions.

select (t*)”

The instruction (select /Ualtype?) is valid with the instruction type ¢ ¢ i32 — ¢ if:
e The value type t is valid.
* Either:

— The value type sequence valtype” is of the form .

* Or:
— The value type sequence valtype? is absent.
— The value type ¢ matches the value type ¢'.
— The value type t’ is of the form numtype or t’ is of the form vectype.
CFt:ok CFt:ok cCHt<t t' = numtype V t' = vectype
Chselectt:ttiz2—t Chselect:ttiza—t
Note

In future versions of WebAssembly, select may allow more than one value per choice.

48 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.4.2 Control Instructions

block blocktype instr*

The instruction (block bt instr™) is valid with the instruction type t] — 3 if:
 The block type bt is valid as the instruction type t; — 5.
 Let C’ be the same context as C, but with the result type sequence ¢ prepended to the field labels.
¢ Under the context C’, the instruction sequence instr™ is valid with the instruction type t — .+ t5.

CrHbt:t =1 {labels (t5)} & C' - instr™ : t§ — .« t3
C = block bt instr™* : t5 — t3

Note

The notation {labels (¢*)} @ C inserts the new label type at index 0, shifting all others. The same applies to all
other block instructions.

loop blocktype instr*

The instruction (loop bt instr*) is valid with the instruction type t7 — ¢ if:
 The block type bt is valid as the instruction type t7 — ¢5.
* Let C’ be the same context as C, but with the result type sequence ¢} prepended to the field labels.
¢ Under the context C’, the instruction sequence instr™ is valid with the instruction type t§ — .+ t5.

CEbt:t; — 1t {labels (t)} & C' - instr™ : t§ — . t3
C = loop bt instr* : t5 — ¢}

if blocktype instry else instrs

The instruction (if bt instr] else instry) is valid with the instruction type t§ i32 — ¢ if:
 The block type bt is valid as the instruction type t; — 5.
* Let C’ be the same context as C, but with the result type sequence t5 prepended to the field labels.
* Under the context C, the instruction sequence 7nstr7 is valid with the instruction type 7 —x 3.
* Under the context C”, the instruction sequence instry is valid with the instruction type 7 — . 15.

Ctbt:t7—t; {labels (t3)} ® C I instry : t] —qx 15 {labels (t5)} @ C & instry : t7 —qy t3
C = if bt instr] else instry : t5 i32 — t5

br i

The instruction (br 1) is valid with the instruction type ¢t t* — ¢ if:
¢ The label C.labels[l] exists.
* The label C.labels[l] is of the form ¢*.

* The instruction type ¢] — t5 is valid.

Clabels[l] = t* ChHtf —1t:0k
ChEbrl:tytr—t5

3.4. Instructions 49

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The label index space in the context C' contains the most recent label first, so that C.labels[l] performs a relative
lookup as expected. This applies to other branch instructions as well.

The br instruction is stack-polymorphic.

br_if [

The instruction (br_if 1) is valid with the instruction type t* i32 — ¢* if:
* The label C.labels[l] exists.
* The label C'.labels[l] is of the form ¢*.

Clabels[l] = t*
Ctbr_ifl:t*is2 — ¢t~

br_table I* I
The instruction (br_table I*) is valid with the instruction type ¢7 t* i32 — t3 if:
» Forall [in [*:
— The label Clabels[l] exists.
— The result type ¢* matches the label C'.labels[l].
* The label C.labels[l’] exists.
* The result type ¢* matches the label C'.labels[!’].
* The instruction type ¢] t* i32 — 3 is valid.

(CF¢* < C.labels[l])* C I t* < C.labels[l'] C 5 t*i2 — t5 : ok
C't br_table I* I : ¢§ t* i32 — t}

Note

The br_table instruction is stack-polymorphic.

Furthermore, the result type ¢* is also chosen non-deterministically in this rule. Although it may seem necessary
to compute t* as the greatest lower bound of all label types in practice, a simple sequential algorithm does not
require this.

br_on_null

The instruction (br_on_null 7) is valid with the instruction type ¢* (ref null ht) — t* (ref ht) if:
¢ The label C.labels[!] exists.
* The label C.labels[!] is of the form ¢*.

e The heap type ht is valid.

Clabels[l] = t* C'+ ht : ok
C' I br_on_null : ¢t* (ref null ht) — t* (ref ht)

br_on_non_null [

The instruction (br_on_non_null) is valid with the instruction type t* (ref null ht) — ¢* if:
¢ The label C.labels[!] exists.
s The label C.labels[l] is of the form t* (ref null” ht).

50 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

C.labels[l] = t* (ref null” ht)
C' I br_on_non_null I : t* (ref null ht) — t*

br_on_cast [rty 1t

The instruction (br_on_cast [1ty rtg) is valid with the instruction type t* rt; — t* reftype if:
¢ The label C.labels[!] exists.

The label C'labels[l] is of the form ¢* 7t.

* The reference type rt; is valid.

* The reference type rts is valid.

* The reference type rto matches the reference type r¢;.
* The reference type rto matches the reference type rt.
o The reference type reftype is rt1 \ rto.

Clabels[l] = t* rt CF 1ty : ok CF 1ty : ok CFrtyg <rty Chkortyg <1t
C' = br_on_castl rty rtg : t* g — t* (rtq \ 12)

br_on_cast_fail [7ty rto

The instruction (br_on_cast_fail [r¢y rto) is valid with the instruction type t* rt; — t* rtq if:
* The label C.labels[l] exists.

The label C.labels[l] is of the form ¢* rt.

* The reference type rt; is valid.
* The reference type rto is valid.
* The reference type rto matches the reference type rt;.

o The reference type rt; \ rto matches the reference type rt.

C'labels[l]] = t* rt Ct rty : ok C |- 1ty : ok Cl 1ty < 71ty Chorty\rty <rt
C' t br_on_cast_fail [rtq rto : t* rt1 — t* rto

call z

The instruction (call z) is valid with the instruction type t§ — 5 if:
* The function C.funcs|z] exists.
¢ The expansion of C.funcs[z] is (functf — t3).

Cfuncs[z] ~ func t} — 3
Crcallz:tf —t5

call_ref x

The instruction (call_ref) is valid with the instruction type t§ (ref null) — ¢} if:
* The type C.types[z] exists.
* The expansion of C.types[x] is (functj — t3).

C.types|z] ~ func t¥ — t3
C' I call_ref x : 5 (ref null) — ¢}

3.4. Instructions 51

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

call_indirect x y
The instruction (call_indirect z y) is valid with the instruction type 5 at — ¢} if:
* The table C.tables[x] exists.
* The table C.tables[z] is of the form (at lim 7t).
* The reference type 7t matches the reference type (ref null func).
o The type C.types|y] exists.
¢ The expansion of C.types[y| is (func t} — t5).

C'tables[z] = at lim 1t C' + rt < (ref null func) C.types|y] ~ func t} — t5
C call_indirect x y : t] at — t5

return
The instruction return is valid with the instruction type t] t* — {3 if:
* The result type C'.return is of the form ¢*.

* The instruction type t; — t5 is valid.

C.return = (t*) ChEty —t5:0k
C & return : t§ t* — 5

Note

The return instruction is stack-polymorphic.

C.return is absent (set to €) when validating an expression that is not a function body. This differs from it being
set to the empty result type [e], which is the case for functions not returning anything.

return_call =
The instruction (return_call z) is valid with the instruction type ¢ t§ — ¢t} if:
* The function C.funcs[z] exists.
¢ The expansion of C.funcs[z] is (func tj — t3).
* The result type C.return is of the form #'5.
e The result type ¢ matches the result type #'5.
* The instruction type t3 — ¢} is valid.

Cfuncs[z] ~ func t] — 3 C.return = (t'3) Chts <t ChHt5 —1t;:0k
C Freturn_call z : t5 t7 — ¢

Note

The return_call instruction is stack-polymorphic.

return_call_ref =

The instruction (return_call_ref x) is valid with the instruction type t% t5 (ref null) — ¢} if:
* The type C.types|z] exists.
¢ The expansion of C.types[x] is (func tj — t3).
* The result type C.return is of the form ¢'5.

* The result type ¢ matches the result type #'5.

52 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* The instruction type t5 — ¢} is valid.

C.types[x] ~ functi —t5 Cureturn=(t'3) Chrt3 <t CkHt5—1t;:0k
C + return_call_ref & : t} tF (ref null) — ¢}

Note

The return_call_ref instruction is stack-polymorphic.

return_call_indirect x y
The instruction (return_call_indirect z y) is valid with the instruction type t§ t at — ¢t} if:
* The table C.tables[x] exists.
* The table C.tables[z] is of the form (at lim 7t).
* The reference type 7t matches the reference type (ref null func).
* The type C.types[y] exists.
¢ The expansion of C.types[y] is (func tf — t5).
* The result type C.return is of the form ¢'5.
e The result type ¢ matches the result type #'5.
* The instruction type t — ¢} is valid.

C'tables[z] = at lim rt C' + rt < (ref null func)
C.types[y] ~ func t} — t} C.return = (t'3) Crity <t CHth—th:ok
C return_call_indirect x y : t% t] at — t}

Note

The return_call_indirect instruction is stack-polymorphic.

throw x

The instruction (throw z) is valid with the instruction type ¢t t* — ¢} if:
* The tag C.tags|z] exists.
* The expansion of C.tags[z] is (func t* —).
* The instruction type ¢j — 3 is valid.

C.tags[x] ~ func t* — ¢ CHtf —th:ok
C = throw z : t5 t* — 3

Note

The throw instruction is stack-polymorphic.

throw_ref
The instruction throw_ref is valid with the instruction type ¢} (ref null exn) — ¢} if:

* The instruction type ¢] — t5 is valid.

3.4. Instructions 53

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

CHty —1t5:0k
C' I throw_ref : t§ (ref null exn) — 3

Note

The throw_ref instruction is stack-polymorphic.

try_table blocktype catch™ instr*

The instruction (try_table bt catch™ instr*) is valid with the instruction type t} — t3 if:
 The block type bt is valid as the instruction type t; — 5.
* Let C’ be the same context as C, but with the result type sequence t5 prepended to the field labels.
* Under the context C’, the instruction sequence instr™ is valid with the instruction type t — .« t3.
e For all catch in catch™:

— The catch clause catch is valid.
CEbt:t] —t5 {labels (t5)} & C & instr™ : t] — 4« 15 (C F catch : ok)*
C = try_table bt catch™ instr™ : t7 — t4

catch z [
The catch clause (catch z 1) is valid if:
o The tag C.tags|x] exists.
* The expansion of C.tags[z] is (func t* —).
* The label C.labels[l] exists.
* The result type t* matches the label C.labels[l].

C.tags[x] ~ funct* — € C = t* < Clabels[l]
Ccatchzl: ok

catch_ref x [
The catch clause (catch_ref z 1) is valid if:
* The tag C.tags|z] exists.
* The expansion of C.tags[z] is (func t* —).
¢ The label C.labels[!] exists.
* The result type ¢* (ref exn) matches the label C.labels][l].

C.tags[z] ~ func t* — € C I t* (ref exn) < C.labels]l]
C' I catch_ref x 1 : ok

catch_all [
The catch clause (catch_all 1) is valid if:
¢ The label C.labels[l] exists.

* The result type e matches the label C'.labels[l].

C' e < Cllabels[l]
C F catch_all] : ok

54 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

catch_all_ref [
The catch clause (catch_all_ref) is valid if:
¢ The label C.labels[l] exists.

* The result type (ref exn) matches the label C'.labels[l].

C + (ref exn) < Clabels]!]
C' F catch_all_ref [: ok

cont.new x

The instruction (cont.new x) is valid with the instruction type (ref null tu) — (ref z) if:
* The type C.types[z] exists.
* The expansion of C.types|x] is (cont tu).
¢ The expansion of tu is (func tj — ¢3).

C.types[z] ~ cont tu tu ~¢ functf — t;
C' I cont.new z : (ref null tu) — (ref x)

cont.bind = 2’
The instruction (cont.bind x 2’) is valid with the instruction type 5 (ref null z) — (ref 2’) if:
* The type C'.types[z] exists.
¢ The expansion of C.types|x] is (cont tu).
* The expansion of tu is (func t5 t5 — t3).
* The type C.types[z'] exists.
* The expansion of C.types[z/] is (cont tu’).
e The expansion of tu’ is (func t'] — t'3).
e The composite type (func t; — t3) matches the composite type (func t'7 — ¢/3).

C'.types[z] ~ cont tu tu ~¢ func tf £ — t5
C.types[z'] ~ cont tu’ tu' ~¢ funct'] — t'5
C+ (funct; — t3) < (funct'] — t'5)

C F cont.bind z «’ : ¢5 (ref null) — (ref 2’)

resume x hdl*
The instruction (resume x hdl™) is valid with the instruction type ¢; (ref null x) — ¢ if:
* The type C.types[z] exists.
* The expansion of C.types[z] is (cont tu).
¢ The expansion of tu is (func tf — t3).
e For all hdl in hdl™:
— The effect handler hdl is valid with the result type ¢5.

C'.types|z] &~ cont tu tu ~¢ functf — 63 (C'F hdl - t5)*
C F resume x hdl™ : t7 (ref null) — ¢}

3.4. Instructions 55

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

resume_throw x xe hdl*
The instruction (resume_throw x ze hdl™) is valid with the instruction type te* (ref null z) — 5 if:
* The type C.types[z] exists.
* The expansion of C.types[z] is (cont tu).
* The expansion of tu is (func tf — t3).
* The tag C.tags|ze] exists.
* The expansion of C.tags[ze] is (func te* —).
* The effect handler hd! is valid with the result type ¢5.

C'.types[x] ~ cont tu tu ~¢ funct] — t5 C'.tags[ze] ~ func te* — ¢ CF hdl:t
C resume_throw z ze hdl* : te* (ref null z) — ¢}

onxl
The effect handler (on 2 1) is valid with the result type ¢t* if:
* The tag C.tags|x] exists.
e The expansion of C.tags[z] is (func t] — t3).
* The label C.labels[l] exists.
* The label C'labels[l] is of the form '] (ref nul a').
» The result type ¢ matches the result type #'7.
* The type C'.types[z'] exists.
* The expansion of C.types[z'] is (cont tu).
e The expansion of tu is (func t'5 — '*).
» The composite type (func t; — t*) matches the composite type (func t'y — ™).

C.tags|x] ~ func tf — ¢4 C.labels[l] = #'] (ref nul z") CHtr<t]
C.types[z'] =~ cont tu tu ~¢ funct'y — ¢~ C+ (functy — t*) < (funct/y — ')
Clongl:t

on x switch

The effect handler (on x switch) is valid with the result type t* if:
* The tag C.tags|x] exists.
* The expansion of C.tags[z] is (func — t*).

C.tags[z] ~ func e — t*
C F on z switch : t*

suspend x

The instruction (suspend z) is valid with the instruction type t§ — 3 if:
* The tag C.tags|x] exists.
* The expansion of C.tags[z] is (funct] — t3).

C.tags[z] ~ func t} — t5
C - suspend x : t] — t3

56 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

switch x xe
The instruction (switch x xe) is valid with the instruction type ¢§ (ref null) — ¢ if:
* The tag C.tags|ze] exists.
* The expansion of C.tags[ze] is (func — ¢*).
* The type C.types[z] exists.
¢ The expansion of C.types|x] is (cont tuq).
¢ The expansion of tu; is (func ¢} (ref nul y) — te}).
* The result type te] matches the result type ¢*.
* The type C.types[y] exists.
¢ The expansion of C'.types[y] is (cont tuz).
¢ The expansion of tus is (func th — te3).
* The result type t* matches the result type te;.

C'.tags[ze] ~ func e — t*
C'.types[z] ~ cont tuy tuy ~¢ func ti (ref nul y) — te} Ck tef <t*
C'.types|y] ~ cont tus tug ~¢ functy — te CEt* < ted
C' I switch x ze : t} (ref null) — 5

3.4.3 Variable Instructions

local.get x

The instruction (local.get) is valid with the instruction type e — ¢ if:
* The local C.locals[z] exists.
* The local C.locals|x] is of the form (set t).

C'locals[z] = set ¢
Ctlocal.getx:e —t

local.set x

The instruction (local.set z) is valid with the instruction type t — . € if:
* The local C.locals|x] exists.
¢ The local C.locals[x] is of the form (init t).

Clocals[z] = init t

Ctlocalsetr:t—, ¢

local.tee =

The instruction (local.tee x) is valid with the instruction type ¢ —, ¢ if:
* The local C.locals|x] exists.
o The local C.locals[x] is of the form (init t).

Clocals[z] = init t
Ctlocalteex : t —, ¢

3.4. Instructions 57

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

global.get

The instruction (global.get x) is valid with the instruction type ¢ — ¢t if:
* The global C'.globals|x] exists.
s The global C.globals[z] is of the form (mut” ¢).

C.globals[z] = mut’ ¢
C - global.getz : e — t

global.set x

The instruction (global.set x) is valid with the instruction type ¢ — ¢ if:
* The global C'.globals|x] exists.
* The global C.globals|x] is of the form (mut t).

C.globals[z] = mut ¢
C - global.setx : t — €

3.4.4 Table Instructions

table.get

The instruction (table.get x) is valid with the instruction type at — 7t if:
* The table C.tables[z] exists.
* The table C.tables[z] is of the form (at lim rt).

C'.tables[z] = at lim 11
C'I-table.get x : at — 1t

table.set =
The instruction (table.set z) is valid with the instruction type at 1t — € if:
* The table C.tables|z] exists.

* The table C.tables[z] is of the form (at lim 7t).

C'.tables[z] = at lim 1t
C | tablesetz : at 1t — ¢

table.size =

The instruction (table.size z) is valid with the instruction type ¢ — at if:
* The table C.tables[z] exists.
* The table C.tables[z] is of the form (at lim 11).

C'.tables[z] = at lim 1t
C' |- table.sizex : € — at

table.grow x

The instruction (table.grow) is valid with the instruction type rt at — 32 if:
* The table C.tables[z] exists.
* The table C.tables[z] is of the form (at lim 1t).

C.tables[z] = at lim 1t
C I table.grow = : rt at — i32

58 Chapter 3.

Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

table.fill

The instruction (table.fill z) is valid with the instruction type at rt at — € if:
* The table C.tables[x] exists.
* The table C.tables[z] is of the form (at lim 7t).

C'.tables[z] = at lim 1t
C | tablefillz : at rt at — €

table.copy = y
The instruction (table.copy x1 x3) is valid with the instruction type aty ate addrtype — € if:
* The table C.tables[z4] exists.
* The table C.tables[z4] is of the form (aty limy rt1).
* The table C.tables[zs] exists.
* The table C.tables[zs] is of the form (aty lims rt3).
» The reference type rto matches the reference type 7¢;.
¢ The address type addrtype is min(aty, ats).
C'.tables[z1] = aty limy rtq C'.tables[zo] = atg lims rtg Clkrty <rty

C' | table.copy x1 x3 : aty aty min(aty, aty) — €

table.init x y
The instruction (table.init 2 y) is valid with the instruction type at i32i32 — ¢ if:

* The table C.tables[z] exists.

The table C.tables|x] is of the form (at lim rt1).
e The element segment C.elems[y] exists.
* The element segment C.elems[y] is of the form rt5.

e The reference type rto matches the reference type rt;.

C.tables[z] = at lim rt; C.elems[y] = rty Ctrty <rty
C - tableiinitx y : at 3232 — €

elem.drop =
The instruction (elem.drop z) is valid with the instruction type e — ¢ if:

* The element segment C.elems[z] exists.

C.elems[z] = 1t

Celem.dropx:e— €

3.4.5 Memory Instructions

t.load x memarg

The instruction (nt.load x memarg) is valid with the instruction type at — nt if:
* The memory C.mems|[z] exists.
* The memory C.mems|z] is of the form (at lim page).
o 2memarg.align jq less than or equal to |nt|/S.

C.mems[z] = at lim page gmemarg-align < |pt| /8

C = nt.load x memarg : at — nt

3.4. Instructions

59

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

t.loadN_sz © memarg

The instruction (iv.load M _sz & memarg) is valid with the instruction type at — i if:
* The memory C.mems][z] exists.
* The memory C.mems|x] is of the form (at lim page).
o memarg-alien jg egs than or equal to M/8.

C.mems[z] = at lim page gmemarg.align < /8
C + in.loadM _sxz x memarg : at — iN

t.store & memarg

The instruction (nt.store memarg) is valid with the instruction type at nt — eif:
* The memory C.mems][z] exists.
e The memory C.mems|z] is of the form (at lim page).
o 2memarg-alien jq Jess than or equal to |nt|/8.

C.mems|z] = at lim page ~ 2memarg-alien < |ng|/8

C + nt.store x memarg : at nt — €

t.storeN x memarg

The instruction (iv.storeM x memarg) is valid with the instruction type at iNn — € if:
* The memory C.mems|[z] exists.
* The memory C.mems|z] is of the form (at lim page).
o gmemarg.align jg Jess than or equal to M /8.

C.mems[z] = at lim page gmemarg-align < N /8
C I in.storeM x memarg : at IN — €

v128.load = memarg

The instruction (vi2s.load & memarg) is valid with the instruction type at — vi2g if:
* The memory C.mems|[z] exists.
* The memory C.mems|z] is of the form (at lim page).
o 2memarg.align jq Jegs than or equal to |vi2s|/8.

C.mems[z] = at lim page gmemarg-align < |y10g| /8

C t vizs.load x memarg : at — vi2s

v128.load NxM _sz x memarg

The instruction (vi2s.load MxN_sz & memarg) is valid with the instruction type at — vi2g if:
* The memory C.mems[z] exists.
* The memory C.mems|z] is of the form (at lim page).
o memarg.align jq egs than or equal to M/8 - N.

C.mems|x] = at lim page gmemarg.align < N1/8 . N
C t vi128.load MxN _sz x memarg : at — v128

60 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

v128.load N_splat © memarg

The instruction (vi2s.load N_splat memarg) is valid with the instruction type at — vi2s if:
* The memory C.mems][z] exists.
* The memory C.mems|x] is of the form (at lim page).
o memarg-alien jq Jess than or equal to N/8.

C.mems[z] = at lim page gmemarg.align < /8
C I vi2s.load N_splat x memarg : at — vi2s

v128.load N_zero x memarg

The instruction (vi2s.load N_zero x memarg) is valid with the instruction type at — vi28if:
* The memory C.mems][z] exists.
* The memory C.mems|z] is of the form (at lim page).
o 2memarg-align jg Jesg than or equal to N/8.

C.mems|z] = at lim page ~ 2memarg-alien < N/8
C + vi2s.loadN_zero x memarg : at — vi2s

v128.load N_lane = memarg laneidz
The instruction (vi2s.load N_lane memarg i) is valid with the instruction type at vi2s — vi2g if:
* The memory C.mems|[z] exists.
* The memory C.mems|z] is of the form (at lim page).
o gmemarg-align jg Jesg than or equal to N/8.
* 7 is less than 128/N.

C.mems[z] = at lim page gmemarg.align < N /8 i < 128/N
C I vi2s.loadN_lane x memarg i : at vizs — vi2s

v128.store x memarg

The instruction (vi2s.store x memary) is valid with the instruction type at vi2s — e if:
* The memory C.mems][z] exists.
* The memory C.mems|z] is of the form (at lim page).
o 2memarg-alien jq Jess than or equal to |vi2s|/8.

C.mems[z] = at lim page ~ 2memarg-alien < |yi0g| /8

C I viz2s.store x memarg : at viz2s — €

v128.storeN_lane x memarg laneidx
The instruction (vi2s.storeN_lane & memarg 4) is valid with the instruction type at vizs — e if:
* The memory C.mems|[z] exists.
* The memory C.mems|z] is of the form (at lim page).
o 2memarg.align jq egs than or equal to N/8.
* 7 is less than 128/N.

C.mems[z] = at lim page gmemarg.align < N /8 i < 128/N
C I vizs.storeN_lane x memarg i : at vi2s — €

3.4. Instructions 61

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

memory.size

The instruction (memory.size x) is valid with the instruction type ¢ — at if:
* The memory C.mems][z] exists.
* The memory C.mems|x] is of the form (at lim page).

C.mems[z] = at lim page
C - memory.sizex : € — at

memory.grow x

The instruction (memory.grow z) is valid with the instruction type at — at if:
* The memory C.mems][z] exists.
* The memory C.mems|z] is of the form (at lim page).

C.mems[z] = at lim page

C' = memory.grow = : at — at

memory.fill z

The instruction (memory.fill x) is valid with the instruction type at i32 at — € if:
* The memory C.mems[z] exists.
* The memory C.mems|z] is of the form (at lim page).

C.mems[z] = at lim page

C = memory fill z : at i32 at — €

memory.copy T y

The instruction (memory.copy x1 x2) is valid with the instruction type aty ate addriype — e if:
* The memory C.mems|x1] exists.
* The memory C.mems][z1] is of the form (at; limq page).
* The memory C.mems|xz] exists.
¢ The memory C.mems|zs] is of the form (aty lims page).

o The address type addrtype is min(aty, ats).

C.mems[z1] = aty lim; page C.mems[zs] = aty lims page

C' + memory.copy 1 x : aty aty min(aty, aty) — €

memory.init z y
The instruction (memory.init 2 y) is valid with the instruction type at i32i32 — € if:
e The memory C.mems][z] exists.
* The memory C.mems|z] is of the form (at lim page).
* The data segment C.datas|y] exists.
* The data segment C.datas|y] is of the form ok.

C.mems|z] = at lim page C.datas[y] = ok
C't= memory.initx y: at 3232 — €

62 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

data.drop x
The instruction (data.drop z) is valid with the instruction type e — € if:
¢ The data segment C.datas|x] exists.

* The data segment C.datas|z] is of the form ok.

C.datas[z] = ok
C t datadropz:e— ¢

3.4.6 Reference Instructions
ref.null ht
The instruction (ref.null At) is valid with the instruction type e — (ref null ht) if:

 The heap type ht is valid.

C + ht : ok
C = ref.null bt : € — (ref null ht)

ref.func

The instruction (ref.func z) is valid with the instruction type e — (ref dt) if:
* The function C.funcs[z] exists.
* The function C.funcs[z] is of the form dt.

* z is contained in Crefs.
Cfuncslz] = dt x € Clrefs
C = ref func x : € — (ref dt)

ref.is_null
The instruction ref.is_null is valid with the instruction type (ref null ht) — 32 if:

¢ The heap type ht is valid.

CF ht : ok
C I refiis_null : (ref null ht) — i32

ref.as_non_null
The instruction ref.as_non_null is valid with the instruction type (ref null ht) — (ref ht) if:
* The heap type ht is valid.

CF ht : ok
C' | ref.as_non_null : (ref null ht) — (ref ht)

ref.eq

The instruction ref.eq is valid with the instruction type (ref null eq) (ref null eq) — i32.

C + ref.eq : (ref null eq) (ref null eq) — i32

3.4. Instructions 63

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ref.test rt

The instruction (ref.test 7t) is valid with the instruction type rt’ — 32 if:
* The reference type rt is valid.
* The reference type rt’ is valid.

o The reference type rt matches the reference type rt’.

CtFrt:ok ClE rt': ok Ckrt<rt
C I~ ref.test rt : rt! — i32

Note

The liberty to pick a supertype 7’ allows typing the instruction with the least precise super type of ¢ as input,
that is, the top type in the corresponding heap subtyping hierarchy.

ref.cast rt

The instruction (ref.cast rt) is valid with the instruction type rt’ — 7t if:
* The reference type rt is valid.
* The reference type rt’ is valid.

o The reference type rt matches the reference type rt’.

CFrt:ok ClErt': ok Chkrt<rt
Clrefcastrt : rt! — rt

Note

The liberty to pick a supertype 7’ allows typing the instruction with the least precise super type of ¢ as input,
that is, the top type in the corresponding heap subtyping hierarchy.

3.4.7 Aggregate Reference Instructions

struct.new

The instruction (struct.new z) is valid with the instruction type t* — (ref z) if:
* The type C.types[z] exists.
s The expansion of C.types[z] is (struct (mut” zt)*).
* The value type sequence t* is unpack(zt)*.

C.types[z] ~ struct (mut’ zt)*
C' |- struct.new x : unpack(zt)* — (ref x)

struct.new_default x
The instruction (struct.new_default z) is valid with the instruction type e — (ref z) if:
* The type C.types|z] exists.
* The expansion of C.types[z] is (struct (mut” zt)*).
* For all 2t in 2t*:
— A default value for unpack(zt) is defined.

C.types[z] ~ struct (mut’ zt)* (defaulty,pack(zt) 7 €)*

C' - struct.new_default z : € — (ref x)

64 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

struct.get_sz’ z y

The instruction (struct.get_sz” x 7) is valid with the instruction type (ref null) — ¢ if:
* The type C.types[z] exists.
* The expansion of C.types|xz] is (struct ft*).

The length of ft* is greater than 3.
The field type ft*[i] is of the form (mut” zt).

* The signedness sz’ is absent if and only if 2¢ is a packed type.
* The value type ¢ is unpack(zt).

C'.types[z] ~ struct ft* ft'[i] = mut? 2t 51’ = € & 2t = unpack(zt)
C' = struct.get_sz” z i : (ref null) — unpack(zt)

struct.set x y

The instruction (struct.set x #) is valid with the instruction type (ref null z) t — eif:
* The type C.types[z] exists.
* The expansion of C.types|z] is (struct ft*).
* The length of ft* is greater than 7.

The field type ft*[7] is of the form (mut zt).

¢ The value type t is unpack(zt).

C.types|z] ~ struct ft* ft*[i] = mut 2t
C' I struct.set z 4 : (ref null) unpack(zt) — €

array.new x
The instruction (array.new z) is valid with the instruction type t i32 — (ref) if:
* The type C'.types[z] exists.
s The expansion of C.types[z] is (array (mut” zt)).
* The value type ¢ is unpack(zt).

C.types|z] ~ array (mut’ zt)

C' | array.new x : unpack(zt) is2 — (ref z)

array.new_default =

The instruction (array.new_default) is valid with the instruction type i32 — (ref z) if:
* The type C.types[z] exists.
s The expansion of C.types[z] is (array (mut” zt)).
¢ A default value for unpack(zt) is defined.

C.types[z] ~ array (mut® zt) defaultnpack(zt) 7 €

C + array.new_default z : i32 — (ref z)

array.new_fixed x n

The instruction (array.new_fixed x n) is valid with the instruction type t" — (ref z) if:
* The type C'.types[z] exists.
e The expansion of C.types[z] is (array (mut” zt)).

* The value type t is unpack(zt).

3.4. Instructions 65

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

C.types|z] ~ array (mut’ zt)

C' I array.new_fixed z n : unpack(zt)” — (ref z)

array.new_elem z y
The instruction (array.new_elem z y) is valid with the instruction type i32 i32 — (ref z) if:
¢ The type C.types[z] exists.
s The expansion of C.types[z] is (array (mut? rt)).
* The element segment C.elems[y] exists.
* The element segment C.elems[y] matches the reference type rt.

C'.types|x] ~ array (mut? rt) C' I C.elems[y] < rt
C F array.new_elem x y : i321i32 — (ref x)

array.new_data x y
The instruction (array.new_data x y) is valid with the instruction type i32 i32 — (ref) if:
* The type C.types[z] exists.
* The expansion of C.types[z] is (array (mut” zt)).
¢ The value type unpack(zt) is of the form numtype or unpack(zt) is of the form vectype.
* The data segment C.datas|y] exists.
o The data segment C.datas|y] is of the form ok.

C.types[z] ~ array (mut” zt) unpack(zt) = numtype V unpack(zt) = vectype C.datas[y] = ok

C F array.new_data x y : i32 32 — (ref)

array.get_sac? T
The instruction (array.get_sz’ x) is valid with the instruction type (ref null z) is2 — tif:
* The type C.types[z] exists.
s The expansion of C.types[z] is (array (mut” zt)).
* The signedness sz is absent if and only if 2t is a packed type.
* The value type ¢ is unpack(zt).

C.types|z] ~ array (mut’ zt) 577 = € & 2t = unpack(zt)

C - array.get_sz” x : (ref null z) i32 — unpack(zt)

array.set x
The instruction (array.set x) is valid with the instruction type (ref null z) i32¢ — €if:
* The type C.types[z] exists.
* The expansion of C.types|x] is (array (mut zt)).
¢ The value type t is unpack(zt).
C'.types[z] ~ array (mut zt)

C' I array.set x : (ref null) i32 unpack(zt) — €

array.len

The instruction array.len is valid with the instruction type (ref null array) — i32.

C' I array.len : (ref null array) — i32

66 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

array.fill z
The instruction (array.fill x) is valid with the instruction type (ref null z) i32¢ i32 — € if:
* The type C.types[z] exists.
* The expansion of C.types[z] is (array (mut zt)).
* The value type ¢ is unpack(zt).
C'.types[z] =~ array (mut zt)

C + array fill z : (ref null z) i32 unpack(zt) i32 — €

array.copy x y
The instruction (array.copy @1) is valid with the instruction type (ref null ;1) i32 (ref null) i32i32 — €if:
* The type C.types[z1] exists.
* The expansion of C.types|x4] is (array (mut zt1)).
* The type C.types[za] exists.
* The expansion of C.types[zs] is (array (mut’ zt5)).
» The storage type zto matches the storage type zt;.

C'.types[z1] =~ array (mut zt;) C.types[zz] ~ array (mut’ zt) Ct 2ty < 2ty
C' I array.copy x1 @2 : (ref null z1) i32 (ref null z9) 32132 — €

array.init_elem z y
The instruction (array.init_elem x y) is valid with the instruction type (ref null z) 32132132 — € if:
* The type C'.types[z] exists.
* The expansion of C.types[z] is (array (mut zt)).
* The element segment C.elems[y] exists.
* The element segment C.elems[y] matches the storage type zt.

C'.types[z] = array (mut zt) C I C.elems[y] < zt
C' I array.init_elem z y : (ref null) i321i32i32 — €

array.init_data z y

The instruction (array.init_data x y) is valid with the instruction type (ref null z) i32i32i32 — €if:
* The type C.types[z] exists.
* The expansion of C.types[z] is (array (mut zt)).
* The value type unpack(zt) is of the form numtype or unpack(zt) is of the form vectype.
* The data segment C.datas|y] exists.
* The data segment C.datas[y] is of the form ok.

C'.types[z] ~ array (mut zt) unpack(zt) = numtype V unpack(zt) = vectype C.datas[y] = ok

C I array.init_data z y : (ref null) i321i32i32 — €

3.4.8 Scalar Reference Instructions

ref.i31

The instruction ref.i31 is valid with the instruction type i32 — (ref i31).

C I ref.izt : i32 — (ref i31)

3.4. Instructions 67

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

i31.get_sx

The instruction (i31.get_sz) is valid with the instruction type (ref null i31) — i32.

C'+ is1.get_sz : (ref null i31) — i32

3.4.9 External Reference Instructions
any.convert_extern

The instruction any.convert_extern is valid with the instruction type (ref nulli extern) — (ref nul
. nulli is of the form nullg.

11> = null?
nully = nully

C F any.convert_extern : (ref null] extern) — (ref null} any)

extern.convert_any

15 any) if:

The instruction extern.convert_any is valid with the instruction type (ref null; any) — (ref null}, extern) if:

?. ?
* nully is of the form nulls.

11> = null?
null; = nully

C + extern.convert_any : (ref null} any) — (ref null} extern)

3.4.10 Numeric Instructions

t.const ¢

The instruction (nt.const ¢y;) is valid with the instruction type e — nt.

C nt.const ¢,y : € = nt

t.unop

The instruction (nt.unop,,,) is valid with the instruction type nt — nt.

C F nt.unop,, : nt — nt

t.binop

The instruction (nt.binop,,) is valid with the instruction type nt nt — nt.

C F nt.binop,, : nt nt — nt

t.testop

The instruction (nt.testop,,,) is valid with the instruction type nt — i32.

C F nt.testop,, : nt — i32

t.relop

The instruction (nt.relop,,) is valid with the instruction type nt nt — i32.

C F nt.relop,,, : nt nt — i32

68 Chapter 3

. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ty. cvtop_tg_sa;?

The instruction (nty.cutop_nts) is valid with the instruction type nte — nty.

C = nty.cvtop_nto : nte — ntq

3.4.11 Vector Instructions

Vector instructions can have a prefix to describe the shape of the operand. Packed numeric types, is and i16, are not
value types. An auxiliary function maps such packed type shapes to value types:

unpack(ivxN) = unpack(in)

vizg.const ¢

The instruction (vi2s.const ¢) is valid with the instruction type e — vi2s.

C' |- viz2s.const ¢ : € — vi28

V128.00uUnop

The instruction (vi2s.vvunop) is valid with the instruction type vi2s — vi2s.

C | vi28.vvunop : vi2g — vi28

v128.v0binop

The instruction (vi28.vvbinop) is valid with the instruction type vi2g vi2s — vi2s.

C = vi28.vvbinop : vi28 vi2g — v128

v128.vvternop

The instruction (vi2s.vvternop) is valid with the instruction type vi28 vi2g vi2s — vi2s.

C I vi2s.vvternop : vi2g vi2g vi2g — vi28

vi2g.vvtestop

The instruction (vi2s.vvtestop) is valid with the instruction type vizs — i32.

C F vi2s.vvtestop : vi2g — 32

shape.vunop

The instruction (sh.vunop) is valid with the instruction type vizs — vizs.

C F sh.vunop : vi2s — vi28

shape.vbinop

The instruction (sh.vbinop) is valid with the instruction type vi2g vi2s — vi2s.

C' = sh.vbinop : v128 vi2g — v128

3.4. Instructions 69

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

shape.vternop

The instruction (sh.uvternop) is valid with the instruction type vi28 vi2g vi2g — vi2s.

C = sh.vternop : v128 v128 v128 — vi128

shape.vtestop

The instruction (sh.vtestop) is valid with the instruction type vizs — i32.

C + sh.vtestop : vi2s — 32

shape.vrelop

The instruction (sh.vrelop) is valid with the instruction type vi2g vizs — vi2s.

C' F sh.vrelop : vi28 vizs — vi28

ishape.vishiftop

The instruction (sh.vshiftop) is valid with the instruction type vi2g i32 — vi12s.

C + sh.vshiftop : vi2s i32 — vi28

1shape.bitmask

The instruction (sh.bitmask) is valid with the instruction type vizs — i32.

C F sh.bitmask : vizs — i32

i8x16.vswizzlop

The instruction (sh.vswizzlop) is valid with the instruction type vi28 vi2gs — vi2s.

C t sh.vswizzlop : vi28 vi28 — V128

i8x16.shuffle laneidz'®
The instruction (sh.shuffle ¢*) is valid with the instruction type vi2s vi2s — vi12g if:
 Forall ¢ in4*:
— The lane index 4 is less than 2 - dim(sh).

(i < 2-dim(sh))*
C' + sh.shuffle ¢ : vi2s viz2s — vi2s

shape.splat
The instruction (sh.splat) is valid with the instruction type numtype — vi2s if:

* The number type numtype is unpack(sh).

C' | sh.splat : unpack(sh) — vi2s

shape.extract_lane_sz” laneidx
The instruction (sh.extract_lane_sw7 1) is valid with the instruction type vi2s — numtype if:
* The lane index 4 is less than dim(sh).

 The number type numtype is unpack(sh).
i < dim(sh)
C + sh.extract_lane_sz” ¢ : vi2s — unpack(sh)

70 Chapter 3

. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

shape.replace_lane laneidx
The instruction (sh.replace_lane 7) is valid with the instruction type vi2s numtype — vi2s if:
¢ The lane index i is less than dim(sh).

* The number type numtype is unpack(sh).
i < dim(sh)
C' |- sh.replace_lane ¢ : vi2s unpack(sh) — vi2s

ishapey.vextunop_ishapes

The instruction (shy.vextunop_shs) is valid with the instruction type vizs — vizs.

C' shy.vextunop_shg : vi2g — v128

ishapey.vextbinop_ishapes

The instruction (shy.vextbinop_shs) is valid with the instruction type vi28 vi2s — vi2s.

C' b shy.vextbinop_sho : vi28 vi2g — vi28

ishapey.vextternop_ishapes

The instruction (shy.vextternop_shs) is valid with the instruction type vi28 vi2g vi2gs — vi2s.

C t shy.vextternop_shso : v128 vi28 v128 — V128

1shapeq.narrow_ishapes_ st

The instruction (shy.narrow_sho_sz) is valid with the instruction type vi2s vi2s — vi12s.

C F shy.narrow_sho_sx : v128 vi28 — V128

shape.vcvtop_half®_shape_sz’_zero®

The instruction (shy.vcvtop_shs) is valid with the instruction type vizs — vi2s.

C' shy.vcvtop_shg : vi2gs — vi28

3.4.12 Instruction Sequences

Typing of instruction sequences is defined recursively.

Empty Instruction Sequence: ¢
The instruction sequence instr™ is valid with the instruction type it if:
* Either:
— The instruction sequence instr™ is empty.
— The instruction type it is of the forme — e.

e Or:

The instruction sequence instr™ is of the form instry instrs.

The instruction type it is of the form {7 —z» 55 15.

The instruction instry is valid with the instruction type 7 — . t5.
1

3.4. Instructions 71

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— Forall z; in 27:
% The local C.locals[z1] exists.
% The local C'.locals[z] is of the form (init t).

— Under the context C' with the local types of x7 updated to (set ¢)*, the instruction sequence instrj is
valid with the instruction type 5 —x t3.

* Or:
— The instruction sequence instr* is valid with the instruction type it
— The instruction type ¢ matches the instruction type it.

— The instruction type 4t is valid.

— The instruction type 4t is of the form t* ¢t — - t* ¢5.
— The instruction sequence instr™ is valid with the instruction type ¢ — .« 5.

— The result type ¢* is valid.

Che:e—e
C'&=instry s t] —qs 13 (C.locals[zy] = init t)* Cl.locallz]] = (set t)*] - instry : t5 —rqy t3
C I instry instry :] —gr 23 13
C' &= instr* : it C it <it C +it' : ok C & instr™ 1 7 —g- 5 C 1t :ok
C + instr* : it C & instr® : (t* t5) —z- (¢ 13)

Note

In combination with the previous rule, subsumption allows to compose instructions whose types would not
directly fit otherwise. For example, consider the instruction sequence

(i32.const 1) (i32.const 2) (i32.add)

To type this sequence, its subsequence (i32.const 2) (i32.add) needs to be valid with an intermediate type. But
the direct type of (i32.const 2) is € — 32, not matching the two inputs expected by i32.add. The subsumption
rule allows to weaken the type of (const i32 2) to the supertype i32 — 32 i32, such that it can be composed with
i32.add and yields the intermediate type i32 — i32 i32 for the subsequence. That can in turn be composed with
the first constant.

Furthermore, subsumption allows to drop init variables 2* from the instruction type in a context where they are
not needed, for example, at the end of the body of a block.

3.4.13 Expressions
Expressions expr are classified by result types ¢*.
The expression instr* is valid with the result type ¢t* if:
« The instruction sequence instr* is valid with the instruction type e — t*.

CFinstr* : e —. t*
C + instr™ : t*

72 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Constant Expressions
In a constant expression, all instructions must be constant.
instr* is constant if:
* For all instr in instr*:
— nstr is constant.
val is constant if:
 Either:

— The value val is of the form (nt.const ¢yt).

* Or:
— The value val is of the form (vt.const ¢y).
* Or:
— The value val is of the form (ref.null ht).
* Or:
— The value val is of the form ref.i31.
* Or:
— The value val is of the form (ref.func z).
e Or:
— The value val is of the form (struct.new z).
* Or:
— The value val is of the form (struct.new_default z).
e Or:
— The value val is of the form (array.new z).
* Or:
— The value val is of the form (array.new_default).
e Or:
— The value val is of the form (array.new_fixed x n).
* Or:
— The value val is of the form any.convert_extern.
* Or:
— The value val is of the form extern.convert_any.
* Or:
— The value val is of the form (global.get x).
— The global C'.globals|x] exists.
— The global C'.globals[x] is of the form (e t).
* Or:

— The value val is of the form (iv.binop).
— IV is contained in [i32; i64].

— binop is contained in [add; sub; mul].

3.4. Instructions

73

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(C F instr const)*
C F instr* const

iN € i32 i64 binop € add sub mul

C' F (nt.const ¢y,) const C' + (wvt.const ¢,;) const C I (in.binop) const

C' I (ref.null ht) const C' I (ref.i31) const C + (ref.func x) const

C' I (struct.new) const C' I (struct.new_default z) const

C I (array.new x) const C + (array.new_default x) const C' I (array.new_fixed x n) const

C' I (any.convert_extern) const C' I (extern.convert_any) const

C.globals[z] =t
C' - (global.get x) const

Note

Currently, constant expressions occurring in globals are further constrained in that contained global.get in-
structions are only allowed to refer to imported or previously defined globals. Constant expressions occurring
in tables may only have global.get instructions that refer to imported globals. This is enforced in the validation
rule for modules by constraining the context C' accordingly.

The definition of constant expression may be extended in future versions of WebAssembly.

3.5 Modules

Modules are valid when all the components they contain are valid. To verify this, most definitions are themselves
classified with a suitable type.

3.5.1 Types

The sequence of types defined in a module is validated incrementally, yielding a sequence of defined types repre-
senting them individually.

The type definition (type rectype) is valid with the defined type sequence dt™ if:
 The length of C.types is equal to z.
* The defined type sequence dt™ is of the form roll; (rectype).
* Let C’ be the same context as C, but with the defined type sequence dt™ appended to the field types.
* Under the context C’, the recursive type rectype is valid for the type index x.

x = |C.types| dt* = roll} (rectype) C @ {types dt*} b rectype : ok(x)
C | type rectype : dt*

The type definition sequence type* is valid with the defined type sequence deftype™ if:
* Either:
— The type definition sequence type* is empty.
— The defined type sequence deftype™ is empty.
* Or:
— The type definition sequence type* is of the form type; type’™.
— The defined type sequence deftype™ is of the form dt] dt™.
— The type definition type, is valid with the defined type sequence dt].

74 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— Let C’ be the same context as C, but with the defined type sequence dt] appended to the field types.
— Under the context C’, the type definition sequence type’™ is valid with the defined type sequence dt*.

C + type, : dit] C & {types dt]} - type* : dt*
Che:e C = type, type* : dt] dt*

3.5.2 Tags

Tags tag are classified by their tag types, which are defined types expanding to function types.
The tag (tag tagtype) is valid with the tag type tagtype’ if:
* The tag type tagtype is valid.

o The tag type tagtype’ is closa(tagtype).
C + tagtype : ok

C' | tag tagtype : closc(tagtype)

3.5.3 Globals

Globals global are classified by global types.
The global (global globaltype expr) is valid with the global type globaltype if:
* The global type globaltype is valid.
* The global type globaltype is of the form (mut” t).
e The expression expr is valid with the value type t.
* expr is constant.

C globaltype : ok globaltype = mut” t C - expr : t const

C F global globaltype expr : globaltype

Sequences of globals are handled incrementally, such that each definition has access to previous definitions.
The global sequence global™ is valid with the global type sequence globaltype™ if:
* Either:
— The global sequence global® is empty.
— The global type sequence globaltype™ is empty.
* Or:
The global sequence global™ is of the form global, global’".

The global type sequence globaltype™ is of the form gt, gt*.

The global global, is valid with the global type gt;.

Let C’ be the same context as C, but with the global type sequence gt, appended to the field globals.

Under the context C’, the global sequence global’™ is valid with the global type sequence gt*.

C + globaly : gt, C @ {globals gt, } = global™ : gt*
Clhe:e C' I globaly global® : gt, gt*

3.5. Modules 75

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.5.4 Memories
Memories mem are classified by memory types.
The memory (memory memtype) is valid with the memory type memtype if:

e The memory type memtype is valid.

C = memtype : ok

C' = memory memtype : memtype

3.5.5 Tables

Tables table are classified by table types.

The table (table tabletype expr) is valid with the table type tabletype if:
¢ The table type tabletype is valid.
* The table type tabletype is of the form (at lim rt).
* The expression expr is valid with the value type rt.

* expr is constant.

C - tabletype : ok tabletype = at lim rt C' = expr : rt const
C I table tabletype expr : tabletype

3.5.6 Functions
Functions func are classified by defined types that expand to function types of the form func t7 — ¢3.
The function (func x local™ expr) is valid with the type C.types|x] if:

* The type C.types[z] exists.

* The expansion of C.types[x] is (functi — t3).

* For all local in local™:

— The local local is valid with the local type It.
o [t* is the concatenation of all such /.

¢ Under the context C' with the field locals appended by (set ¢1)* It* and the field labels appended by ¢5 and
the field return appended by ¢5, the expression expr is valid with the result type ¢3.

C'.types|z] =~ func t] — 3 (CF local : It)* C @ {locals (set t1)* It*, labels (¢3), return (¢5)} - expr : t5

C I func z local™ expr : C.types|z]

3.5.7 Locals
Locals local are classified with local types.
The local (local ¢) is valid with the local type (init t) if:
* Either:
— The initialization status nit is of the form set.
— A default value for ¢ is defined.
* Or:
— The initialization status init is of the form unset.

— A default value for ¢ is not defined.

76 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

default; # € default; = €
Ctlocalt:sett C tlocal t: unsett

Note

For cases where both rules are applicable, the former yields the more permissable type.

3.5.8 Data Segments
Data segments data are classified by the singleton data type, which merely expresses well-formedness.
The memory segment (data b* datamode) is valid if:

e The data mode datamode is valid.
C F datamode : ok
C' + data b* datamode : ok

The data mode datamode is valid if:

¢ Either:

The data mode datamode is of the form (active x expr).

The memory C.mems[z] exists.

The memory C.mems[z] is of the form (at lim page).

The expression expr is valid with the value type at.

expr is constant.

e Or:
— The data mode datamode is of the form passive.
C.mems[z] = at lim page C + expr : at const
C F active x expr : ok C - passive : ok

3.5.9 Element Segments
Element segments elem are classified by their element type.
The table segment (elem elemtype expr* elemmode) is valid with the element type elemtype if:
» The reference type elemtype is valid.
e For all ezpr in expr*:
— The expression expr is valid with the value type elemtype.
— expr is constant.
e The element mode elemmode is valid with the element type elemtype.

C + elemtype : ok (C F expr : elemtype const)* C '+ elemmode : elemtype

C' |- elem elemtype expr* elemmode : elemtype

The element mode elemmode is valid with the element type rt if:
* Either:

— The element mode elemmode is of the form (active = expr).

The table C'.tables[x] exists.

The table C'.tables[x] is of the form (at lim rt’).

The reference type ¢ matches the reference type rt’.

The expression expr is valid with the value type at.

3.5. Modules 77

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— expr is constant.
* Or:

— The element mode elemmode is of the form passive.
* Or:

— The element mode elemmode is of the form declare.

C'.tables[z] = at lim rt’ Chtrt<rt C' |- expr : at const
C F active x expr : rt C'F passive : 1t C + declare : rt

3.5.10 Start Function

The start function (start) is valid if:
* The function C.funcs[z] exists.
¢ The expansion of C.funcs[z] is (func —).

C.funcs[z] ~ funce — €
C | startz : ok

3.5.11 Imports

Imports import are classified by external types.

The import (import namey names zt) is valid with the external type externtype if:
* The external type «t is valid.

¢ The external type externtype is closc(zt).

CF xt:ok
C F import namey names xt : closc(xt)

3.5.12 Exports
Exports export are classified by their external type.
The export (export name externidz) is valid with the name name and the external type «t if:

e The external index externidx is valid with the external type xt.

C + externidx : ot

C' = export name externidr : name xt

tag x

The external index (tag x) is valid with the external type (tag jt) if:
* The tag C.tags|x] exists.
¢ The tag C.tags|x] is of the form jt.

C.tags[z] = jt
C I tagx : tag jt

78 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

global x

The external index (global x) is valid with the external type (global gt) if:
* The global C'.globals|x] exists.
* The global C.globals[x] is of the form gt.

C.globals[z] = gt
C - global z : global gt

memory
The external index (memory) is valid with the external type (mem mt) if:
* The memory C.mems][z] exists.
* The memory C.mems|z] is of the form mt.

C.mems[z] = mt

C = memory x : mem mt

table z

The external index (table) is valid with the external type (table tt) if:
* The table C.tables[z] exists.
* The table C.tables[x] is of the form ¢t.

C'.tables[z] = tt
C I table x : table ¢t

func

The external index (func) is valid with the external type (func dt) if:
* The function C.funcs[z] exists.
¢ The function C.funcs[z] is of the form dt.

C.funcs[z] = dt
C F func z : func dt

3.5.13 Modules

Modules are classified by their mapping from the external types of their imports to those of their exports.

A module is entirely closed, that is, its components can only refer to definitions that appear in the module itself.
Consequently, no initial context is required. Instead, the context C' for validation of the module’s content is con-
structed from the definitions in the module.

The module (module type* import* tag* global® mem* table* func* data™ elem™ start” export*) is valid with
the module type moduletype if:

¢ Under the context {return e}, the type definition sequence type* is valid with the defined type sequence '
* For all import in import™:
— Under the context {types dt/*, return €}, the import émport is valid with the external type xt;.
* zt is the concatenation of all such ;.
e For all tag in tag*:
— Under the context C’, the tag tag is valid with the tag type jt.
* jt* is the concatenation of all such jt.

¢ Under the context C’, the global sequence global™ is valid with the global type sequence gt*.

3.5. Modules 79

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

e For all mem in mem*:
— Under the context C’, the memory mem is valid with the memory type mt.
e mt* is the concatenation of all such m¢t.
« For all table in table™:
— Under the context C’, the table table is valid with the table type tt.
* {t* is the concatenation of all such ¢¢.
* For all func in func*:
— The function func is valid with the defined type dt.
e dt* is the concatenation of all such dt.
e For all data in data™:
— The memory segment data is valid.
* ok™ is the concatenation of all such ok.
* For all elem in elem™:
— The table segment elem is valid with the element type rt.
e rt* is the concatenation of all such rt¢.
o If start is defined, then:
— The start function start is valid.
¢ For all export in export™:
— The export export is valid with the name nm and the external type zte.
* nm* is the concatenation of all such nm.
* zt is the concatenation of all such zt..
e nm™* disjoint is true.

* The context C'is of the form C’ with the field tags appended by jt; j¢t* and the field globals appended by
gt* and the field mems appended by mt; mt* and the field tables appended by t¢ ¢t* and the field datas
appended by ok™ and the field elems appended by rt*.

* The context C” is of the form {types dt'*, globals gt*, funcs dt; dt*, return e, refs 2*}.
¢ The function index sequence z* is of the form funcidx(global® mem* table™ elem™).

* The tag type sequence jt;" is of the form tags(xt}).

* The global type sequence gt is of the form globals(zt’).

» The memory type sequence mt is of the form mems(zt;).

* The table type sequence ¢t is of the form tables(xt}).

* The defined type sequence di;" is of the form funcs(zt’).

 The module type moduletype is closg(zti — wtY).

{} F type* - dt”™ ({types dt'*} - import : zt;)*

(C"F tag : jt)* C' + global® : gt* (C"F mem : mt)* (C" I table : tt)* (CF func: dt)*
(CF data : ok)* (CF elem :rt)* (C - start : ok)’ (C'F export : nm xte)* nm* disjoint
C = C'" @ {tags jtI jt*, globals gt*, mems mt mt*, tables tt* tt*, datas ok™, elems rt*}

C" = {types dt'", globals gt*, funcs dt; dt*, refs z*} x* = funcidx(global™ mem* table™ elem™)
gt = tags(zty) gt = globals(xt’) mt’ = mems(zt’) it = tables(xt}) dti = funcs(zt})

F module type* import* tag* global* mem* table* func* data® elem™ start® export* : closg(at! — at?)

80 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

All functions in a module are mutually recursive. Consequently, the definition of the context C' in this rule
is recursive: it depends on the outcome of validation of the function, table, memory, and global definitions
contained in the module, which itself depends on C. However, this recursion is just a specification device. All
types needed to construct C' can easily be determined from a simple pre-pass over the module that does not
perform any actual validation.

Globals, however, are not recursive but evaluated sequentially, such that each constant expressions only has
access to imported or previously defined globals.

3.5. Modules 81

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

82 Chapter 3. Validation

CHAPTER 4

Execution

4.1 Conventions
WebAssembly code is executed when instantiating a module or invoking an exported function on the resulting
module instance.

Execution behavior is defined in terms of an abstract machine that models the program state. It includes a stack,
which records operand values and control constructs, and an abstract store containing global state.

For each instruction, there is a rule that specifies the effect of its execution on the program state. Furthermore,
there are rules describing the instantiation of a module. As with validation, all rules are given in two equivalent
forms:

1. In prose, describing the execution in intuitive form.

2. In formal notation, describing the rule in mathematical form.'®

Note

As with validation, the prose and formal rules are equivalent, so that understanding of the formal notation is
not required to read this specification. The formalism offers a more concise description in notation that is used
widely in programming languages semantics and is readily amenable to mathematical proof.

4.1.1 Prose Notation

Execution is specified by stylised, step-wise rules for each instruction of the abstract syntax. The following con-
ventions are adopted in stating these rules.

* The execution rules implicitly assume a given store s.

* The execution rules also assume the presence of an implicit stack that is modified by pushing or popping
values, labels, and frames.

* Certain rules require the stack to contain at least one frame. The most recent frame is referred to as the
current frame.

I8 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan Gohman, Luke
Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly'”. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

19 https://dl.acm.org/citation.cfm?doid=3062341.3062363

83

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* Both the store and the current frame are mutated by replacing some of their components. Such replacement
is assumed to apply globally.

» The execution of an instruction may trap, in which case the entire computation is aborted and no further
modifications to the store are performed by it. (Other computations can still be initiated afterwards.)

* The execution of an instruction may also end in a jump to a designated target, which defines the next instruc-
tion to execute.

» Execution can enter and exit instruction sequences that form blocks.
* Instruction sequences are implicitly executed in order, unless a trap, jump, or exception occurs.

* In various places the rules contain assertions expressing crucial invariants about the program state.

4.1.2 Formal Notation

Note

This section gives a brief explanation of the notation for specifying execution formally. For the interested reader,
a more thorough introduction can be found in respective text books.”

The formal execution rules use a standard approach for specifying operational semantics, rendering them into
reduction rules. Every rule has the following general form:

configuration — configuration

A configuration is a syntactic description of a program state. Each rule specifies one step of execution. As long
as there is at most one reduction rule applicable to a given configuration, reduction — and thereby execution — is
deterministic. WebAssembly has only very few exceptions to this, which are noted explicitly in this specification.

For WebAssembly, a configuration typically is a tuple (s; f; instr™) consisting of the current store s, the call frame
f of the current function, and the sequence of instructions that is to be executed. (A more precise definition is
given later.)

To avoid unnecessary clutter, the store s and the frame f are often combined into a state z, which is a pair (s; f).
Moreover, z is omitted from reduction rules that do not touch them.

There is no separate representation of the stack. Instead, it is conveniently represented as part of the configuration’s
instruction sequence. In particular, values are defined to coincide with const and ref instructions, and a sequence
of such instructions can be interpreted as an operand ““stack” that grows to the right.

Note
For example, the reduction rule for the i32.add instruction can be given as follows:
(i32.const n1) (i32.const ny) (i32.add) < (i32.const (ny + ng) mod 232)
Per this rule, two const instructions and the add instruction itself are removed from the instruction stream and

replaced with one new const instruction. This can be interpreted as popping two values off the stack and pushing
the result.

When no result is produced, an instruction reduces to the empty sequence:

nop < €

Labels and frames are similarly defined to be part of an instruction sequence.

20 For example: Benjamin Pierce. Types and Programming Languages?'. The MIT Press 2002
21 https://www.cis.upenn.edu/~bcpierce/tapl/

84 Chapter 4. Execution

https://www.cis.upenn.edu/~bcpierce/tapl/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The order of reduction is determined by the details of the reduction rules. Usually, the left-most instruction that is
not a constant will be the subject of the next reduction step.

Reduction terminates when no more reduction rules are applicable. Soundness of the WebAssembly type system
guarantees that this is only the case when the original instruction sequence has either been reduced to a sequence
of value instructions, which can be interpreted as the values of the resulting operand stack, or if an exception or
trap occurred.

Note

For example, the following instruction sequence,
(fea.const ¢1) (fes.const go) (fes.neg) (fes.const g3) (fea.add) (fe4.mul)

terminates after three steps:

— (fes.const g1) (fes.const q4) (fes.const g3) (fes.add) (fea.mul)
— (fes.const q1) (fes.const g5) (fe4.mul)
— (fe4.const gg)

where ¢4 = —¢o and g5 = —¢2 + g3 and g = q1 - (—q2 + ¢3).

4.2 Runtime Structure

Store, stack, and other runtime structure forming the WebAssembly abstract machine, such as values or module
instances, are made precise in terms of additional auxiliary syntax.

4.2.1 Values

WebAssembly computations manipulate values of either the four basic number types, i.e., integers and floating-
point data of 32 or 64 bit width each, or vectors of 128 bit width, or of reference type.

In most places of the semantics, values of different types can occur. In order to avoid ambiguities, values are
therefore represented with an abstract syntax that makes their type explicit. It is convenient to reuse the same
notation as for the const instructions and ref.null producing them.

References other than null are represented with additional administrative instructions. They either are scalar ref-
erences, containing a 31-bit integer, structure references, pointing to a specific structure address, array references,
pointing to a specific array address, function references, pointing to a specific function address, exception refer-
ences, pointing to a specific exception address, continuation references, pointing to a specific continuation address,
or host references pointing to an uninterpreted form of host address defined by the embedder. Any of the aformen-
tioned references can furthermore be wrapped up as an external reference.

val == num | vec | ref
num = numtype.const NUMpumtype

vec

vectype.const VeCyectype

ref = addrref
| ref.null heaptype
addrref ref.i31 us1

ref.struct structaddr
ref.array arrayaddr
ref.func funcaddr
ref.exn exnaddr
ref.cont contaddr
ref.host hostaddr
ref.extern addrref

4.2. Runtime Structure 85

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note
Future versions of WebAssembly may add additional forms of values.
Value types can have an associated default value; it is the respective value 0 for number types, 0 for vector types,

and null for nullable reference types. For other references, no default value is defined, default, hence is an optional
value val’.

defaultyy = (in.const 0)
defaulty = (fn.const 40)
default,y = (vn.const 0)
defaultref nun ne = (ref.null ht)
default,es pt = ¢

Convention

* The meta variable r ranges over reference values where clear from context.

4.2.2 Results

A result is the outcome of a computation. It is either a sequence of values, a thrown exception, or a trap.

result = wal® | (ref.exn eznaddr) throw_ref | trap

4.2.3 Store

The store represents all global state that can be manipulated by WebAssembly programs. It consists of the runtime
representation of all instances of functions, tables, memories, globals, tags, element segments, data segments, and
structures, arrays, exceptions or continuations that have been allocated during the life time of the abstract machine.

It is an invariant of the semantics that no element or data instance is addressed from anywhere else but the owning
module instances.

Syntactically, the store is defined as a record listing the existing instances of each category:

store = {tags taginst*
globals globalinst™
mems meminst™
tables tableinst*
funcs funcinst®
datas datainst™
elems eleminst™
structs structinst®
arrays arrayinst®
exns exninst™
conts continst’ "}

Note

In practice, implementations may apply techniques like garbage collection or reference counting to remove
objects from the store that are no longer referenced. However, such techniques are not semantically observable,
and hence outside the scope of this specification.

86 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Convention

* The meta variable s ranges over stores where clear from context.

4.2.4 Addresses

Function instances, table instances, memory instances, global instances, tag instances, element instances, data
instances and structure, array, exception instances or continuation instances in the store are referenced with abstract
addresses. These are simply indices into the respective store component. In addition, an embedder may supply an
uninterpreted set of host addresses.

addr == 0|1]2] ...
funcaddr = addr
tableaddr ::= addr
memaddr = addr
globaladdr == addr
tagaddr = addr
elemaddr ::= addr
dataaddr = addr
structaddr = addr
arrayaddr = addr
exnaddr = addr
contaddr = addr
hostaddr ::= addr

An embedder may assign identity to exported store objects corresponding to their addresses, even where this iden-
tity is not observable from within WebAssembly code itself (such as for function instances or immutable globals).

Note

Addresses are dynamic, globally unique references to runtime objects, in contrast to indices, which are static,
module-local references to their original definitions. A memory address memaddr denotes the abstract address
of a memory instance in the store, not an offset inside a memory instance.

There is no specific limit on the number of allocations of store objects, hence logical addresses can be arbitrarily
large natural numbers.

Conventions

* The notation addr(A) denotes the set of addresses from address space addr occurring free in A. We some-
times reinterpret this set as the list of its elements, without assuming any particular order.

4.2.5 External Addresses

An external address is the runtime address of an entity that can be imported or exported. It is an address denoting
either a function instance, global instance, table instance, memory instance, or tag instance in the shared store.

externaddr = tag tagaddr | global globaladdr | mem memaddr | table tableaddr | func funcaddr

4.2. Runtime Structure 87

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.2.6 Module Instances

A module instance is the runtime representation of a module. It is created by instantiating a module, and collects
runtime representations of all entities that are imported, defined, or exported by the module.

moduleinst ::= {types deftype*
tags tagaddr™
globals globaladdr*
mems memaddr™
tables tableaddr™
funcs funcaddr™
datas dataaddr”
elems elemaddr™
exports exportinst™}

Each component references runtime instances corresponding to respective declarations from the original module
— whether imported or defined — in the order of their static indices. Function instances, table instances, memory
instances, global instances, and tag instances are denoted by their respective addresses in the store.

It is an invariant of the semantics that all export instances in a given module instance have different names.

Note

All record fields except exports are to be considered private components of a module instance. They are not
accessible to other modules, only to function instances originating from the same module.

4.2.7 Function Instances

A function instance is the runtime representation of a function. It effectively is a closure of the original function
over the runtime module instance of its originating module. The module instance is used to resolve references to
other definitions during execution of the function.

funcinst = {type deftype, module moduleinst,code code}
code = func | hostfunc

A host function is a function expressed outside WebAssembly but passed to a module as an import. The definition
and behavior of host functions are outside the scope of this specification. For the purpose of this specification, it
is assumed that when invoked, a host function behaves non-deterministically, but within certain constraints that
ensure the integrity of the runtime.

Note

Function instances are immutable, and their identity is not observable by WebAssembly code. However, an
embedder might provide implicit or explicit means for distinguishing their addresses.

4.2.8 Table Instances
A table instance is the runtime representation of a table. It records its type and holds a sequence of reference
values.

tableinst ::= {type tabletype, elem ref*}
Table elements can be mutated through table instructions, the execution of an active element segment, or by external
means provided by the embedder.

It is an invariant of the semantics that all table elements have a type matching the element type of tabletype. It
also is an invariant that the length of the element sequence never exceeds the maximum size of tabletype.

88 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.2.9 Memory Instances

A memory instance is the runtime representation of a linear memory. It records its type and holds a sequence of
bytes.

meminst = {type memtype, bytes byte*}

The length of the sequence always is a multiple of the WebAssembly page size, which is defined to be the constant
65536 — abbreviated 64 Ki.

A memory’s bytes can be mutated through memory instructions, the execution of an active data segment, or by
external means provided by the embedder.

It is an invariant of the semantics that the length of the byte sequence, divided by page size, never exceeds the
maximum size of memtype.

4.2.10 Global Instances

A global instance is the runtime representation of a global variable. It records its type and holds an individual
value.

globalinst = {type globaltype, value val}

The value of mutable globals can be mutated through variable instructions or by external means provided by the
embedder.

It is an invariant of the semantics that the value has a type matching the value type of globaltype.
4.2.11 Tag Instances
A tag instance is the runtime representation of a tag definition. It records the defined type of the tag.

taginst = {type tagtype}

4.2.12 Element Instances

An element instance is the runtime representation of an element segment. It holds a list of references and its type.
eleminst = {type elemtype,elem ref*}

It is an invariant of the semantics that all elements of a segment have a type matching elemtype.

4.2.13 Data Instances

An data instance is the runtime representation of a data segment. It holds a list of bytes.

datainst = {bytes byte*}

4.2.14 Export Instances

An export instance is the runtime representation of an export. It defines the export’s name and the associated
external address.

exportinst = {name name,addr externaddr}

4.2. Runtime Structure 89

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Conventions

The following auxiliary functions are assumed on sequences of external addresses. They extract addresses of a
specific kind in an order-preserving fashion:

o funcs(za*) extracts all function addresses from za*,
* tables(za*) extracts all table addresses from za*,

» mems(za*) extracts all memory addresses from za*,
* globals(za™) extracts all global addresses from za™*,

* tags(za*) extracts all tag addresses from za*.

4.2.15 Aggregate Instances

A structure instance is the runtime representation of a heap object allocated from a structure type. Likewise,
an array instance is the runtime representation of a heap object allocated from an array type. Both record their
respective defined type and hold a list of the values of their fields.

structinst = {type deftype, fields fieldval*}
arrayinst = {type deftype, fields fieldval*}
fieldval = wal | packval
packval ::= packtype.pack iN

Conventions

» Conversion of a regular value to a field value is defined as follows:

(val) val
is2.const i) = packtype.pack Wrapss |pqckiype) (1)

pack
pack

valtype
packtype (

* The inverse conversion of a field value to a regular value is defined as follows:

© o € . P— .
unpdckz}qlf,ypc (U(Ll) = wal)
unpackyg pype (Packtype.pack i) = is2.const extend| . xiype|,32(4)

4.2.16 Exception Instances

An exception instance is the runtime representation of an exception produced by a throw instruction. It holds the
address of the respective tag and the argument values.

exninst = {tag tagaddr,fields val*}

4.2.17 Continuation Instances

A continuation instance is the runtime representation of a continuation produced by a suspend or switch instrucion.

gframe = label, {instr*}
| frame, {frame}
| handler, {catch™}
| prompt {addrhdl*}
continst = vals val® [_] instr*

| frame val® gframe continst instr*

920 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Conventions

» Filling the hole of a continuation instance with values and instructions is defined as follows:

contfill(vals val™ [_] instr™*, val’”™, instr’™) vals val® val”™ [_] instr’™ instr*

contfill(frame val* gframe continst instr*, val’™,instr'™) = frame val* gframe contfill(continst, val’™, instr'™) instr

* Finding a corresponding handler of a tag is defined as follows:

gethandlersuspend(e, ea) = €

gethandlersuspend((on ea’ switch) addrhdl*,ea) = gethandlersuspend(addrhdl™, ea)
gethandlersuspend((on ea’ 1) addrhdl™, ea) = 1 if ea = ea’
gethandlersuspend((on ea’ 1) addrhdl™, ea) = gethandlersuspend(addrhdl®, ea) otherwise
gethandlerswitch(e, ea) = false

gethandlerswitch((on ea’ 1) addrhdl*, ea) = gethandlerswitch(addrhdl*, ea)
gethandlerswitch((on ea’ switch) addrhdl*, ea) = true if ea = ed’
gethandlerswitch((on ea’ switch) addrhdl*, ea) = gethandlerswitch(addrhdl*, ea) otherwise

 Converting syntactic handlers to runtime handlers is defined as follows:

hdlinst(z, (on z 1)) = on z.tags[z]
hdlinst(z, (on z switch)) = on z.tags[z] switch

4.2.18 Stack

Besides the store, most instructions interact with an implicit stack. The stack contains the two kinds of entries:
* Values: the operands of instructions.
* Control Frames: currently active control flow structures.
The latter can in turn be one of the following:
e Labels: active structured control instructions that can be targeted by branches.
e (Call) Frames: the activation records of active function calls.
* Handlers: active exception handlers.

* Prompts: active effect handlers.

Note

Where clear from context, call frame is abbreviated to just frame.
All these entries can occur on the stack in any order during the execution of a program. Stack entries are described
by abstract syntax as follows.

Note

It is possible to model the WebAssembly semantics using separate stacks for operands, control constructs, and
calls. However, because the stacks are interdependent, additional book keeping about associated stack heights
would be required. For the purpose of this specification, an interleaved representation is simpler.

Values

Values are represented by themselves.

4.2. Runtime Structure 91

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Labels

Labels carry an argument arity n and their associated branch farget, which is expressed syntactically as an instruc-
tion sequence:

label == label,{instr*}

Intuitively, instr* is the continuation to execute when the branch is taken, in place of the original control construct.

Note

For example, a loop label has the form
label,,{(loop bt ...)}

When performing a branch to this label, this executes the loop, effectively restarting it from the beginning.
Conversely, a simple block label has the form

label,, {€}

When branching, the empty continuation ends the targeted block, such that execution can proceed with consec-
utive instructions.

Call Frames

Call frames carry the return arity n of the respective function, hold the values of its locals (including arguments)
in the order corresponding to their static local indices, and a reference to the function’s own module instance:

callframe == frame,{frame}
frame = {locals (m,l?)*, module moduleinst}

Locals may be uninitialized, in which case they are empty. Locals are mutated by respective variable instructions.

Exception Handlers

Exception handlers are installed by try_table instructions and record the corresponding list of catch clauses:
handler = handler,{catch*}

The handlers on the stack are searched when an exception is thrown.

Effect Handlers

Effect handlers are installed by resume and resume_throw instructions and record the corresponding list of effect
handler clauses:

prompt = prompt{addrhdl*}
addrhdl = on tagaddr labelidx
| on tagaddr switch

Conventions
* The meta variable L ranges over labels where clear from context.
* The meta variable f ranges over frame states where clear from context.
* The meta variable H ranges over exception handlers where clear from context.

* The following auxiliary definition takes a block type and looks up the instruction type that it denotes in the
current frame:

instrtype,(z) = ¢} — 5 if z.types[z] = funct] — t}
instrtype,(t’) = e—t’

92 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.2.19 Administrative Instructions

Note

This section is only relevant for the formal notation.

In order to express the reduction of traps, calls, exception handling, effect handling, and control instructions, the
syntax of instructions is extended to include the following administrative instructions:

mstr = ...

| addrref
| label,{instr*} instr*
| frame,{frame} instr*
| handler,{catch™} instr*
| prompt{addrhdl*} instr*
| suspending tagaddr resumption continst
| resuming continst
| trap

resumption = suspend val*

| switch continst
An address reference represents an allocated reference value of respective form “on the stack”™.

The label, frame, handler and prompt instructions model labels, frames, active exception handlers, and active effect
handlers, respectively, “on the stack”. Moreover, the administrative syntax maintains the nesting structure of the
original structured control instruction or function body and their instruction sequences.

TODO(lyl): The suspending and resuming instructions are

The trap instruction represents the occurrence of a trap. Traps are bubbled up through nested instruction sequences,
ultimately reducing the entire program to a single trap instruction, signalling abrupt termination.

Note

For example, the reduction rule for block is:
(block bt instr*) < (label,{e} instr*)

if the block type bt denotes a function type func t* — 5, such that n is the block’s result arity. This rule
replaces the block with a label instruction, which can be interpreted as “pushing” the label on the stack. When
its end is reached, i.e., the inner instruction sequence has been reduced to the empty sequence — or rather,
a sequence of n values representing the results — then the label instruction is eliminated courtesy of its own
reduction rule:

(label, {instr*} val™) — val*

This can be interpreted as removing the label from the stack and only leaving the locally accumulated operand
values. Validation guarantees that n matches the number |val*| of resulting values at this point.

Configurations

A configuration describes the current computation. It consists of the computations’s state and the sequence of
instructions left to execute. The state in turn consists of a global store and a current frame referring to the module
instance in which the computation runs, i.e., where the current function originates from.

config = state;instr®

state = store; frame

4.2. Runtime Structure 93

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The current version of WebAssembly is single-threaded, but configurations with multiple threads may be sup-
ported in the future.

4.3 Numerics

Numeric primitives are defined in a generic manner, by operators indexed over a bit width V.

Some operators are non-deterministic, because they can return one of several possible results (such as different NaN
values). Technically, each operator thus returns a set of allowed values. For convenience, deterministic results are
expressed as plain values, which are assumed to be identified with a respective singleton set.

Some operators are partial, because they are not defined on certain inputs. Technically, an empty set of results is
returned for these inputs.

In formal notation, each operator is defined by equational clauses that apply in decreasing order of precedence.
That is, the first clause that is applicable to the given arguments defines the result. In some cases, similar clauses
are combined into one by using the notation &+ or . When several of these placeholders occur in a single clause,
then they must be resolved consistently: either the upper sign is chosen for all of them or the lower sign.

Note
For example, the fcopysign operator is defined as follows:

fcopysignn (£p1,£p2) = +m
fecopysignny (£p1, Fp2) = Fp1

This definition is to be read as a shorthand for the following expansion of each clause into two separate ones:

fecopysigny (+p1, +p2) = +p1
fcopysigny (—p1,—p2) = -—p1
fecopysigny (+p1, —p2) = —p1
fcopysigny (—p1,+p2) = +m

Numeric operators are lifted to input sequences by applying the operator element-wise, returning a sequence of
results. When there are multiple inputs, they must be of equal length.

op(ct,....c}) = op(ct0],...,c[0]) ... op(ctn—1],...,cpn—1])

Note

For example, the unary operator fabs, when given a sequence of floating-point values, return a sequence of
floating-point results:

fabsy (2™) = fabsy(z[0]) ... fabsy(2[n])

The binary operator iadd, when given two sequences of integers of the same length, n, return a sequence of
integer results:

i‘ddd]\](i?,i%) = i?deN(il[O],ig[O]) iedeN(il[n},ig[n])

Conventions:

¢ The meta variable d is used to range over single bits.

94 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* The meta variable p is used to range over (signless) magnitudes of floating-point values, including nan and

Q.

* The meta variable q is used to range over (signless) rational magnitudes, excluding nan or co.

* The notation f~! denotes the inverse of a bijective function f.

* Truncation of rational values is written trunc(=q), with the usual mathematical definition:

trunc(+q) = =i

(ifi e NA+qg—1<i<+q)

* Saturation of integers is written sat_uy(7) and sat_sy (7). The arguments to these two functions range over

arbitrary signed integers.

— Unsigned saturation, sat_ux (i) clamps i to between 0 and 2%V —

sat_upn(7)
sat_upn(7)
sat_upn(7)

— Signed saturation, sat_sy (¢) clamps ¢ to between —

sat_sy (i) =
sat_sy (i) =
sat_sy(i) =

4.3.1 Representations

= 0

(ifi < 0)
(if i > 2V — 1)
(otherwise)

oN—-lgpnd 2N-1 _ 1.

—2N-1 (ifi < —2N-1)
2N-1 1 (ifi>2N"1-1)
i (otherwise)

Numbers and numeric vectors have an underlying binary representation as a sequence of bits:

bitSiN (Z)
bitSfN (Z)
bitSVN (Z)

= ibitsy (Z)
= fhitsy(2)
= il)itSN (Z)

The first case of these applies to representations of both integer value types and packed types.

Each of these functions is a bijection, hence they are invertible.

Integers

Integers are represented as base two unsigned numbers:

ibitsy (i) =

dN,1 do

(’L'ZQN_l-dN,1+---+20~d0)

Boolean operators like A, V, or ¥ are lifted to bit sequences of equal length by applying them pointwise.

Floating-Point

Floating-point values are represented in the respective binary format defined by IEEE 754%% (Section 3.4):

fhitsy (£(1 +m-27M) . 2¢) =

fhitsy (£(0 +m-2-M) . 2¢) =
fbitSN() =
fbitsy (£nan(n)) =
fbiasy =
fsign(+) =
fsign(—) =

where M = signif(N) and E = expon(N).

22 https://ieeexplore.ieee.org/document/8766229

fsign(£) ibitsE(e + fbiasy) ibitsps(m)
fsign(4) (0)F 1b1th()

fsign(4) (1)¥ (0)M

fsign(4) (1)¥ ibitsps(n)

2B-1 1

0

1

4.3. Numerics

95

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Vectors

Numeric vectors of type viv have the same underlying representation as an iv. They can also be interpreted as a
sequence of numeric values packed into a viv with a particular shape txM, provided that N = |t| - M.

lanesgr () = ¢o --. Car—1
(where w= |t|/8
A b*= bytesiy (¢)
A c; = bytes; Y0 [i - w : w)))

This function is a bijection on iv, hence it is invertible.

Numeric values can be packed into lanes of a specific lane type and vice versa:

pa‘(:k’n,’u,mtypn (C) = ¢
pa()’kpucktype (C = erap\unpack(packtype) |,|packtype| (C)
unpack,, e (c) = ¢
Yal — o) a) u
unpd‘(‘kpa cktype C - (’Xt(’nd\pa,(:k;typf: |,Junpack(packtype)| (C)

Storage

When a number is stored into memory, it is converted into a sequence of bytes in little endian’ byte order:

bytes(7) = littleendian(bits; (%))
littleendian(e) = €
littleendian(d® d'*) = littleendian(d"") ibitsg ' (d®)

Again these functions are invertible bijections.

4.3.2 Integer Operations

Sign Interpretation

Integer operators are defined on i~ values. Operators that use a signed interpretation convert the value using the
following definition, which takes the two’s complement when the value lies in the upper half of the value range
(i.e., its most significant bit is 1):

signedy (i) = ¢ (0<i< 2N
signedy (i) = i—2N (2N < < 2M)

This function is bijective, and hence invertible.

Boolean Interpretation

The integer result of predicates — i.e., tests and relational operators — is defined with the help of the following
auxiliary function producing the value 1 or O depending on a condition.

bool(C) = 1 (if C)
bool(C) = 0 (otherwise)
iadd (i1, 42)
* Return the result of adding ¢; and i modulo N,

iaddy(i1,42) = (i1 +42) mod 2V

isubp (i1, 42)
* Return the result of subtracting io from ¢; modulo N,

isubN (il, ’LQ) = (21 — ’ig + 2N) mod 2N

23 https://en.wikipedia.org/wiki/Endianness#Little-endian

96 Chapter 4. Execution

https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

imuly (i1, 2)
* Return the result of multiplying ; and i, modulo 2%V,

imuly (iy,i2) = (iy-i2) mod 2

idiv_uN (i] 5 i2)
e If 75 is O, then the result is undefined.
¢ Else, return the result of dividing iy by ¢2, truncated toward zero.

idiv_un(i1,0) = {}
idiv_un(iy,i2) = trunc(iy/is)

Note

This operator is partial.

idiv_sp(i1,12)
 Let j; be the signed interpretation of ;.
¢ Let jo be the signed interpretation of 5.
e If jo is O, then the result is undefined.
* Else if j; divided by jo is 2V 1, then the result is undefined.

¢ Else, return the result of dividing j; by j2, truncated toward zero.

idiv_sn(i1,0) = {}
idiv_sy(i1,i2) = {} (if signed v (i1) /signed y (i5) = 2V 1)
idiv_sy(i1,i2) = signedy'(trunc(signedy () /signedy (iz)))

Note

This operator is partial. Besides division by 0, the result of (—2¥~1)/(—1) = +2%¥~1 is not representable as
an N-bit signed integer.

irem_up (i1, 42)
e If 75 is O, then the result is undefined.
¢ Else, return the remainder of dividing ¢; by 5.

irem_un(i1,0) = {}
irem_up(i1,i2) = i1 — g - trunc(iy/ia)

Note
This operator is partial.

As long as both operators are defined, it holds that i; = 4o - idiv_u(i1,42) + irem_u(iy, is).

4.3. Numerics 97

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

irem_sy (i1, 12)
* Let j; be the signed interpretation of ¢;.
* Let js be the signed interpretation of i5.
e If 75 is O, then the result is undefined.
¢ Else, return the remainder of dividing j; by jo, with the sign of the dividend 7.

irem_sy(i1,0) = {}
irem_sy(i1,42) = signedy' (j1 — ja - trunc(ji/j2))
(where j; = signedy (i1) A j2 = signedp (iz))

Note
This operator is partial.

As long as both operators are defined, it holds that i; = io - idiv_s(41, i2) + irem_s(iq, i2).

inot (%)
* Return the bitwise negation of 7.

inotn (i) = ibitsy' (ibitsy (i) ¥ ibitsy (2 — 1))

irevy (7)
¢ Return the bitwise reversal of i.

irevy (i) = ibitsy ((dV[N —d])'=N) (if dV = ibitsy (i)

iand (i1, i2)
* Return the bitwise conjunction of ¢; and 5.

iandy (i1,i2) = ibitsy'(ibitsy(i1) A ibitsy (ig))

iandnot y (41, 2)
* Return the bitwise conjunction of 7; and the bitwise negation of io.

iandnoty (i1,42) = iandy(i1,inoty(i2))

iory (i1, 12)
 Return the bitwise disjunction of ¢; and 5.

iory(i1,42) = ibitsy'(ibitsy (i1) V ibitsy (i2))

iXOI'N(il, L2)
* Return the bitwise exclusive disjunction of ¢; and 5.

ixory (i1,ig) = ibitsy!(ibitsy (i) Y ibitsy (iz))

isth(i1 y ig)
e Let k£ be i3 modulo V.

* Return the result of shifting i, left by k bits, modulo 2%.

ishly(iy,i2) = ibitsy(d) "% 0F) (if ibitsy(iy) = df d) ™" Ak = iy mod N)

98 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ishr_up(i1,12)
e Let £ be i3 modulo V.

 Return the result of shifting ¢; right by k bits, extended with 0 bits.

ishr_up(iy,iz) = ibitsy (0% dYF) (if ibitsy(iy) = dY ~* d5 Ak = iy mod N)

ishr_sy (i1, 42)
e Let k£ be i3 modulo V.

 Return the result of shifting 41 right by k bits, extended with the most significant bit of the original value.

ishr_sy(ir, i) = ibitsy (doT d¥7F"1) (if ibitsy(i1) = do dY *7* d A k = iy mod N)

irotly (i1 s ig)
e Let k£ be i3 modulo V.

 Return the result of rotating i, left by k bits.

irotly (i1,i2) = ibitsy (dY % d}) (if ibitsy(iy) = df dY ~F Ak =iy mod N)

iI‘OtT‘N (’il, LQ)
e Let k be i modulo V.

* Return the result of rotating ¢; right by £ bits.

irotry (i1,d9) = ibitsy'(d5 dY7F) (if ibitsy(iy) = dY " d5 Ak = iy mod N)

iclzy (7)
* Return the count of leading zero bits in ¢; all bits are considered leading zeros if ¢ is 0.

iclzy(i) = k (if ibitsy (i) = 0F (1d*)")

iCtZN (L)
* Return the count of trailing zero bits in ¢; all bits are considered trailing zeros if ¢ is 0.

ictzy()) = Kk (if ibitsy (i) = (d* 1)7 OF)

ipopenty (7)
¢ Return the count of non-zero bits in 3.

ipopenty (i) = k (if ibitsy (i) = (0* 1)* 0%)

ieqz (7)
e Return 1 if 7 is zero, 0 otherwise.

ieqzy (i) = bool(i = 0)

inezy (1)
e Return 0 if 7 is zero, 1 otherwise.

inezy(i) = bool(i=/=0)

4.3. Numerics 99

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ieqN(il, 22)
* Return 1 if 4; equals 72, 0 otherwise.

ieqN(il,ig) = bOOl(ilzig>

ineN (il, 7:2)

e Return 1 if ¢; does not equal i5, 0 otherwise.

inen(i1,i2) = bool(iy # iz)

ilt_uN(il, ig)
e Return 1 if 77 is less than 75, O otherwise.

ilt_uN(il,ig) = bOOl(il < ZQ)

ﬂt_SN (11 5 ’Lz)
* Let j; be the signed interpretation of ;.
* Let js be the signed interpretation of i5.

 Return 1 if j; is less than jo, 0 otherwise.

ilt_sn(i1,42) = bool(signedy(i1) < signedy (i2))

igt_uN (il, ’Lg)
* Return 1 if 4; is greater than io, 0 otherwise.

igt_un(i1,i2) = bool(iy > ia)

igt_SN (7:1 , ig)
» Let j; be the signed interpretation of ;.
* Let js be the signed interpretation of is.

* Return 1 if j; is greater than js, 0 otherwise.

igt_sn(i1,72) = bool(signedy(i1) > signedy(iz2))

ile_uN (7:1 ; i2)
e Return 1 if 4; is less than or equal to 75, 0 otherwise.

ile_llN(il,iQ) = bOOl(il SZQ)

ﬂ()_SN (71 s 72)
* Let j; be the signed interpretation of ;.
* Let jo be the signed interpretation of 5.

e Return 1 if j; is less than or equal to jo, 0 otherwise.

ile_sny(i1,42) = bool(signedy(i1) < signedp(iz))

ige_upn (i1, 12)
» Return 1 if 4; is greater than or equal to 72, 0 otherwise.

ige_un(i1,42) = bool(i; > iy)

100 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ige_sn(i1,12)
* Let j; be the signed interpretation of ¢;.
* Let js be the signed interpretation of i5.

e Return 1 if j; is greater than or equal to jo, 0 otherwise.

ige_sn(i1,i2) = bool(signedy (i1) > signedy (i2))

iextend M _sy (%)
* Let j be the result of computing wrapy, s ().
* Return extend® s, n(j)-

iextendM _sy (i) = extend®p n(wrapn, (%))

ibitselect v (i1, 42, i3)
* Let j; be the bitwise conjunction of ¢; and i3.
* Let j5 be the bitwise negation of i3.
* Let j, be the bitwise conjunction of i3 and j3.

 Return the bitwise disjunction of j; and js.

ibitselecty (i1,42,1i3) = lory(iandy(i1,43),landy (ig, inot x(i3)))

iabsy (7)
e Let j be the signed interpretation of <.
e If j is greater than or equal to 0, then return <.
* Else return the negation of j, modulo 2% .
iabsy (i) = i (if signedy (7) > 0)
iabsy (i) = —signedy(i) mod 2V (otherwise)
inegy (4)
* Return the result of negating i, modulo 2.

inegy (i) = (2Y —i) mod 2V

imin_up (i1, 42)
* Return iy if ilt_upn(i1,42) is 1, return i5 otherwise.
imin_upn(iy,42) = i1 (ifilt_un(iy,iz) =1)
imin_upn(i1,42) = iz (otherwise)
imin_sy (i1, 2)
* Return 4y if ilt_sy (41, 42) is 1, return i5 otherwise.
imin_sy (i1,42) = 41 (ifilt_sy(i1,i2) = 1)
imin_sy(i1,i2) = is (otherwise)
imax_up (i1, %2)
 Return 4y if igt_upn(i1,2) is 1, return is otherwise.

imax_up(i1,i2) = 41 (ifigt_un(iy,iz) =1)
imax_up(iy,i2) = iz (otherwise)

4.3. Numerics 101

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

imax_sy (i1, 2)

 Return iy if igt_sx (1, 42) is 1, return i5 otherwise.

imax_sy (41, 2) i1 (ifigt_sn(i1,12) = 1)
imax_sy(i1,42) = iz (otherwise)
iadd_sat_upn (i1, 72)
* Let ¢ be the result of adding 77 and %o.
* Return sat_up (7).

iadd_sat_upn(i1,i2) = sat_uy(i1 +i2)

iadd_sat_sn (i1,12)
» Let j; be the signed interpretation of 41
* Let jo be the signed interpretation of i
* Let j be the result of adding 77 and jo.

* Return the value whose signed interpretation is sat_sy (7).

iadd_sat_sn(i1,42) = signedy'(sat_sy(signedy(i1) + signedy (iz)))

isub_sat_upn (i1, 12)
* Let ¢ be the result of subtracting o from ;.
* Return sat_up (7).

isub_sat_upn(i1,i2) = sat_un(i; — i)

isub_sat_sn(i1,12)
* Let j; be the signed interpretation of i1
* Let j5 be the signed interpretation of i
* Let j be the result of subtracting j» from j;.

* Return the value whose signed interpretation is sat_sy (j).

isub_sat_sy(i1,42) = signedy(sat_sy(signedy(i;) — signedy (iz)))

iavgr_upy(i1,42)
 Let j be the result of adding 1, 72, and 1.

* Return the result of dividing j by 2, truncated toward zero.

iavgr_un(i1,i2) = trunc((iy +i2+1)/2)

iql5mulrsat_sy (i1, 42)
* Return the whose signed interpretation is the result of sat_sy (ishr_sy(iy - ig + 214, 15)).

iql5mulrsat_sy(i1,i2) = signedy'(sat_sy(ishr_sy(iy - ig 4+ 2'4,15)))

102 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.3.3 Floating-Point Operations

Floating-point arithmetic follows the IEEE 754°* standard, with the following qualifications:

» All operators use round-to-nearest ties-to-even, except where otherwise specified. Non-default directed
rounding attributes are not supported.

¢ Following the recommendation that operators propagate NaN payloads from their operands is permitted but
not required.

* All operators use “non-stop” mode, and floating-point exceptions are not otherwise observable. In particular,
neither alternate floating-point exception handling attributes nor operators on status flags are supported.
There is no observable difference between quiet and signalling NaNs.

Note

Some of these limitations may be lifted in future versions of WebAssembly.

Rounding
Rounding always is round-to-nearest ties-to-even, in correspondence with IEEE 754> (Section 4.3.1).

An exact floating-point number is a rational number that is exactly representable as a floating-point number of
given bit width V.

A limit number for a given floating-point bit width IV is a positive or negative number whose magnitude is the
smallest power of 2 that is not exactly representable as a floating-point number of width IV (that magnitude is 2128
for N = 32 and 21924 for N = 64).

A candidate number is either an exact floating-point number or a positive or negative limit number for the given
bit width N.

A candidate pair is a pair z1, zo of candidate numbers, such that no candidate number exists that lies between the
two.

A real number 7 is converted to a floating-point value of bit width IV as follows:
e If r is 0, then return +0.
* Else if r is an exact floating-point number, then return r.
* Else if r greater than or equal to the positive limit, then return +oo.
¢ Else if r is less than or equal to the negative limit, then return —ooc.
* Else if z; and 25 are a candidate pair such that z; < r < z», then:
— If |r — z1| < |r — 22/, then let z be z;.

, then let z be z5.

Else if |r — z1| > |r — 2o

Else if [r — 21| = |r — 22| and the significand of z; is even, then let z be z;.

Else, let z be z5.

If z is 0, then:
— If r < 0, then return —0.
— Else, return +0.
¢ Else if z is a limit number, then:
— If r < 0, then return —oc.

— Else, return +oo.

24 https://ieeexplore.ieee.org/document/8766229
25 https://ieeexplore.ieee.org/document/8766229

4.3. Numerics 103

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

¢ Else, return z.

float v (0)
float (1)
float 5 (1)
float 5 (1)
float x (1)
closest y (1, 21, 22)
closest y (1, 21, 22)
closest y (1, 21, 22)
closesty (1, 21, 22)
(
(
(
(

rectify n (r, £limit 5)

rectify 5 (7, 0)
rectify 5 (7, 0)
rectify y (7, 2)

where:

exact

limit N
candidatepy
candidatepair y

eveny ((d+m -27M) . 2¢)

eveny (£limit x)

NaN Propagation

r
—+00
—00

= Z4oo

= +0 (r>0)
= -0 (r<0)
= z

= fNnQ

_ 22(‘,xpon(N)—1

~
& true

mmod2 =0

if r € exacty)

if r > +limity)

if r < —limity)

if 21 <1 < 23 A (%1, 22) € candidatepair)

if |r — 21| > |r — 22])
if |r — z1| = |r — 22| A eveny(z1))
if |r — 21| = |r — 22| A eveny(22))

(
(
(
(
(if |r — 21| < |r — 22])
(
(
(

exact y U {+limit 5, —limit }
{(z1,22) € candidate?\, | 21 < 22 AVz € candidaten, z < 21 V 2z > 25}

When the result of a floating-point operator other than fneg, fabs, or fcopysign is a NaN, then its sign is non-

deterministic and the payload is computed as follows:

« If the payload of all NaN inputs to the operator is canonical (including the case that there are no NaN inputs),
then the payload of the output is canonical as well.

* Otherwise the payload is picked non-deterministically among all arithmetic NaNs; that is, its most significant
bit is 1 and all others are unspecified.

¢ In the deterministic profile, however, a positive canonical NaNs is reliably produced in the latter case.

The non-deterministic result is expressed by the following auxiliary function producing a set of allowed outputs
from a set of inputs:

I'l‘d,TlSN{Z*} -
[IDET] nansy{z*} =
IDET] nansy{z*} =

faddn (21, 22)

{+nan(canony)}
{#+nan(n), —nan(

{#+nan(n), —nan(n

)
)

| n
| n

>

canony }
canony }

(if {z*} C {+nan(canony), —nan(canony)}
(if {z*} € {+nan(canony), —nan(canony)}

If either 21 or 2o is a NaN, then return an element of nansy {z1, 22 }.

Else if both z; and 29 are infinities of opposite signs, then return an element of nansy{}.

Else if both z; and 2z are infinities of equal sign, then return that infinity.

Else if either z; or 25 is an infinity, then return that infinity.

Else if both z; and 2z, are zeroes of opposite sign, then return positive zero.

Else if both z; and z, are zeroes of equal sign, then return that zero.

Else if either z; or 25 is a zero, then return the other operand.

Else if both z; and 2z, are values with the same magnitude but opposite signs, then return positive zero.

Else return the result of adding z; and 2z, rounded to the nearest representable value.

104

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

faddy(£nan(n),z2) = nansy{£nan(n),z}
faddy (21, £nan(n)) = nansy{£nan(n),z}
fadd n (£o0, Foo) = nansy{}
fadd y (d00, £00) = Z4oo

faddn (21, £00) = =00

fadd y (00, 22) = *oo

fadd (0, F0) = 40

fadd (0, £0) = =0

faddy (21, £0) = 2

fadd (20, 22) = 9

faddn (£q, Fq) = +0

faddy (21, 22) = floaty(z1 + 22)

fsuby (21, 22)

If either z; or 29 is a NaN, then return an element of nansy {z1, 22 }.

Else if both z; and 29 are infinities of equal signs, then return an element of nansy {}.
Else if both z; and 2z, are infinities of opposite sign, then return 2.

Else if 2 is an infinity, then return that infinity.

Else if 25 is an infinity, then return that infinity negated.

Else if both z; and z, are zeroes of equal sign, then return positive zero.

Else if both z; and 2z, are zeroes of opposite sign, then return 2.

Else if z9 is a zero, then return z;.

Else if z; is a zero, then return zo negated.

Else if both z; and 2z, are the same value, then return positive zero.

Else return the result of subtracting 2o from 21, rounded to the nearest representable value.

fsuby(£nan(n),z2) = nansy{£nan(n),za}
fsuby(z1,£nan(n)) = nansy{xnan(n),z }
fsuby (fo00, £00) = nansy{}

fsuby (f00, Fo0) = =00

fsubpy (21, £00) = Foo

fsubn (£o00, 22) = Zoo

fsubn (£0, £0) = 40

fsubn (£0, F0) = =0

fsuby (21, £0) = 2

fsuby (£0, +42) = Fq

fsubn (£q, £q) = +0

fsubp (21, 22) = floaty(z1 — 22)

Note

Up to the non-determinism regarding NaNss, it always holds that fsuby (21, z2) = faddy (21, fnegy (22)).

fmuly (21, 22)

If either z; or 22 is a NaN, then return an element of nansy{z1, 22}

Else if one of z7 and z; is a zero and the other an infinity, then return an element of nansy {}.
Else if both z; and 2z are infinities of equal sign, then return positive infinity.

Else if both z; and 2z, are infinities of opposite sign, then return negative infinity.

Else if either z; or 25 is an infinity and the other a value with equal sign, then return positive infinity.

4.3. Numerics 105

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* Else if either z; or 29 is an infinity and the other a value with opposite sign, then return negative infinity.

Else if both z; and 2z, are zeroes of equal sign, then return positive zero.

Else if both z; and 2z, are zeroes of opposite sign, then return negative zero.

¢ Else return the result of multiplying z; and z5, rounded to the nearest representable value.

fmuly (£nan(n), z2) nansy{£nan(n), z2}

fmuly (21, £nan(n)) = nansy{£nan(n),z}

fmul ; (£00, £0) = nansy{}
fmul y (£o00, F0) = nansy{}
fmul y (20, :I:oo) = nansy{}
fmul y (£0, Foo) = nansy{}

(

(

(

(

~(

fmul i (£o0, £00

fmul iy (£o0, Foo
(

fmul y (21, Foo

fmul y (o0, £¢2

fmul y (00, Fgo

fmul i (£0, £0) = 40

fmul; (£0, F0) = -0

fmuly (21, 22) = floaty(z1 - 22)

)
)
fmul y (£q1, £00) = 4o
)
)
)

fdivy (21, 22)
* If either 27 or z, is a NaN, then return an element of nansy{z1, z2}.
* Else if both z; and z5 are infinities, then return an element of nansy {}.
* Else if both z; and z; are zeroes, then return an element of nansy{z1, z2}.
* Else if z; is an infinity and z5 a value with equal sign, then return positive infinity.
* Else if z; is an infinity and 25 a value with opposite sign, then return negative infinity.
e Else if 2 is an infinity and 27 a value with equal sign, then return positive zero.
* Else if 2, is an infinity and 27 a value with opposite sign, then return negative zero.
* Elseif z; is a zero and 25 a value with equal sign, then return positive zero.
* Else if z; is a zero and 25 a value with opposite sign, then return negative zero.
* Else if 25 is a zero and z; a value with equal sign, then return positive infinity.
¢ Else if z5 is a zero and z; a value with opposite sign, then return negative infinity.

¢ Else return the result of dividing z; by 29, rounded to the nearest representable value.

fdiviy(£nan(n),z2) = mnansy{xnan(n),za}
fdivy(z1,£nan(n)) = mnansy{xnan(n),z }
fdiv y (Fo0, £00) = nansy{}

fdiv y (Fo0, Foo) = nansy{}

fdiv n (40, +0) = nansy{}

fdivn (40, F0) = nansy{}

fdiv y (f00, +¢2) = +4oo

fdiv n (f00, Fg2) = —o0

fdiv n (Fq1, +00) = +0

fdiv n (£q1, Foo) = —0

fdivy (£0, £g2) = +0

fdivn (£0, F¢2) = -0

fdivy (£q1, iO) = 400

fdivy (£q1, F0) = -0

fdivy (21, 22) = floaty(z1/22)

106 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fmay (21, 22, 23)

The function fma is the same as fusedMultiplyAdd defined by IEEE 754%° (Section 5.4.1). It computes (21 -22) + 23
as if with unbounded range and precision, rounding only once for the final result.

If either 21 or 25 or z3 is a NaN, return an element of nansy 21, 22, 23.
Else if either z; or z3 is a zero and the other is an infinity, then return an element of nansy{}.

Else if both 27 or zo are infinities of equal sign, and z3 is a negative infinity, then return an element of
nansy{}.

Else if both z; or zo are infinities of opposite sign, and z3 is a positive infinity, then return an element of
nansy{}.

Else if either z; or 29 is an infinity and the other is a value of the same sign, and z3 is a negative infinity,
then return an element of nansy {}.

Else if either z; or 25 is an infinity and the other is a value of the opposite sign, and z3 is a positive infinity,
then return an element of nansy{}.

Else if both z; and 2z, are zeroes of the same sign and z3 is a zero, then return positive zero.
Else if both z; and 2z, are zeroes of the opposite sign and 23 is a positive zero, then return positive zero.
Else if both z; and z, are zeroes of the opposite sign and z3 is a negative zero, then return negative zero.

Else return the result of multiplying z; and 29, adding z3 to the intermediate, and the final result ref:rounded
<aux-ieee> to the nearest representable value.

fmay(£nan(n), ze,23) = nansy{xnan(n),za,z3}
fmapn(z1,+£nan(n),z3) = nansy{xnan(n),z1,z23}
fmapn (21, 22, £nan(n)) = nansy{xnan(n), 21,22}
fmay (£o0, £0, z3) = nansy{}

fmay (oo, F0, 23) = nansy{}

fmay (o0, £00,—00) = nansy{}

fman (oo, Foo,+00) = nansy{}

fmay(£q1, £oo, —00) = mnansy{}

fmay(£q1, Foo,+00) = nansy{}

fmay (oo, £q1,—00) = nansy{}

fmay (Foo, £q1,+00) = nansy{}

fmay (0, £0, F0) = +0

fman (£0, £0, £0) = 40

fmay (0, F0, 4-0) = 40

fmay (£0, 70, —0) = -0

fmay (21, 22, 23) = floaty(z1 - 22 + 23)

fminy (21, 22)

If either z; or 25 is a NaN, then return an element of nansy{z1, 22}

Else if either z; or 25 is a negative infinity, then return negative infinity.

Else if either z; or 25 is a positive infinity, then return the other value.

Else if both z; and 2z, are zeroes of opposite signs, then return negative zero.

Else return the smaller value of z; and z».

26 https://ieeexplore.ieee.org/document/8766229

4.3. Numerics 107

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

)

fminy (£nan(n), 22
fminy (21, £nan(n))
fminpy (400, 22)
fminy (—o00, 2z2)
fminy (21, +oo)
fminy (21, —00)
fminy (0, F0)
fminy (21, 22)
fminy (21, 22)

fmax (21, 22)

nansy{tnan(n), z2}
nansy{txnan(n), z1 }

22

—00

Z1

—00

-0

z1 (if Al S 2’2)
z9 (lf zZ9 S Zl)

* If either 2y or z5 is a NaN, then return an element of nansy{z1, 22}

Else if either z; or 25 is a positive infinity, then return positive infinity.

Else if either 27 or 25 is a negative infinity, then return the other value.

Else if both z; and z, are zeroes of opposite signs, then return positive zero.

Else return the larger value of z; and zo.

fmaxy (£nan(n), z2)
71, £nan(n))
+OO,212)
700322)
Zl,—l-OO)
Z1, —0C)
+0, F0)
2’1,22)
21,22)

fmax
fmaxpy
fmax
fmax
fmax
fmax
fmaxp

N . m~ ~ —~

fmax

fecopysigny (21, 22)

nansy{tnan(n), z2}
nansy{£nan(n), z1 }
+00

Z2

+00

2

+0

21

22

(if Z1 Z 2’2)
(lf zZ9 Z Zl)

e If z; and z, have the same sign, then return z;.

Else return z; with negated sign.

fecopysigny (£p1, £p2)
fecopysigny (£p1, Fp2)

fabsy (2)

+p
+r

e If z is a NaN, then return z with positive sign.

Else if z is an infinity, then return positive infinity.

Else if z is a zero, then return positive zero.

Else if z is a positive value, then z.
Else return z negated.

fabsy

na

fabs n (0)
fabs n (q)

(+
fabsy (%
(
(

fnegy (2)

(n)) +nan(n)
+00
+0

+q

o0)

e If z is a NaN, then return z with negated sign.

* Else if z is an infinity, then return that infinity negated.

* Else if z is a zero, then return that zero negated.

Else return z negated.

108

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fnegy(£nan(n)) = Fnan(n)
fnegn (£00) = Foo
fnegn (£0) = F0
hegn(tq) = Fq

fsqrtn (2)

o If z is a NaN, then return an element of nansy {z}.

* Else if z is negative infinity, then return an element of nansy{}.

* Else if z is positive infinity, then return positive infinity.

¢ Else if z is a zero, then return that zero.

* Else if z has a negative sign, then return an element of nansy{}.

* Else return the square root of z.

fsqrty(£nan(n)) = mnansy{£nan(n)}
fsqrty (—o0) = nansy{}

fsqrt v (400) = 400

fsqrtn (£0) = =0

fsqrtn (—q) = nansy{}

fsqrty (+q) = floaty (,/q)

feeily (z)

o If z is a NaN, then return an element of nansy {z}.

* Else if z is an infinity, then return z.

e Else if z is a zero, then return z.

¢ Else if z is smaller than 0 but greater than —1, then return negative zero.

* Else return the smallest integral value that is not smaller than z.

feeily (£nan(n))
feeil y (£00) =
feeil v (40) =
feeily (—q) =
feeily (+q) =

flloory (2)

nansy{xnan(n)}

Foo

+0

-0 (if-1<—¢g<0)
floaty () (iftg<i<z*q+1)

* If z is a NaN, then return an element of nansy{z}.

¢ Else if z is an infinity, then return z.

e Else if z is a zero, then return z.

* Else if z is greater than O but smaller than 1, then return positive zero.

* Else return the largest integral value that is not larger than z.

floory(£nan(n)) =
flloory (£00) =
flloor v (£0)

flloor v (+¢) =
floor n (£q) =

nansy{£nan(n)}

+o0

+0

+0 (if0<+¢g<1)
float 5 (7) (if £¢ — 1 < i < +q)

4.3. Numerics

109

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ftruncy (z)

If z is a NaN, then return an element of nansy{z}.

Else if z is an infinity, then return z.

Else if z is a zero, then return z.

Else if z is greater than O but smaller than 1, then return positive zero.
Else if z is smaller than 0 but greater than —1, then return negative zero.

Else return the integral value with the same sign as z and the largest magnitude that is not larger than the
magnitude of z.

ftruncy (£nan(n)) = nansy{xnan(n)}

ftruncy (£00) = +oo

ftruncy (£0) = =0

ftruncy (+9) = 40 (ifo<+¢g<1)
ftruncy (—q) = —0 (if-1<—g<0)
ftruncy (£q) = floaty (i) (if+g—1<i<+q)

fnearest v (z)

If z is a NaN, then return an element of nansy{z}.

Else if z is an infinity, then return z.

Else if z is a zero, then return z.

Else if z is greater than O but smaller than or equal to 0.5, then return positive zero.
Else if z is smaller than O but greater than or equal to —0.5, then return negative zero.

Else return the integral value that is nearest to z; if two values are equally near, return the even one.

fnearest y(£nan(n)) = nansy{xnan(n)}

fnearest y (£00) = =00

fnearest v (£0) = 30

fnearest y (+q) = +0 (if 0 < +¢ < 0.5)
fnearest y (—q) = -0 (if 0.5 < —¢ < 0)
fnearest y (+q) = floaty (1) (if |i — ¢ < 0.5)
fnearest y (£q) = floaty (i) (if |¢ — ¢/ = 0.5 A i even)

feqn (21, 22)

If either z; or z5 is a NaN, then return 0.
Else if both z; and z9 are zeroes, then return 1.
Else if both z; and z5 are the same value, then return 1.

Else return 0.

feqn(£nan(n),z2) = 0
feqn(z1,£tnan(n)) = 0
feqn (£0, F0) =1
feqn (21, 22) = bool(z; = z2)

fnen (21, 22)

If either z; or z5 is a NaN, then return 1.
Else if both z; and z5 are zeroes, then return 0.

Else if both z; and z5 are the same value, then return 0.

¢ Else return 1.

110

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fney(£nan(n),z3) = 1
fnen(z1,£nan(n)) = 1
fnen (0, F0) = 0
fnen (21, 22) = bool(z # 2z3)

ity (21, 22)
e If either z; or z5 is a NaN, then return 0.
e Else if z; and z5 are the same value, then return 0.
* Else if z; is positive infinity, then return 0.
* Else if z; is negative infinity, then return 1.
¢ Else if 25 is positive infinity, then return 1.
* Else if 25 is negative infinity, then return 0.
¢ Else if both z; and z5 are zeroes, then return 0.
¢ Else if z; is smaller than z,, then return 1.

¢ Else return 0.

($ 22
ﬂtN(zl, +nan(n)) =
fitn (2, 2)
ity (4
ﬂtN(

(

(

(

(

flt Zl,+OO
ftn (21, —
flt
fltn (21) =

2
[\
222
I
coOOoORHOOOO

ool(z1 < 2z2)

fgtn (21, 22)
e If either z; or z5 is a NaN, then return 0.
e Else if z; and z5 are the same value, then return 0.
* Else if z; is positive infinity, then return 1.
* Else if z; is negative infinity, then return 0.
* Else if 25 is positive infinity, then return 0.
* Else if 25 is negative infinity, then return 1.
¢ Else if both z; and z5 are zeroes, then return 0.
e Else if z; is larger than z, then return 1.

¢ Else return 0.

fety(£nan(n),z2) = 0
fetn(z1,£nan(n)) = 0
fétN(z,) = 0
fot y (400, 22) = 1
fgtN(,2’2) =0
fgtN(Zl, —|—OO) =0
fot (21, —00) =1
fot & (£0, F0) = 0
fotn (21, 22) = bool(z; > z3)

4.3. Numerics 111

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

flen (21, 22)

o If either z; or z5 is a NaN, then return 0.

e Else if z; and z5 are the same value, then return 1.

* Else if z; is positive infinity, then return 0.

e Else if z; is negative infinity, then return 1.

* Else if 2 is positive infinity, then return 1.

* Else if 2 is negative infinity, then return 0.
¢ Else if both z; and z5 are zeroes, then return 1.
e Else if z; is smaller than or equal to zo, then return 1.

¢ Else return 0.

fgen (21, 22)

e If either z; or z5 is a NaN, then return 0.

e Else if z; and z5 are the same value, then return 1.

¢ Else if z; is positive infinity, then return 1.

* Else if z; is negative infinity, then return O.

* Else if z; is positive infinity, then return 0.

* Else if z5 is negative infinity, then return 1.

¢ Else if both z; and 25 are zeroes, then return 1.

e Else if z; is larger than or equal to z, then return 1.

¢ Else return 0.

fpminy (21, 22)

Z1, —0Q
fgen (£0, ¥0)
fg(?N 21, 2’2)

e If z5 is less than z; then return zs.

e Else return z7.

fpminy (21, 22)
fpminy (21, 22)

zZ2
Z1

— = OOk FEOO

_H OMFERFEOFEOO

bool(z; < 22)

bool(z1 > 29)

(lf ﬂtN(ZQ, Zl) = 1)
(otherwise)

112

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fpmaxy (21, 22)
o If 2z is less than z9 then return zs.

¢ Else return z.

fpmaxpy(z1,22) = 29 (ifflty(21,22) =1)
fpmaxy(z1,22) = 21 (otherwise)
4.3.4 Conversions
extend" y N (1)
e Return i.
extend'p N (i) = i@
Note

In the abstract syntax, unsigned extension just reinterprets the same value.

extend® M,N (7)
* Let j be the signed interpretation of ¢ of size M.

* Return the two’s complement of j relative to size V.

extend®ps n (i) = signedy! (signedps(4))

wrap s v (7)
* Return 7 modulo 2V,

wrapy n(i) = imod 2V

trunc' s N (2)
e If z is a NaN, then the result is undefined.
e Else if z is an infinity, then the result is undefined.

* Else if z is a number and trunc(z) is a value within range of the target type, then return that value.

¢ Else the result is undefined.

{}

trunc” r,n (£nan(n))

trunc! p n (£00) = {}
trunc' s N (£4q) = trunc(zgq) (if —1 < trunc(&q) < 2V)
trunc' pr N (£4q) = {} (otherwise)

Note

This operator is partial. It is not defined for NaNs, infinities, or values for which the result is out of range.

trunc®ys v (2)
e If z is a NaN, then the result is undefined.
e Else if z is an infinity, then the result is undefined.
¢ If z is a number and trunc(z) is a value within range of the target type, then return that value.

¢ Else the result is undefined.

4.3. Numerics 113

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

trunc®pyr v (£nan(n)) = {}

trunc® s, n (£00) = {}

trunc® p v (£q) = trunc(+q) (if —2V=1 — 1 < trunc(4q) < 2V71)
trunc® pr n (£9) = {} (otherwise)

Note

This operator is partial. It is not defined for NaNs, infinities, or values for which the result is out of range.

trunc_sat_ups n (%)
e If z is a NaN, then return 0.
* Else if z is negative infinity, then return 0.
* Else if z is positive infinity, then return 2V — 1.

¢ Else, return sat_uy (trunc(z)).

trunc_sat_ups y(£nan(n)) = 0

trunc_sat_ups, n(—00) = 0
trunc_sat_ups, n(+00) = 2V 1
trunc_sat_ups,n(2) = sat_uy(trunc(z))

trunc_sat_sar, v (2)
e If z is a NaN, then return 0.
* Else if z is negative infinity, then return —2V 1,
» Else if z is positive infinity, then return 2V~ — 1.

* Else, return the value whose signed interpretation is sat_sy (trunc(z)).

trunc_sat_spy n(Enan(n)) = 0

trunc_sat_sps, n(—00) = —2N-1

trunc_sat_sps, n (+00) = oN-1_1
trunc_sat_sps,n(2) = signedy' (sat_sy(trunc(z)))

promotear v (2)
o If z is a canonical NaN, then return an element of nansy {} (i.e., a canonical NaN of size N).
* Else if z is a NaN, then return an element of nansy{=nan(1)} (i.e., any arithmetic NaN of size N).

¢ Else, return z.

promoteys, y(£nan(n)) = nansy{} (if n = canony)
promoteps, ny(£nan(n)) = nansy{+nan(1)} (otherwise)
promotens, v (2) = z

demote s, N (2)
* If z is a canonical NaN, then return an element of nansy{} (i.e., a canonical NaN of size N).
* Else if z is a NaN, then return an element of nansy {£nan(1)} (i.e., any NaN of size N).
* Else if z is an infinity, then return that infinity.
¢ Else if z is a zero, then return that zero.

* Else, return float y (2).

114 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

demotey ny(£nan(n)) = nansy{} (if n = canony)
demotepy ny(£nan(n)) = nansy{+nan(1)} (otherwise)
demote s, n (F£00) = =£0

demote s, v (£0) = =0

demotenr, n(£q) = floaty(%q)

convert" s v ()
* Return float (7).

convert'yr v (1) = floaty (i)

convert®yr, v (4)
* Let j be the signed interpretation of 4.
* Return floaty (j).

convert®yr n(1) = floaty(signedas (7))

reinterprety, +,(c)
* Let d* be the bit sequence bitsy, (¢).

* Return the constant ¢’ for which bitsy, (¢/) = d*.

reinterprety, 4, (c) = bitst;:l(bitstl(c))

narrow® s, n (2)
 Let j be the signed interpretation of ¢ of size M.
* Return the value whose signed interpretation is sat_sy (7).

narrow®ys n (i) = signedy' (sat_sy(signedas(i)))

narrow" ps n (%)
* Let j be the signed interpretation of ¢ of size M.
* Return sat_up (j).

narrow'pr n(4) = sat_uy(signedas (7))

4.3.5 Vector Operations

Most vector operations are performed by applying numeric operations lanewise. However, some operators consider
multiple lanes at once.

ivbitmasky (¢™)
1. For each iy, in i™, let by, be the result of computing ilt_sy (%, 0).
2. Let b™ be the concatenation of all by,.
3. Return the result of computing ibitsg, ((0)327™ b™).

ivbitmasky (i) = ibitsg, ((0)327™ ilt_sy(i,0)™)

4.3. Numerics 115

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ivswizzle(i", j™)
1. For each jyi in j", let i be the value ivswizzle_lane(i™, ji).
2. Let r™ be the concatenation of all ..

3. Return r".

ivswizzle(i™, j®) = ivswizzle_lane(i"™,)"
where:
ivswizzle_lane(i™, j) = "[j] (ifj <n)
ivswizzle_lane(i™,j) = 0 (otherwise)
ivshuffle(y™, i}, i%)
1. Let ¢* ne the concatenation of 47 and 5.
2. For each j, in 5", let g, be i*[j].
3. Let 7™ be the concatenation of all 7.
4. Return r™.
vshuffle(j™,i%,38) = (3 @) GG <2-m)")

ivadd_pairwisey (™)

1. Let (i1 ia)™ be i*™, decomposed into pairwise elements.

2. For each iy, in ¢* and corresponding isy, in 457, let 7, be iaddn (41, 42k)-
3. Let ™ be the concatenation of all r.

4. Return r™.

ivadd_pairwisen (2™) = (iaddy(i1,i2))™ (if i%™ = (i1 i2)™)

ivmul v (277, 45Y)
1. For each iy, in ¢7* and corresponding iy, in 57, let vy be imuly (414, ik).
2. Let ™ be the concatenation of all .
3. Return ™.

ivimuly (477, 45") = (imuly(é1,42))™

ivdot x (13™,i3™)

1. For each iy, in i2™ and corresponding ioy in i3™, let jz be imuly (i1, 92k).
. Let 52™ be the concatenation of all jy,.
. Let (j1 j2)™ be j2™, decomposed into pairwise elements.

2
3
4. For each i1, in ¢7* and corresponding ioy in 45", let i be iadd n (i1x, i2k).
5. Let ™ be the concatenation of all ry,.

6

. Return .

ivdoty (3™,i3™) = (iaddnx(j1,42))™ @f (imuly(i1,i2))?™ = (j1 j2)™)

116 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ivdotsat y (27", i5")
1. For each iy, in 3™ and corresponding oy, in 3™, let jx, be imuly (i1, ok).
Let 52™ be the concatenation of all jy,.
Let (j1 j2)™ be j2™, decomposed into pairwise elements.
For each i1, in ¢]" and corresponding ioy, in ¢5*, let 71, be iadd_sat n (i1, tak)

Let ™ be the concatenation of all r,.

AR

Return ™.
ivdotsaty (3™, i2™) = (iadd_satn(j1,72))™ (f (imuly(i1,i2))?™ = (j1 j2)™)

The previous operators are lifted to operators on arguments of vector type by wrapping them in corresponding lane
projections and injections and intermediate extension operations:

VETEUNOP shy ,shy (C)

S . _ —1 3k ek], ..
extadd_pairwise_szin,xaty iNaxz (€)= lanesy gp (5%) (if Z/*— lanesin, xar, (¢)
1k o 1sT P *
A" = extendy, y, (%))
. e y
A §* = ivadd_pairwisep, (i)

vexthinop s, shy (C1,C2)

VeTtbInoOPiN,xMy iNaxM, (€1, C2) = laullesi_l\,12xl\/[2 (5%) (if i7 = lanesin,xar, (c1)[h : k]
A i = lanesin,xa, (c2)[h : K]
Aih" = extendy, w, (i1)*
Ny = exteniij(fl N (i2)*
NJ* = fN2<Z/1 72/1)

where f, sz1, sza, h, and k are instantiated as follows, depending on the operator:

vextbinop ‘ f ST STa h k

extmul_low_sz | ivinul ST ST 0 Ms
extmul_high_sz | ivmul ST ST My M,
dot_s ivdot s s 0 My

relaxed_dot_s ivdotsat s relaxed(Riqot)[s,u] 0 M,

Note

Relaxed operations and the paramater R;4ot are introduced below.

vextlernop sh, sho (017 Ca, CS)

reIaxed_dot_add_s;leMl,iNzxMz (Cl7 C2, 03) = c (if N=2-N;
ANM =2 M,
A ¢ = relaxed_dot_sin,xa, invxas (€1, ¢2)
A " = extadd_pairwise_sinxas,iNqx; (€)
Nce addi]\jzxjw2 (CN7 Cg)

Narrow_se sh, ,shs (€1, C2)

o — < 1 * if 47 = L ;
NArTOW_STin,xM, iNaxM (€1, €2) = lanesiy, a0 (5%) (if if = lanesin, i, (1)
e
A 15 = lanes;n,xar, (¢2)
Ay = narrowy, n, (i1)*
S v)
A — Narrowy, n, (i2)*
T o ¥
ANJm =1 By

4.3. Numerics 117

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

vevtop_half? zeroshl shy (1)

7)07)t0p_h(1,/f'_zemt?lle)tQXMZ (i) = j (if condition
A ¢* = lanesy, xar, (1) [2 K]
AT = x(ve Uf0p|t1‘ It (€)* @ (0)™)
A j € lanes, iM (")

where h, k, n, and condition are instantiated as follows, depending on the operator:

half* zero® ‘ h k n condition

€ € 0 M1 0 (Ml MQ)
low € 0 M2 0 (M1 =2- Mg)
hlgh € M2 M2 0 (M1 =2 Mg)
€ ZEero 0 M1 M1 (2 M1)

while x{2*}"V transforms a sequence of N sets of non-deterministic values into a set of non-deterministic se-
quences of [NV values by computing the set product:

X(Sl...SN) = {1‘1...37]\[|JJ1651/\”'/\1‘]\[65]\[}

4.3.6 Relaxed Operations

The result of relaxed operators are implementation-dependent, because the set of possible results may depend on
properties of the host environment, such as its hardware. Technically, their behaviour is controlled by a set of global
parameters to the semantics that an implementation can instantiate in different ways. These choices are fixed, that
is, parameters are constant during the execution of any given program.

Every such parameter is an index into a sequence of possible sets of results and must be instantiated to a defined
index. In the deterministic profile, every parameter is prescribed to be 0. This behaviour is expressed by the
following auxiliary function, where R is a global parameter selecting one of the allowed outcomes:

[PET] yelaxed(R)[Ag, - .., An] = AR
relaxed(R)[Ao, ..., An] = Ao

Note

Each parameter can be thought of as inducing a family of operations that is fixed to one particular choice by an
implementation. The fixed operation itself can still be non-deterministic or partial.

Implementations are expexted to either choose the behaviour that is the most efficient on the underlying hard-
ware, or the behaviour of the deterministic profile.

frelaxed_maddy (21, 22, 23)
The implementation-specific behaviour of this operation is determined by the global parameter Ryaqq € {0, 1}
* Return relaxed(Remada) [fadd v (fmuly (21, 22), 23), fmay (21, 22, 23)].

frelaxed_maddy (21, 22, 23) = relaxed(Remada)[faddy (fmuly (21, 22), 23), fmay (21, 22, 23)]

Note

Relaxed multiply-add allows for fused or unfused results, which leads to implementation-dependent rounding
behaviour. In the deterministic profile, the unfused behaviour is used.

118 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

frelaxed_nmaddy (21, 22, 23)
* Return frelaxed_madd(—z1, 22, 23).

frelaxed_nmaddy (21, 22,23) = frelaxed_maddy(—z1, 22, 23)

Note

This operation is implementation-dependent because frelaxed_madd is implementation-dependent.

frelaxed_miny (21, 22)

The implementation-specific behaviour of this operation is determined by the global parameter Rpyi, €
{0,1,2,3}.

o If z; is a NaN, then return relaxed(Remin) [fminy (21, 22), nan(n), 22, 22].
o If 25 is a NaN, then return relaxed(Rimin) [fminy (21, 22), 21, nan(n), z1].
* If both z; and z5 are zeroes of opposite sign, then return relaxed (Remin) [fminy (21, 22), pm 0, mp 0, -0 T".

* Return fminy (21, 22).

frelaxed_miny(£nan(n),z2) = relaxed(Remin)[fminy (£nan(n), z2), nan(n), 22, zo]
frelaxed_miny (21, £nan(n)) = relaxed(Remin)[fminy (21, £nan(n)), z1, nan(n), z1]
frelaxed_minx (£0, F0) = relaxed(Rmin) [fminy (0, F0), +0, F0, —0]

frelaxed_minpy (21, 22) = fminy(z1,22) (otherwise)

Note

Relaxed minimum is implementation-dependent for NaNs and for zeroes with different signs. In the determin-
istic profile, it behaves like regular fmin.

frelaxed_maxy (21, 22)

The implementation-specific behaviour of this operation is determined by the global parameter Rgy.x €
{0,1,2,3}.

o If 21 is a NaN, then return relaxed(Rgmax) [fmaxy (21, 22), nan(n), 22, z2].
o If z5 is a NaN, then return relaxed(Rgmax) [fmaxy (21, 22), 21, nan(n), z1].
* If both z; and z, are zeroes of opposite sign, then return relaxed (Rgmax) [fmaxy (21, 22), pm 0, mp 0, +0 T°.

* Return fmax (21, 22).

frelaxed_maxy(E£nan(n), z2) = relaxed(Remax)[fmaxy (£nan(n), z2), nan(n), z2, z2]

frelaxed_maxy(z1,£nan(n)) = relaxed(Remax)[fmaxy (21, £nan(n)), z1, nan(n), z1]

frelaxed_max y (£0, $O) = relaxed(Rmax)[fmaxy (+0, F0), £0, F0, +0]

frelaxed_maxy (21, 22) = fmaxy(z1, 22) (otherwise)
Note

Relaxed maximum is implementation-dependent for NaNs and for zeroes with different signs. In the determin-
istic profile, it behaves like regular fmax.

4.3. Numerics 119

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

irelaxed_qlbmulr_spy (i1, i2)
The implementation-specific behaviour of this operation is determined by the global parameter Riq15mur € {0, 1}.
* If both i; and iy equal (signcd]_\,1 (—2N~1), then return relaxed (Riq15mulr) [2N-1 -1, sigrlcd]_vl (—2N-1).

* Return iql5mulrsat_s(i1, i2)

irelaxed_q15mulr_sy (signed ' (—=2V=1), signed ' (—=2V 1)) = relaxed(Riqismule)[2V ™! — 1, signed ! (—2V)]
irelaxed_q15mulr_sy (i1, i2) = iqlomulrsat_s(iy,i2)
Note

Relaxed Q15 multiplication is implementation-dependent when the result overflows. In the deterministic pro-
file, it behaves like regular iq15mulrsat_s.

relaxed_truncy, y(2)
The implementation-specific behaviour of this operation is determined by the global parameter Riyync v € {0, 1}.
* If 2 is normal or subnormal and trunc(z) is non-negative and less than 2, then return trunc' s y(2).

* Else, return relaxed(Rgrunc_u) [trunc_sat_uas, v (2), R].

relaxed_truncy, y(£g) = trunc’y,n(xq) (if 0 < trunc(£q) < 2V)
relaxed_truncyy n(2) = relaxed(Rgrunc_u)[trunc_sat_upa,n(2), R] (otherwise)
Note

Relaxed unsigned truncation is non-deterministic for NaNs and out-of-range values. In the deterministic profile,
it behaves like regular trunc_sat_u.

relaxed_truncy, y(2)
The implementation-specific behaviour of this operation is determined by the global parameter Ryyunc s € {0, 1}.

* If z is normal or subnormal and trunc(z) is greater than or equal to —2~~! and less than 2V !, then return
trunc®ys n(2).

* Else, return relaxed(Ripunc_s)[trunc_sat_sas v (2), R].

relaxed_truncy, y(£q) = trunc®y n(+q) (if =2V~ < trunc(q) < 2V71)
relaxed_truncy, x (2) = relaxed(Rypunc_s)[trunc_sat_sp n(z),R] (otherwise)
Note

Relaxed signed truncation is non-deterministic for NaNs and out-of-range values. In the deterministic profile,
it behaves like regular trunc_sat_s.

ivrelaxed_swizzle(i", j™)

The implementation-specific behaviour of this operation is determined by the global parameter Rgyizz1e € {0,1}.
* For each jj, in j, let r, be the value ivrelaxed_swizzle_lane(i", ji).
e Let r™ be the concatenation of all r.

e Return r™.

120 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ivrelaxed_swizzle(i™, j™) = ivrelaxed_swizzle_lane(i™, j)™
where:
ivrelaxed_swizzle_lane(i™,j) = i[j] (if 7 < 16)
ivrelaxed_swizzle_lane(i",j) = 0 (if signedg(j) < 0)
ivrelaxed_swizzle_lane(i™, j) = relaxed(Rswizzle)[0,4"[j mod n]] (otherwise)
Note

Relaxed swizzle is implementation-dependent if the signed interpretation of any of the 8-bit indices in j" is
larger than or equal to 16. In the deterministic profile, it behaves like regular ivswizzle.

relaxed_dot (i1, i2)

The implementation-specific behaviour of this operation is determined by the global parameter Rigot € {0,1}. It
also affects the behaviour of relaxed dot_add.

Its definition is part of the definition of vexztbinop specified above.

Note

Relaxed dot product is implementation-dependent when the second operand is negative in a signed intepretation.
In the deterministic profile, it behaves like signed dot product.

irelaxed_laneselect v (71, i2, i3)

The implementation-specific behaviour of this operation is determined by the global parameter R)apeseiect € {0, 1}
e If i3 is smaller than 2V 1, then let i} be the value 0, otherwise 2V — 1.
o Let ¢ be relaxed(Rianeseclect) [13, 95)-
* Return ibitselect y (i1, 92,4).

irelaxed_laneselect y (i1,42,43) = ibitselecty (i1, i2, relaxed(Rianeselect) [#3, extend®y y (ishr_uy (is, N — 1))])

Note

Relaxed lane selection is non-deterministic when the mask mixes set and cleared bits, since the value of the
high bit may or may not be expanded to all bits. In the deterministic profile, it behaves like ibitselect.

4.4 Types

Execution has to check and compare types in a few places, such as executing call_indirect or instantiating modules.

It is an invariant of the semantics that all types occurring during execution are closed.

Note

Runtime type checks generally involve types from multiple modules or types not defined by a module at all,
such that any module-local type indices occurring inside them would not geenrally be meaningful.

4.4. Types 121

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.4.1 Instantiation

Any form of type can be instantiated into a closed type inside a module instance by substituting each type index z
occurring in it with the corresponding defined type moduleinst.types[z].

cloSmoduieinst (t) = t[:=dt*] if dt* = moduleinst.types

Note

This is the runtime equivalent to type closure, which is applied at validation time.

4.5 Values

4.5.1 Value Typing

For the purpose of checking argument values against the parameter types of exported functions, values are classified
by value types. The following auxiliary typing rules specify this typing relation relative to a store .S in which
possibly referenced addresses live.

Numeric Values

The number value (nt.const ¢) is valid with the number type nt.

s nt.const ¢ : nt

Vector Values

The vector value (vt.const ¢) is valid with the vector type vt.

st vt.const c: vt

Null References
The reference value (ref.null ht) is valid with the reference type (ref null ht') if:

* The heap type ht’ matches the heap type ht.

{}-ht' <ht
s b ref.null At : (ref null ht")

Note

A null reference can be typed with any smaller type. In particular, that allows it to be typed with the least type
in its respective hierarchy. That ensures that the value is compatible with any nullable type in that hierarchy.

Scalar References

The reference value (ref.is1 ¢) is valid with the reference type (ref i31).

st ref.i1 g : (ref is1)

Structure References

The reference value (ref.struct a) is valid with the reference type (ref dt) if:
* The structure instance s.structs|a] exists.
* The defined type s.structs|a].type is of the form d¢.

s.structs[a].type = dt
s b ref.struct a : (ref dt)

122 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Array References
The reference value (ref.array a) is valid with the reference type (ref dt) if:
o The array instance s.arrays|a] exists.
* The defined type s.arrays[a].type is of the form dt.
s.arrays[a].type = dt

s b= ref.array a : (ref dt)

Exception References
The reference value (ref.exn a) is valid with the reference type (ref exn) if:
¢ The exception instance s.exns|a] exists.

s.exns[a] = exn

sk ref.exn a : (ref exn)

Continuation References
The reference value (ref.cont a) is valid with the reference type (ref dt) if:
* The continuation instance s.conts|a] exists.
* The continuation instance s.conts|a] is absent or s.conts[a] is of the form continst.
[

s.conts[a] = €V s.conts[a] = continst
sk ref.conta : (ref dt)

Function References

The reference value (ref.func a) is valid with the reference type (ref dt) if:
* The function instance s.funcs[a] exists.
* The defined type s.funcs|a].type is of the form dt.

s.funcs[a].type = dt
s I ref.funca : (ref dt)

Host References

The reference value (ref.host a) is valid with the reference type (ref any).

s F ref.host a : (ref any)

Note

A bare host reference is considered internalized.

External References
The reference value (ref.extern addrref) is valid with the reference type (ref extern) if:

* The reference value addrref is valid with the reference type (ref any).

s addrref : (ref any)
s I ref.extern addrref : (ref extern)

4.5. Values 123

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Subsumption
The reference value ref is valid with the reference type 7t if:
* The reference value ref is valid with the reference type rt’.

* The reference type rt’ matches the reference type rt.

st ref it {3t <rt
skref it

4.5.2 External Typing
For the purpose of checking external address against imports, such values are classified by external types. The
following auxiliary typing rules specify this typing relation relative to a store .S in which the referenced instances
live.
Functions
The external address (func a) is valid with the external type (func funcinst.type) if:

¢ The function instance s.funcs|a] exists.

¢ The function instance s.funcs|a] is of the form funcinst.

s.funcs[a] = funcinst

s = func a : func funcinst.type

Tables

The external address (table a) is valid with the external type (table tableinst.type) if:
* The table instance s.tables[a] exists.
* The table instance s.tables[a] is of the form tableinst.

s.tables[a] = tableinst

s I- table a : table tableinst.type

Memories
The external address (mem a) is valid with the external type (mem meminst.type) if:
» The memory instance s.mems|a] exists.

 The memory instance s.mems][a] is of the form meminst.

s.mems[a] = meminst

s F mem a : mem meminst.type

Globals
The external address (global a) is valid with the external type (global globalinst.type) if:
* The global instance s.globals[a] exists.

* The global instance s.globals[a] is of the form globalinst.

s.globals[a] = globalinst

s - global a : global globalinst.type

124 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Tags

The external address (tag a) is valid with the external type (tag taginst.type) if:
* The tag instance s.tags[a] exists.
* The tag instance s.tags[a] is of the form taginst.

s.tagsla] = taginst

s - tag a : tag taginst.type

Subsumption
The external address externaddr is valid with the external type at if:
o The external address externaddr is valid with the external type zt’.

* The external type zt’ matches the external type zt.

s b externaddr : xt’ {}Fat/ <at
s b externaddr : xt

4.6 Instructions

WebAssembly computation is performed by executing individual instructions.

4.6.1 Parametric Instructions
nop
1. Do nothing.

nop < €

unreachable
1. Trap.

unreachable < trap

drop
1. Assert: Due to validation, a value is on the top of the stack.
2. Pop the value val from the stack.

val drop — €

select (t*)”
1. Assert: Due to validation, a value of number type i32 is on the top of the stack.
2. Pop the value (i32.const ¢) from the stack.
3. Assert: Due to validation, a value is on the top of the stack.
4. Pop the value vals from the stack.
5. Assert: Due to validation, a value is on the top of the stack.
6. Pop the value val; from the stack.
7. If ¢ # 0, then:
a. Push the value val; to the stack.

8. Else:

4.6. Instructions 125

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

a. Push the value vals to the stack.

valy valy (i32.const c) (select (t*)?) < wal; ifc#0
valy valg (i32.const ¢) (select (t*)") < waly ifc=0

Note

In future versions of WebAssembly, select may allow more than one value per choice.

4.6.2 Control Instructions

block bt instr*
1. Let z be the current state.
Let 1" —jocatidzy ty be the destructuring of instrtype, (bt).
Assert: Due to validation, localidz = e.
Assert: Due to validation, there are at least m values on the top of the stack.
Pop the values val™ from the stack.

Let L be the label whose arity is n and whose continuation is the end of the block.

N oA »d

Enter the block val™ instr® with the label L.

z;val™ (block bt instr™) < (label,{e} val™ instr*) if instrtype, (bt) = ¢7* — t3

loop bt instr*
1. Let z be the current state.
Let 1" —jocatidzy t5 be the destructuring of instrtype, (bt).
Assert: Due to validation, localidz = e.
Assert: Due to validation, there are at least m values on the top of the stack.
Pop the values val™ from the stack.

Let L be the label whose arity is m and whose continuation is the start of the block.

N oA RN

Enter the block val™ instr® with the label L.

z;val™ (loop bt instr*) < (label, {loop bt instr*} val™ instr*) if instrtype, (bt) = t7* — ¢4

if bt instry instrs
1. Assert: Due to validation, a value of number type i32 is on the top of the stack.
2. Pop the value (i32.const ¢) from the stack.
3. If ¢ # 0, then:
a. Execute the instruction (block bt instry).
4. Else:
a. Execute the instruction (block bt instr).

(block bt instry) ifc#0
(block bt instry) ifc=0

i32.const ¢) (if bt instr? else instr
1 2

(%
(i32.const ¢) (if bt instry else instry) <

126 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

brl
1. If the first non-value entry of the stack is a label, then:
a. Let L be the topmost label.
b. Let n be the arity of L
c. If I =0, then:
1) Assert: Due to validation, there are at least n values on the top of the stack.
2) Pop the values val™ from the stack.
3) Pop all values val’™ from the top of the stack.
4) Pop the label L from the stack.
5) Push the values val™ to the stack.
6) Jump to the continuation of L.
d. Else:
1) Pop all values val™ from the top of the stack.
2) Pop the label L from the stack.
3) Push the values val™ to the stack.
4) Execute the instruction (br [— 1).
2. Else if the first non-value entry of the stack is a handler, then:
a. Pop all values val™ from the top of the stack.
b. Pop the handler H from the stack.
c. Push the values val™ to the stack.
d. Execute the instruction (br [).
3. Else:

a. Assert: Due to validation, the first non-value entry of the stack is a prompt.

o

. Pop all values val™ from the top of the stack.
c. Pop the prompt P from the stack.

d. Push the values val* to the stack.

e. Execute the instruction (br [).

(label,, {instr’*} val'™ val™ (br 1) instr*)
(label,, {instr’*} val* (brl) instr*)
(handler,, { catch™} val® (br 1) instr*)
(prompt{addrhdl*} val* (brl) instr*)

< wval™ instr’* ifl=0
— wal* (brl—1) ifl>0
— wal® (brl)
— wal® (brl)

br_if I
1. Assert: Due to validation, a value of number type i32 is on the top of the stack.
2. Pop the value (i32.const ¢) from the stack.
3. If ¢ # 0, then:
a. Execute the instruction (br [).
4. Else:

a. Do nothing.

(brl) ifc#0
€ ifc=0

(i2.const ¢) (br_if [)

(SN
(i32.const ¢) (br_if 1) <

4.6. Instructions 127

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

br_table I* I’
1. Assert: Due to validation, a value of number type i32 is on the top of the stack.
2. Pop the value (i32.const i) from the stack.
3. If i < |I*], then:
a. Execute the instruction (br I*[7]).
4. Else:
a. Execute the instruction (br I’).

(i32.const 7) (br_table i* 1”)
(i32.const ¢) (br_table [* I")

— (bri*[i]) if ¢ < |I*
< (brl) ifi > |l*
br_on_null{

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. If val is some ref.null heaptype, then:

a. Execute the instruction (br [).
4. Else:

a. Push the value val to the stack.

val (br_on_null 1)
val (br_on_null 1)

(brl) if val = ref.null ht
val otherwise

N
N
br_on_non_null
1. Assert: Due to validation, a value is on the top of the stack.
2. Pop the value val from the stack.
3. If wal is some ref.null heaptype, then:
a. Do nothing.
4. Else:
a. Push the value val to the stack.
b. Execute the instruction (br [).

val (br_on_non_nulll) — € if val = ref.null ht
val (br_on_non_nulll) < wal (brl) otherwise

br_on_cast [rty rto
1. Let f be the topmost frame.
2. Assert: Due to validation, a reference value is on the top of the stack.
3. Pop the value ref from the stack.
4. Let rt be the type of ref.
5. Push the value ref to the stack.
6. If 7t matches clos ;. modute (t2), then:
a. Execute the instruction (br [).
7. Else:

a. Do nothing.

128 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

s; fyref (br_on_cast @ rty rta) < ref (bril) ifstref:rt
A{}F rt < closf.modute (Tt2)
s; fyref (br_on_castlrty rta) < ref otherwise

br_on_cast_fail [rty rto
1. Let f be the topmost frame.
2. Assert: Due to validation, a reference value is on the top of the stack.
3. Pop the value ref from the stack.
4. Let rt be the type of ref.
5. Push the value ref to the stack.
6. If vt matches clos . module (7t2), then:
a. Do nothing.
7. Else:
a. Execute the instruction (br [).

s; fyref (br_on_cast_fail l vty rta) < ref if s - ref 2t
A{}F 1t < closf module(Tt2)
s; firef (br_on_cast_fail l rty rte) < ref (brl) otherwise

return
1. If the first non-value entry of the stack is a frame, then:

. Let f be the topmost frame.

o

b. Let n be the arity of f
c. Assert: Due to validation, there are at least n values on the top of the stack.
d. Pop the values val™ from the stack.
e. Pop all values val’™ from the top of the stack.
f. Pop the frame I from the stack.
g. Push the values val™ to the stack.
2. Else if the first non-value entry of the stack is a label, then:
a. Pop all values val™ from the top of the stack.
b. Pop the label L from the stack.
c. Push the values val™ to the stack.
d. Execute the instruction return.
3. Else:
a. If the first non-value entry of the stack is a handler, then:
1) Pop all values val™ from the top of the stack.
2) Pop the handler H from the stack.
3) Push the values val™ to the stack.
4) Execute the instruction return.
b. Else:
1) Assert: Due to validation, the first non-value entry of the stack is a prompt.

2) Pop all values val™ from the top of the stack.

4.6. Instructions 129

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3) Pop the prompt P from the stack.
4) Push the values val™ to the stack.
5) Execute the instruction return.

val™

val® return

val® return
*

val™ return

(frame, {f} val’”™ val™ return instr*)
(label, {instr’*} val* return instr*)
(handler,, { catch™} val® return instr™)
(prompt{addrhdl*} val® return instr*)

NN

call z
1. Let z be the current state.
Assert: Due to validation, x < |z.module.funcs|.
Let a be the address z.module.funcs|z].
Assert: Due to validation, a < |z.funcs|.

Push the value (ref.func a) to the stack.

A

Execute the instruction (call_ref z.funcs[a].type).

z;(callz) < (ref.funca) (call_ref z.funcs[a].type) if z.module.funcs[z] = a

call_ref x

Todo

(*) Prose not spliced, for the prose merges the two cases of null and non-null references.

1. Assert: due to validation, a null or function reference is on the top of the stack.
2. Pop the reference value r from the stack.
3. If r is ref.null ht, then:
a. Trap.
4. Assert: due to validation, r is a function reference.
5. Let ref.func a be the reference r.

6. Invoke the function instance at address a.

z; (ref.null ht) (call_ref y) < trap

Note

The formal rule for calling a non-null function reference is described below.

call_indirect x y
1. Execute the instruction (table.get).
2. Execute the instruction (ref.cast (ref null y)).

3. Execute the instruction (call_ref y).

(call_indirect z y) < (table.get z) (ref.cast (ref null y)) (call_ref)

130 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

return_call z
1. Let z be the current state.
Assert: Due to validation, x < |z.module.funcs|.
Let a be the address z.module.funcs|x].
Assert: Due to validation, a < |z.funcs|.

Push the value (ref.func a) to the stack.

A

Execute the instruction (return_call_ref z.funcs[a].type).

z; (return_call) < (ref.func a) (return_call_ref z.funcs[a].type) if z.module.funcs[z] = a

return_call_ref y

1. Let z be the current state.

2. If the first non-value entry of the stack is a label, then:
a. Pop all values val™ from the top of the stack.
b. Pop the label L from the stack.
c. Push the values val™ to the stack.
d. Execute the instruction (return_call_ref y).

3. Else if the first non-value entry of the stack is a handler, then:
a. Pop all values val™ from the top of the stack.
b. Pop the handler H from the stack.
c. Push the values val™ to the stack.

d. Execute the instruction (return_call_ref y).

a. Assert: Due to validation, the first non-value entry of the stack is a frame.
b. Assert: Due to validation, a value is on the top of the stack.
c. Pop the value val” from the stack.
d. If val” is some ref.null heaptype, then:
1) Trap.
e. Assert: Due to validation, val” is some ref.func funcaddr.
f. Let (ref.func a) be the destructuring of val”.

Assert: Due to validation, a < |z.funcs|.

5 W@

Assert: Due to validation, the expansion of z.funcs|a].type is some func resulttype — resulttype.

—

Let (func t? — t5") be the destructuring of the expansion of z.funcs[a].type.

Assert: Due to validation, there are at least n values on the top of the stack.

—.

k. Pop the values val™ from the stack.
1. Pop all values val’* from the top of the stack.
m. Pop the frame F' from the stack.
n. Push the values val™ to the stack.
0. Push the value (ref.func a) to the stack.

p. Execute the instruction (call_ref).

4.6. Instructions 131

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr*

)
instr™)
)
)

z; (labelg {instr’™} val* (return_call_ref y

(val™ (return_call_ref y)
z; (handlerg{catch™} val™ (return_call_ref y

(

(

(ﬁ
< wal™ (return_call_ref y)
(%
(%

*

z; (frameg {f} val™ (ref.null ht) (return_call_ref y) instr

z; (frameg {f} val’™ val™ (ref.func a) (return_call_ref y

trap
val™ (ref.func a) (call_ref y)
if z.funcs|a].type ~ func t} — 3"

—_ — — —

instr*

return_call_indirect x y
1. Execute the instruction (table.get).
2. Execute the instruction (ref.cast (ref null y)).
3. Execute the instruction (return_call_ref y).

(return_call_indirect z y) < (table.get) (ref.cast (ref null y)) (return_call_ref y)

throw x

—

Let z be the current state.

Assert: Due to validation, x < |z.tags|.

Assert: Due to validation, the expansion of z.tags[x].type is some func resulttype — resulttype.
Let (funct™ — resulttype,) be the destructuring of the expansion of z.tags[z].type.

Assert: Due to validation, resulttype, = e.

Let a be the length of z.exns.

Assert: Due to validation, there are at least n values on the top of the stack.

Pop the values val™ from the stack.

e e G o R

Let exn be the exception instance {tag z.tags|x], fields val™}.

._
e

Append ezn to z.exns.

—
—

. Push the value (ref.exn a) to the stack.
12. Execute the instruction throw_ref.

z;val™ (throw z) < z[.exns =& exn]; (ref.exn a) throw_ref if z.tags[x].type ~ func t™ — €
A a = |z.exns|
A exn = {tag z.tags[z], fields val™}

throw_ref
1. Let 2z be the current state.
2. Assert: Due to validation, a value is on the top of the stack.
3. Pop the value val’ from the stack.
4. If val’ is some ref.null heaptype, then:
a. Trap.
5. If wal’ is some ref.exn exnaddr, then:
a. Let (ref.exn a) be the destructuring of val’.
b. Let instr™ be the remaining instruction sequence.
¢. Pop all values val* from the top of the stack.
d. If val® # € or instr* # e, then:
1) Push the value (ref.exn a) to the stack.
2) Execute the instruction throw_ref.

e. Else if the first non-value entry of the stack is a label, then:

132 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

1) Pop the label L from the stack.
2) Push the value (ref.exn a) to the stack.
3) Execute the instruction throw_ref.
f. Else:
1) If the first non-value entry of the stack is a frame, then:
a) Pop the frame F' from the stack.
b) Push the value (ref.exn a) to the stack.
¢) Execute the instruction throw_ref.
2) Else if the first non-value entry of the stack is a prompt, then:
a) Pop the prompt P from the stack.
b) Push the value (ref.exn a) to the stack.
¢) Execute the instruction throw_ref.
3) Else:
a) If not the first non-value entry of the stack is a handler, then:
1. Throw the exception val’ as a result.
b) Else:
1. Let H be the topmost handler.
2. Let n be the arity of H
3. Let catch”™ be the catch handler of H
4. If catch”™ = ¢, then:
a. Pop the handler H from the stack.
b. Push the value (ref.exn a) to the stack.
c. Execute the instruction throw_ref.
5. Else if a > |z.exns|, then:
a. Let catchg catch’™ be catch”™.
b. If catchg is some catch_all labelidz, then:
1) Let (catch_all) be the destructuring of catchy.
2) Pop the handler H from the stack.
3) Execute the instruction (br [).
c. Else if catchg is not some catch_all_ref labelidz, then:
1) Let catch catch'™ be catch””.
2) Pop the handler H from the stack.
3) Let H be the handler whose arity is n and whose catch handler is catch’™.
4) Push the handler H.
5) Push the value (ref.exn a) to the stack.
6) Execute the instruction throw_ref.
d. Else:
1) Let (catch_all_ref) be the destructuring of catchy.

2) Pop the handler H from the stack.

4.6. Instructions 133

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3) Push the value (ref.exn a) to the stack.
4) Execute the instruction (br 7).
6. Else:
a. Let val” be z.exns|a].fields.
b. Let catchg catch’™ be catch’™.
c. If catchg is some catch tagidz labelidz, then:
1) Let (catch x 1) be the destructuring of catchyg.
2) If < |z.tags| and z.exns[a].tag = z.tags[z], then:
a) Pop the handler H from the stack.
b) Push the values val® to the stack.
c¢) Execute the instruction (br [).
3) Else:
a) Let catch catch’™ be catch'™.
b) Pop the handler H from the stack.
c) Let H be the handler whose arity is n and whose catch handler is catch’™.
d) Push the handler H.
e) Push the value (ref.exn a) to the stack.
f) Execute the instruction throw_ref.
d. Else if catchg is some catch_ref tagidz labelidz, then:
1) Let (catch_ref x 1) be the destructuring of catchy.
2) If x > |z.tags| or z.exns|al.tag # z.tags[z], then:
a) Let catch catch’™ be catch’™.
b) Pop the handler H from the stack.
c) Let H be the handler whose arity is n and whose catch handler is catch’”.
d) Push the handler H.
e) Push the value (ref.exn a) to the stack.
f) Execute the instruction throw_ref.
3) Else:
a) Pop the handler H from the stack.
b) Push the values val™ to the stack.
c) Push the value (ref.exn a) to the stack.
d) Execute the instruction (br [).
e. Else:
1) If catchg is some catch_all labelidz, then:
a) Let (catch_all [) be the destructuring of catchyg.
b) Pop the handler H from the stack.
¢) Execute the instruction (br 7).
2) Else if catchg is not some catch_all_ref labelidzx, then:

a) Let catch catch’™ be catch’™.

134 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

b) Pop the handler H from the stack.
¢) Let H be the handler whose arity is n and whose catch handler is catch’™.
d) Push the handler H.
e) Push the value (ref.exn a) to the stack.
f) Execute the instruction throw_ref.
3) Else:
a) Let (catch_all_ref [) be the destructuring of catchy.
b) Pop the handler H from the stack.
¢) Push the value (ref.exn a) to the stack.
d) Execute the instruction (br [).
6. Else:
a. Assert: Due to validation, not the first non-value entry of the stack is a label.
b. Assert: Due to validation, not the first non-value entry of the stack is a frame.
c. Assert: Due to validation, not the first non-value entry of the stack is a prompt.
d. Assert: Due to validation, not the first non-value entry of the stack is a handler.

e. Throw the exception val’ as a result.

z; (ref.null ht) throw_ref < trap

z; val®™ (ref.exn a) throw_ref instr* < (ref.exn a) throw_ref if val* £ eV

z; (label, {instr’*} (ref.exn a) throw_ref) < (ref.exn a) throw_ref

z; (frame, {f} (ref.exn a) throw_ref) < (ref.exn a) throw_ref

z; (prompt{addrhdl*} (ref.exn a) throw_ref) < (ref.exn a) throw_ref

z; (handler,, {e} (ref.exn a) throw_ref) < (ref.exn a) throw_ref
z; (handler,, {(catch z 1) catch’*} (ref.exn a) throw_ref) < wal* (brl) if z.exns|a].ta
A val® = z.ex
z; (handler,, {(catch_ref x) catch’*} (ref.exn a) throw_ref) < wval* (ref.exn a) (br) if z.exnsal.ta
A val™ = z.ex

z; (handler,, {(catch_all I) catch’™} (ref.exn a) throw_ref) < (brl)
z; (handler,, {(catch_all_ref I) catch’™} (ref.exn a) throw_ref) < (ref.exn a) (br!)
z; (handler,{catch catch'™} (ref.exn a) throw_ref) < (handler,{catch’™} (ref.exn a) throw_ref) otherwise

try_table bt catch™ instr*
1. Let z be the current state.
Let #7" —jocatidzy to be the destructuring of instrtype, (bt).
Assert: Due to validation, localidl'g =e
Assert: Due to validation, there are at least m values on the top of the stack.
Pop the values val™ from the stack.
Let H be the handler whose arity is n and whose catch handler is catch™.
Push the handler H.

Let L be the label whose arity is n and whose continuation is the end of the block.

R S A i

Enter the block val™ instr™ with the label L.

z;val™ (try_table bt catch® instr*) < (handler,{catch™} (label,{e} val™ instr*)) if instrtype,(bt) =7 — 3

4.6. Instructions 135

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

cont.new x
1. Let z be the current state.
Assert: Due to validation, a value is on the top of the stack.

Pop the value val from the stack.

Ll

If val is some ref.null heaptype, then:
a. Trap.
Assert: Due to validation, val is some ref.func funcaddr.
Let (ref.func a) be the destructuring of val.
Let ca be the length of z.conts.

Assert: Due to validation, the expansion of z.types[z] is some cont typeuse.

© ® =2 W

Let (cont dt) be the destructuring of the expansion of z.types[z].

10. Assert: Due to validation, the expansion of dt is some func resulttype — resulttype.
11. Let instr* be (ref.func a) (call_ref dt).

12. Push the value (ref.cont ca) to the stack.

13. Append (vals [_] instr™) to z.conts.

z; (ref.null ht) (cont.new z) < z;trap

z; (ref.func a) (cont.new y) < z[.conts =@ vals € [_] instr*]; (ref.cont ca) if z.types[y] ~ cont dt
A dt = funct] — t5
A instr* = (ref.func a) (call_ref dt)
A ca = |z.conts|

cont.bind = y
1. Let z be the current state.
2. Assert: Due to validation, a value is on the top of the stack.
3. Pop the value val’ from the stack.
4. If val’ is some ref.null heaptype, then:
a. Trap.
Assert: Due to validation, val’ is some ref.cont contaddr.
Let (ref.cont a) be the destructuring of val’.

Assert: Due to validation, a < |z.conts|.

® Noow

If z.conts[a] is not defined, then:
a. Trap.

9. Assert: Due to validation, the expansion of z.types[z] is some cont typeuse.
10. Let (cont dt) be the destructuring of the expansion of z.types[z].
11. Assert: Due to validation, the expansion of z.types[y] is some cont typeuse.
12. Let (cont dt") be the destructuring of the expansion of z.types[y].
13. Let ca be the length of z.conts.
14. Assert: Due to validation, z.conts[a] is defined.
15. Let cont be z.conts]a].

16. Assert: Due to validation, the expansion of dt’ is some func resulttype — resulttype.

136 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

17.
18.
19.
20.
21.
22.
23.
24.
25.

Let (funct’] — t'5) be the destructuring of the expansion of dt’.

Assert: Due to validation, the expansion of dt is some func resulttype — resulttype.
Let (funct] — t5) be the destructuring of the expansion of dt.

Let n be [t5] — [t']].

Assert: Due to validation, there are at least n values on the top of the stack.

Pop the values val™ from the stack.

Let 2’ be the state z[.conts =& contfill(cont, val™, €)].

Push the value (ref.cont ca) to the stack.

Replace z’.conts[a] with €.

z; (ref.null At) (cont.bind x y) < z;trap

z; (ref.cont a) (cont.bind x y) < z;trap if z.conts[a] = €

z;val™ (ref.cont a) (cont.bind x y) < Wwitheone(2', a,€); (ref.cont ca) if z.types[z] ~ cont dt

A dt =~ funct] — ¢35

A z.types[y] ~ cont dt’

A dt' ~ funct'] — t'5

An=[t] = |t

A ca = |z.conts|

A z.conts[a] = cont

A 2" = z[.conts =& contfill(cont, val™, €)]

resume kx hdl*

13.
14.
15.
16.
17.

. Let z be the current state.
. Assert: Due to validation, a value is on the top of the stack.
. Pop the value val’ from the stack.

. If val’ is some ref.null heaptype, then:

a. Trap.

. Assert: Due to validation, val’ is some ref.cont contaddr.
. Let (ref.cont a) be the destructuring of val’.
. Assert: Due to validation, @ < |z.conts|.

. If z.conts[a] is not defined, then:

a. Trap.

. Assert: Due to validation, the expansion of z.types[kz] is some cont typeuse.
. Let (cont dt) be the destructuring of the expansion of z.types[kz].

11.
12.

Let addrhdl* be the runtime effect handler sequence .
For each hdl in hdl*, do:
a. Let addrhdl be the runtime effect handler hdlinst(z, hdl).
b. Append addrhdl to addrhdl”.
Assert: Due to validation, z.conts[a] is defined.
Let cont be z.conts|a].
Assert: Due to validation, |addrhdl™| = |hdl*|.
Assert: Due to validation, the expansion of dt is some func resulttype — resulttype.

Let (func t® — t3) be the destructuring of the expansion of dt.

4.6.

Instructions 137

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

18.
19.
20.
21.
22.
23.

z; val™ (ref.cont a) (resume kz hdl™)

Assert: Due to validation, there are at least n values on the top of the stack.
Pop the values val™ from the stack.

Let cont’ be the continuation instance contfill(cont, val™, €).

Replace z.conts[a] with e.

Let P be the prompt whose effect handler is addrhdl*.

Enter the block (resuming cont’) prompt with the prompt P.

z; (ref.null ht) (resume kz hdl*) < z;trap

z; (ref.cont a) (resume kx hdl*) < z;trap

resume_throw kz az hdl*

— witheont (2, a, €); (prompt{ addrhdl*} (resuming cont’))

if z.conts[a] = €

if z.types[kz] ~ cont dt
A dt =~ funct? — t5

A cont = z.conts|a]

A cont’ = contfill(cont,
A ((addrhdl = hdlinst(:

1. Let z be the current state.
2. Assert: Due to validation, a value is on the top of the stack.
3. Pop the value val’ from the stack.
4. If val’ is some ref.null heaptype, then:
a. Trap.
5. Assert: Due to validation, val’ is some ref.cont contaddr.
6. Let (ref.cont a) be the destructuring of val’.
7. Assert: Due to validation, a < |z.conts|.
8. If z.conts|a] is not defined, then:
a. Trap.
9. Assert: Due to validation, az < |z.tags|.
10. Assert: Due to validation, the expansion of z.tags[az].type is some func resulttype — resulttype.
11. Let (funct™ — resulttype,) be the destructuring of the expansion of z.tags[az].type.
12. Assert: Due to validation, resulttype, = €.
13. Let addrhdl* be the runtime effect handler sequence e.
14. For each hdl in hdl*, do:
a. Let addrhdl be the runtime effect handler hdlinst(z, hdl).
b. Append addrhdl to addrhdl*.
15. Let a’ be the length of z.exns.
16. Assert: Due to validation, z.conts[a] is defined.
17. Let cont be z.conts]a].
18. Assert: Due to validation, |addrhdl*| = |hdl*|.
19. Let cont’ be the continuation instance contfill(cont, (ref.exn @), throw_ref).
20. Assert: Due to validation, there are at least m values on the top of the stack.
21. Pop the values val™ from the stack.
22. Let exn be the exception instance {tag z.tags[az], fields val™}.
138 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

23. Let 2’ be the state z[.exns =& ezxn].

24. Replace z’.conts|a] with e.

25. Let P be the prompt whose effect handler is addrhdl*.

26. Enter the block (resuming cont’) prompt with the prompt P.

z; (ref.null ht) (resume_throw kx az hdl*) < z;trap
z; (ref.cont a) (resume_throw kz az hdl*) < z;trap if z.contsla] -

z;val™ (ref.cont a) (resume_throw kx az hdl™) < witheeni (2, a, €); (prompt{addrhdi®} (resuming cont’)) if z.conts|a] :
A z.tags|az].
Ad = |z.exn
A exn = {tag
Az = z].exn
A ((addrhdl
A cont’ = co

suspend x
1. Let 2z be the current state.
Assert: Due to validation, x < |z.tags|.
Let tagaddr be the tag address z.tags[z].
Assert: Due to validation, tagaddr < |z.tags|.
Assert: Due to validation, the expansion of z.tags[tagaddr].type is some func resulttype — resulttype.
Let (funct? — t3) be the destructuring of the expansion of z.tags[tagaddr].type.
Assert: Due to validation, there are at least n values on the top of the stack.

Pop the values val™ from the stack.

© ® N A » N

. * P . .
Let instr’” be the remaining instruction sequence.

—_
e

Pop all values val’" from the top of the stack.
11. Execute the instruction (suspending tagaddr (suspend val™) (vals val’™ [_] instr'™)).
z;val’™ val™ (suspend x) instr’™ < (suspending tagaddr (suspend val™) (vals val’™ [_] instr'™)) if tagaddr = z.tags|x]
A z.tags[tagaddr].type A
switch x ze
1. Let z be the current state.
. Assert: Due to validation, a value is on the top of the stack.

. Pop the value val” from the stack.

W

. If wal” is some ref.null heaptype, then:

a. Trap.
5. Assert: Due to validation, val” is some ref.cont contaddr.
6. Let (ref.cont a) be the destructuring of val”.
7. Assert: Due to validation, a < |z.conts|.
8. If z.conts|a] is not defined, then:

a. Trap.

9. Assert: Due to validation, ze < |z.tags|.

10. Assert: Due to validation, the expansion of z.types|x] is some cont typeuse.

4.6. Instructions 139

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

11. Let (cont dt) be the destructuring of the expansion of z.types[z].

12. Assert: Due to validation, z.conts[a] is defined.

13. Let cont be z.conts]a].

14. Let tagaddr be the tag address z.tags|ze].

15. Assert: Due to validation, the expansion of dt is some func resulttype — resulttype.
16. Let (func resulttype, — te}) be the destructuring of the expansion of dt.

17. Assert: Due to validation,

resulttypeg| > 1.

18. Let t] valtype, be resulttype,.

19. Assert: Due to validation, valtype, is some ref null® heaptype.

20. Let (ref NULL? dt;) be the destructuring of valtype,.

21. Assert: Due to validation, N ULL; is defined.

22. Assert: Due to validation, the expansion of dt; is some cont typeuse.

23. Let (cont dt';) be the destructuring of the expansion of dt;.

24. Let n be the length of ¢7.

25. Assert: Due to validation, the expansion of dt'; is some func resulttype — resulttype.
26. Assert: Due to validation, there are at least n values on the top of the stack.

27. Pop the values val™ from the stack.

28. Let cont’ be the continuation instance contfill(cont, val™, €).

29. Let instr’" be the remaining instruction sequence.

30. Pop all values val’™ from the top of the stack.

31. Replace z.conts|a] with e.

32. Execute the instruction (suspending tagaddr (switch cont’) (vals val’™ [_] instr'™)).

z; (ref.null ht) (switch ze) < z;trap

z; (ref.cont a) (switch z ze) < z;trap

z;val’™ val™ (ref.cont a) (switch = ze) instr’™ < witheont(2, a, €); (suspending tagaddr (switch cont’) (vals val’™ [_] instr’

4.6.3 Blocks

The following auxiliary rules define the semantics of executing an instruction sequence that forms a block.

Entering instr* with label L and values val*
1. Push L to the stack.
2. Push the values val* to the stack.

3. Jump to the start of the instruction sequence instr*.

140 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

No formal reduction rule is needed for entering an instruction sequence, because the label L is embedded in
the administrative instruction that structured control instructions reduce to directly.

Exiting instr* with label L

When the end of a block is reached without a jump, exception, or trap aborting it, then the following steps are
performed.

1. Pop all values val* from the top of the stack.

2. Assert: due to validation, the label L is now on the top of the stack.

3. Pop the label from the stack.

4. Push val* back to the stack.

5. Jump to the position after the end of the structured control instruction associated with the label L.

(label, {instr*} val*) < wval*

Note

This semantics also applies to the instruction sequence contained in a loop instruction. Therefore, execution of
a loop falls off the end, unless a backwards branch is performed explicitly.

4.6.4 Exception Handling

The following auxiliary rules define the semantics of entering and exiting try_table blocks.

Entering instr* with label L and exception handler H
1. Push H to the stack.
2. Push L onto the stack.

3. Jump to the start of the instruction sequence instr*.

Note

No formal reduction rule is needed for entering an exception handler because it is an administrative instruction
that the try_table instruction reduces to directly.

Exiting an exception handler

When the end of a try_table block is reached without a jump, exception, or trap, then the following steps are
performed.

1. Let m be the number of values on the top of the stack.

Pop the values val™ from the stack.

Assert: due to validation, a handler and a label are now on the top of the stack.
Pop the label from the stack.

Pop the handler H from the stack.

Push val™ back to the stack.

T o B

Jump to the position after the end of the administrative instruction associated with the handler H.

4.6. Instructions 141

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(handler,, {catch™} val®) < wval*

4.6.5 Effect Handling
TODO(yl): describe these admininstrs

prompt

1. Pop all values val* from the top of the stack.

2. Assert: Due to validation, the first non-value entry of the stack is a prompt.

3. Pop the prompt P from the stack.

4. Push the values val* to the stack.

(prompt{addrhdl*} val*) <~ wval*

suspending tagaddr resumption cont

1. Let z be the current state.

2. If the first non-value entry of the stack is a label, then:

a.
b.
c.
d.
e.

f.
g.

Let L be the topmost label.

Let n be the arity of L

Pop the label L from the stack.

Let instr’” be the remaining instruction sequence.

Pop all values val’" from the top of the stack.

Let cont’ be the continuation instance (frame val’™ (label, { instr* }) cont instr’™).

Execute the instruction (suspending tagaddr resumption cont’).

3. Else if the first non-value entry of the stack is a frame, then:

4. Else:

a.
b.
c.
d.

c.

lag

g.

a.

Let frame be the topmost frame.

Let n be the arity of frame

Pop the frame F' from the stack.

Let instr’™ be the remaining instruction sequence.

Pop all values val’" from the top of the stack.

Let cont’ be the continuation instance (frame val’* (frame,, { frame }) cont instr’™).

Execute the instruction (suspending tagaddr resumption cont’).

If the first non-value entry of the stack is a handler, then:
1) Let H be the topmost handler.
2) Let n be the arity of H
3) Let catch™ be the catch handler of H
4) Pop the handler H from the stack.
5) Let instr’” be the remaining instruction sequence.

6) Pop all values val’™ from the top of the stack.

7) Let cont’ be the continuation instance (frame val’* (handler, { catch™ }) cont instr’™).

142

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

8) Execute the instruction (suspending tagaddr resumption cont’).
b. Else:
1) Assert: Due to validation, the first non-value entry of the stack is a prompt.
2) Let P be the topmost prompt.
3) Let addrhdl* be the effect handler of P
4) If tagaddr < |z.tags|, then:
a) If resumption is some suspend val®, then:
1. Let (suspend wval™) be the destructuring of resumption.
2. Let a be the length of z.conts.
3. If gethandlersuspend(addrhdl*, tagaddr) is not defined, then:
a. Let (suspend val™) be the destructuring of resumption.
b. Pop the prompt P from the stack.
c. Let instr’™ be the remaining instruction sequence.
d. Pop all values val’" from the top of the stack.
e. Let cont’ be the continuation instance (frame val’™ (prompt { addrhdl* }) cont instr'™).
f. Execute the instruction (suspending tagaddr (suspend val™) cont’).
4. Else:
a. Let! be gethandlersuspend(addrhdl™, tagaddr).

b. Assert: Due to validation, the expansion of z.tags[tagaddr].type is some
func resulttype — resulttype.

c. Let (funct? — t3) be the destructuring of the expansion of z.tags[tagaddr].type.
d. Pop the prompt P from the stack.
e. Append cont to z.conts.
f. Push the values val™ to the stack.
g. Push the value (ref.cont a) to the stack.
h. Execute the instruction (br [).
b) Else:
1. If gethandlerswitch(addrhdl*, tagaddr), then:
a. If resumption is some switch continst, then:
1) Let (switch continst) be the destructuring of resumption.
2) Let a be the length of z.conts.
3) Let cont’ be the continuation instance contfill(continst, (ref.cont a), €).
4) Pop the prompt P from the stack.
5) Append cont to z.conts.
6) Let P be the prompt whose effect handler is addrhdl*.
7) Enter the block (resuming cont’) prompt with the prompt P.
2. Else if resumption is some switch continst, then:
a. Let (switch continst) be the destructuring of resumption.

b. Pop the prompt P from the stack.

4.6. Instructions 143

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

c. Let instr’™ be the remaining instruction sequence.
d. Pop all values val’* from the top of the stack.
e. Let cont’ be the continuation instance (frame val’* (prompt { addrhdl* }) cont instr’™).
f. Execute the instruction (suspending tagaddr (switch continst) cont’).
3. Do nothing.
4. If gethandlersuspend(addrhdl®, tagaddr) is not defined, then:
a. Do nothing.
5. Else:
a. Do nothing.
6. Do nothing.
5) Else if gethandlersuspend(addrhdl™, tagaddr) is not defined, then:

a) If resumption is some suspend val®, then:

—

. Let (suspend val™) be the destructuring of resumption.
Pop the prompt P from the stack.

Let instr’™ be the remaining instruction sequence.

Pop all values val’" from the top of the stack.

Let cont’ be the continuation instance (frame val’™ (prompt { addrhdl* }) cont instr'™).

A

Execute the instruction (suspending tagaddr (suspend val®) cont’).
b) Else if gethandlerswitch(addrhdl™, tagaddr), then:

1. Assert: Due to validation, resumption is some switch continst.

2. Let (switch continst) be the destructuring of resumption.
3. Let a be the length of z.conts.
4. Let cont’ be the continuation instance contfill(continst, (ref.cont a), €).
5. Pop the prompt P from the stack.
6. Append cont to z.conts.
7. Let P be the prompt whose effect handler is addrhdl™*.
8. Enter the block (resuming cont’) prompt with the prompt P.
c) Else:

1. Assert: Due to validation, resumption is some switch continst.
Let (switch continst) be the destructuring of resumption.

Pop the prompt P from the stack.

Let instr’™ be the remaining instruction sequence.

Pop all values val’" from the top of the stack.

Let cont’ be the continuation instance (frame val’™ (prompt { addrhdl* }) cont instr'™).

A T o

Execute the instruction (suspending tagaddr (switch continst) cont’).
6) Else:
a) If gethandlerswitch(addrhdl®, tagaddr), then:
1. Assert: Due to validation, resumption is some switch continst.

2. Let (switch continst) be the destructuring of resumption.

144 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Let a be the length of z.conts.

Let cont’ be the continuation instance contfill(continst, (ref.cont a), €).
Pop the prompt P from the stack.

Append cont to z.conts.

. Let P be the prompt whose effect handler is addrhdl*.

© N o v oA W

. Enter the block (resuming cont’) prompt with the prompt P.
b) Else:

1. Assert: Due to validation, resumption is some switch continst.
Let (switch continst) be the destructuring of resumption.
Pop the prompt P from the stack.
. Let instr’” be the remaining instruction sequence.

. Pop all values val’" from the top of the stack.

- R N N VC R

. Let cont’ be the continuation instance (frame val’" (prompt { addrhdl*™ }) cont instr'™).
7. Execute the instruction (suspending tagaddr (switch continst) cont’).

z;val’™ (label, {instr*} (suspending tagaddr resumption cont)) instr'* < z;(suspending tagaddr resumption c

z;val’™ (frame, {frame} (suspending tagaddr resumption cont)) instr'* < z;(suspending tagaddr resumption c
z;val’”™ (handler, {catch*} (suspending tagaddr resumption cont)) instr'™ < z;(suspending tagaddr resumption c

z; (prompt{ addrhdl*} (suspending tagaddr (suspend val™) cont)) < z[.conts =@ cont];val™ (ref.cont a) (

z;val’™ (prompt{addrhdl*} (suspending tagaddr (suspend val*) cont)) instr'* < z;(suspending tagaddr (suspend val*
z; (prompt{addrhdl*} (suspending tagaddr (switch continst) cont)) < z[.conts =& cont]; (prompt{addrhdl’

z;val”™ (prompt{addrhdl*} (suspending tagaddr (switch continst) cont)) instr'* < z;(suspending tagaddr (switch contir

resuming continst
1. If continst is some vals val™ [_] instr*, then:
a. Let (vals val™ [_] instr*) be the destructuring of continst.
b. Push the values val™ to the stack.
c. Execute the sequence instr*.
2. If continst is some frame val® gframe continst instr*, then:
a. Let (frame val’™ gframe, cont instr’™) be the destructuring of continst.
b. If gframe, is some label,, {instr*}, then:
1) Let (label, { instr* }) be the destructuring of gframe,.
2) Push the values val’™ to the stack.
3) Prepend instr’* to the remaining instruction sequence.
4) Let L be the label whose arity is n and whose continuation is the start of the block.
5) Enter the block (resuming cont) with the label L.
c. If gframe is some frame,, {frame}, then:

1) Let (frame, { frame }) be the destructuring of gframe.

4.6. Instructions 145

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2) Push the values val’™ to the stack.

3) Prepend instr’” to the remaining instruction sequence.

4) Let frame be the frame frame whose arity is n.

5) Enter the block (resuming cont) frame with the frame frame.

d. If gframe is some handler,, { catch™}, then:

1) Let (handler, { catch™ }) be the destructuring of gframe,,.

2) Push the values val’* to the stack.

3) Prepend instr’™ to the remaining instruction sequence.

4) Let H be the handler whose arity is n and whose catch handler is catch™.

5) Enter the block (resuming cont) handler with the handler H.

e. If gframe is some prompt {addrhdl*}, then:

1) Let (prompt { addrhdl* }) be the destructuring of gframe,.

2) Push the values val’™ to the stack.

3) Prepend instr’™ to the remaining instruction sequence.

4) Let P be the prompt whose effect handler is addrhdl*.

5) Enter the block (resuming cont) prompt with the prompt P.

(resuming (vals val™® [_] instr™)

(resuming (frame val’™ (label, {instr*}) cont instr'™

*

/
1%

)
)
(resuming (frame val’* (frame,, {frame}) cont instr'™))

(resuming (frame val’* (handler,, {catch*}) cont instr'™))

))

(resuming (frame val’™ (prompt {addrhdl*}) cont instr

4.6.6 Function Calls

—

el d

val® instr*

val’™ (label, {instr*} (resuming cont)) instr'*

val’”™ (frame, {frame} (resuming cont)) instr'™

val’™ (handler, {catch*} (resuming cont)) instr’™
(

val’™ (prompt{addrhdl*} (resuming cont)) instr’™

The following auxiliary rules define the semantics of invoking a function instance through one of the call instruc-

tions and returning from it.
Invocation of function reference (ref.func a)
1. Assert: due to validation, S.funcs[a] exists.
Let f be the function instance, S.funcs[a].
Let func x local* instr™ be the function f.code.

Pop the values val™ from the stack.

Push the activation of f with arity m to the stack.

A e T T o

_.
e

Let func [t}7] — [t5'] be the composite type expand(f.type).

Assert: due to validation, n values are on the top of the stack.

Let F be the frame {module F.module, locals val™ (defaulty)*}.

Let L be the label whose arity is m and whose continuation is the end of the function.

Enter the instruction sequence nstr* with label L and no values.

zyval™ (ref func a) (call_ref y) — (frame,, {f} (label,,{e} instr™))

if z.funcs[a] = fi

A fi.type =~ func t} — t3
A fi.code = func z (local t)* (instr™)
A f = {locals val™ (defaults)*, module fi.module}

146

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

For non-defaultable types, the respective local is left uninitialized by these rules.

Returning from a function

When the end of a function is reached without a jump (including through return), or an exception or trap aborting
it, then the following steps are performed.

1. Let F' be the current frame.

Let n be the arity of the activation of F'.

Assert: due to validation, there are n values on the top of the stack.
Pop the results val™ from the stack.

Assert: due to validation, the frame F' is now on the top of the stack.
Pop the frame from the stack.

Push val™ back to the stack.

® NSk » N

Jump to the instruction after the original call.

(frame, {f} val™) < wal™

Host Functions

Invoking a host function has non-deterministic behavior. It may either terminate with a trap, an exception, or return
regularly. However, in the latter case, it must consume and produce the right number and types of WebAssembly
values on the stack, according to its function type.

A host function may also modify the store. However, all store modifications must result in an extension of the
original store, i.e., they must only modify mutable contents and must not have instances removed. Furthermore,
the resulting store must be valid, i.e., all data and code in it is well-typed.

S;val™ (invoke a) < S’; result
(if S.funcs[a] = {type deftype, hostfunc hf}
A deftype = func [t7] — [t5"]
A (8" result) € hf (S5 val™))

S;val™ (invoke a) < S5 wval™ (invoke a)
(if S.funcs[a] = {type deftype, hostfunc hf}
A deftype = func [t]] — [t5"]
A L € hf(S;val™))

Here, hf (S; val™) denotes the implementation-defined execution of host function Af in current store S with argu-
ments val™. It yields a set of possible outcomes, where each element is either a pair of a modified store S’ and
a result or the special value L indicating divergence. A host function is non-deterministic if there is at least one
argument for which the set of outcomes is not singular.

For a WebAssembly implementation to be sound in the presence of host functions, every host function instance
must be valid, which means that it adheres to suitable pre- and post-conditions: under a valid store .S, and given
arguments va/™ matching the ascribed parameter types t7, executing the host function must yield a non-empty set
of possible outcomes each of which is either divergence or consists of a valid store S’ that is an extension of .S and
a result matching the ascribed return types t5°. All these notions are made precise in the Appendix.

Note

A host function can call back into WebAssembly by invoking a function exported from a module. However, the
effects of any such call are subsumed by the non-deterministic behavior allowed for the host function.

4.6. Instructions 147

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.6.7 Variable Instructions

local.get x
1. Let z be the current state.
2. Assert: Due to validation, z.locals[z] is defined.
3. Let val be z.locals|x].

4. Push the value val to the stack.

z; (local.get) < wal if z.locals[z] = val

local.set
1. Let z be the current state.
2. Assert: Due to validation, a value is on the top of the stack.
3. Pop the value val from the stack.

4. Replace z.locals[z] with val.

z;val (local.set) < z[.locals[z] = val]; e

local.tee x
1. Assert: Due to validation, a value is on the top of the stack.
2. Pop the value val from the stack.
3. Push the value val to the stack.
4. Push the value val to the stack.

5. Execute the instruction (local.set x).

val (local.tee) < wal val (local.set x)

global.get x
1. Let z be the current state.
2. Let val be the value z.globals[z].value.

3. Push the value val to the stack.

z; (global.get x) — wal if z.globals[z].value = val

global.set x
1. Let z be the current state.
2. Assert: Due to validation, a value is on the top of the stack.
3. Pop the value val from the stack.
4. Replace z.globals[x].value with val.

z; val (global.set £) < z[.globals[x].value = val]; €

148 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.6.8 Table Instructions

table.get x
1. Let z be the current state.
2. Assert: Due to validation, a number value is on the top of the stack.
3. Pop the value (at.const ¢) from the stack.
4. If i > |z.tables[z].elem|, then:
a. Trap.
5. Push the value z.tables[z].elem[i] to the stack.

z; (at.const i) (table.get) < trap if i > |z.tables[z].elem|
z; (at.const i) (table.get) < z.tables[z].elem[i] if¢ < |z.tables[z].elem|

table.set x
1. Let 2z be the current state.
Assert: Due to validation, a reference value is on the top of the stack.
Pop the value ref from the stack.
Assert: Due to validation, a number value is on the top of the stack.

Pop the value (at.const) from the stack.

A I

If i > |z.tables[x].elem|, then:
a. Trap.
7. Replace z.tables[z].refs[i] with ref.
z; (at.const i) ref (table.setz) < z;trap if i > |z.tables[x].elem|
z; (at.const i) ref (table.setz) < z[.tables[z].elem[i] = ref];e ifi < |z.tables[x].elem|
table.size x
1. Let z be the current state.
Let (at lim rt) be the destructuring of z.tables[x].type.

Let n be the length of z.tables[z].elem.

i

Push the value (at.const n) to the stack.

z; (tablessize) < (at.constn) if |z.tables[z].elem| = n
A z.tables[z].type = at lim rt

table.grow x

1. Let 2z be the current state.
Assert: Due to validation, a number value is on the top of the stack.
Pop the value (at.const n) from the stack.
Assert: Due to validation, a reference value is on the top of the stack.
Pop the value ref from the stack.

Either:

AN

a. Let ti be the table instance growtable(z.tables[x], n, ref).
b. Push the value (at.const |z.tables[z].elem]|) to the stack.

c. Replace z.tables[z] with ¢i.

4.6. Instructions 149

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7. Or:
a. Push the value (at.const signcdlfail (—1)) to the stack.

z;ref (at.constn) (table.grow x) < z[.tables[x] = ¢i]; (at.const |z.tables[z].elem|)
if ti = growtable(z.tables[z], n, ref)
z; ref (at.constn) (table.grow) <+ z;(at.const signod‘_ail (-1))

Note

The table.grow instruction is non-deterministic. It may either succeed, returning the old table size sz, or fail,
returning —1. Failure must occur if the referenced table instance has a maximum size defined that would be
exceeded. However, failure can occur in other cases as well. In practice, the choice depends on the resources
available to the embedder.

table.fill z
1. Let z be the current state.
Assert: Due to validation, a number value is on the top of the stack.
Pop the value (at.const n) from the stack.
Assert: Due to validation, a value is on the top of the stack.
Pop the value val from the stack.
Assert: Due to validation, a value of number type at is on the top of the stack.

Pop the value (numtype,.const i) from the stack.

® N A »N

If i +n > |z.tables[z].elem|, then:
a. Trap.
9. If n = 0, then:
a. Do nothing.
10. Else:
a. Push the value (at.const) to the stack.
b. Push the value val to the stack.
c. Execute the instruction (table.set z).
d. Push the value (at.const i + 1) to the stack.
e. Push the value val to the stack.
f. Push the value (at.const n — 1) to the stack.

g. Execute the instruction (table.fill z).

z; (at.const i) val (at.const n) (tablefillz) < trap ifi+n > |z.tables[x].elem|
z; (at.const i) val (at.const m) (tablefillz) < e otherwise, if n = 0
z; (at.const i) val (at.const n) (table.fill z) <

(at.const) val (table.set x) otherwise

(at.const i+ 1) val (at.const n — 1) (table.fill x)

table.copy x1 x5
1. Let z be the current state.
2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at.const n) from the stack.

150 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

® N s

10.

Assert: Due to validation, a number value is on the top of the stack.
Pop the value (ato.const iz) from the stack.
Assert: Due to validation, a number value is on the top of the stack.
Pop the value (atq.const 41) from the stack.
If i1 + n > |z.tables[x;].elem| or is + n > |z.tables[xs].elem|, then:
a. Trap.
If n = 0, then:
a. Do nothing.
Else:
a. If i; <9, then:
1) Push the value (at;.const i) to the stack.
2) Push the value (ats.const 45) to the stack.
3) Execute the instruction (table.get xs).
4) Execute the instruction (table.set x7).
5) Push the value (at;.const 41 + 1) to the stack.
6) Push the value (ats.const i3 + 1) to the stack.
b. Else:
1) Push the value (at;.const i; +n — 1) to the stack.
2) Push the value (ats.const io +n — 1) to the stack.
3) Execute the instruction (table.get xs).
4) Execute the instruction (table.set x7).
5) Push the value (at;.const i7) to the stack.
6) Push the value (ats.const i3) to the stack.
c. Push the value (at.const n — 1) to the stack.
d. Execute the instruction (table.copy z1 x3).

z; (aty.const 1) (atg.const ig) (at’.const n) (table.copy 1 x3) < trap
if i1 +n > |z.tables[z1].elem| V iz + n > |z.tables[xz].elem]|
z; (aty.const i1) (atg.const iz) (at’.const n) (table.copy x y) < € otherwise, if n = 0
z; (aty.const i1) (atg.const is) (at’.const n) (table.copy z y) <
(aty.const i1) (atg.const is) (table.get y) (table.set x) otherwise, if i1 < iy
(aty.const iy + 1) (ata.const ig + 1) (at’.const n — 1) (table.copy z)
z; (aty.const 1) (ats.const ig) (at’.const n) (table.copy zy) <
(aty.const iy +n — 1) (atg.const io +n — 1) (table.get y) (table.set z) otherwise
(aty.const i1) (aty.const is) (at’.const n — 1) (table.copy x y)

table.init x y

1.

Let z be the current state.

. Assert: Due to validation, a value of number type i32 is on the top of the stack.
. Pop the value (i32.const n) from the stack.

2
3
4.
5
6

Assert: Due to validation, a value of number type i32 is on the top of the stack.

. Pop the value (i32.const j) from the stack.

. Assert: Due to validation, a number value is on the top of the stack.

4.6.

Instructions 151

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7. Pop the value (at.const ¢) from the stack.

8. If i + n > |z.tables[z].elem| or j + n > |z.elems[y].elem|, then:

a.

Trap.

9. If n = 0, then:

a.
10. Else:
a.

b.

=0

Do nothing.

Assert: Due to validation, j < |z.elems[y].elem|.

Push the value (at.const) to the stack.

. Push the value z.elems[y].elem[j] to the stack.
. Execute the instruction (table.set z).

. Push the value (at.const ¢ + 1) to the stack.

. Push the value (i32.const j + 1) to the stack.

. Push the value (i32.const n — 1) to the stack.

. Execute the instruction (table.init = y).

z; (at.const) (i32.const j) (i32.const n) (table.initzy) < trap
ifi + n > |z.tables[z].elem| V j + n > |z.elems[y].elem|
; (at.const 1) (i32.const j) (i32.const n) (table.initz y) <
; (at.const 7) (i32.const j) (i32.const n) (table.initzy) <
(at.const i) z.elems[y].elem[j] (table.set) otherwise
(at.const i+ 1) (i32.const j + 1) (i32.const n — 1) (table.init x y)

z € otherwise, if n = 0
z

elem.drop x

1. Let z be the current state.

2. Replace z.elems|z].refs with e.

z; (elem.dropz) < z[.elems[z].elem = €]; €

4.6.9 Memory Instructions

Note

The alignment memarg.align in load and store instructions does not affect the semantics. It is a hint that the
offset ea at which the memory is accessed is intended to satisfy the property ea mod 27¢"e79-2lien — (A
WebAssembly implementation can use this hint to optimize for the intended use. Unaligned access violating
that property is still allowed and must succeed regardless of the annotation. However, it may be substantially
slower on some hardware.

nt.loadloadop? T ao

1. Let z be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at.const ¢) from the stack.

4. If loadop? is not defined, then:

a.

If i + ao.offset + |nt|/8 > |z.mems[z].bytes|, then:
1) Trap.

152

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

b. Let ¢ be the result for which bytes, ,(¢) = z.mems[z].bytes[i + ao.offset : |nt|/8].
c. Push the value (nt.const ¢) to the stack.
5. Else:
a. Assert: Due to validation, nt is iv.
b. Let loadop, be loadop?.
c. Let n_sz be the destructuring of loadop,.

d. If i + ao.offset + n/8 > |z.mems[z].bytes|, then:

1) Trap.
e. Let ¢ be the result for which bytes,, (¢) = z.mems[z].bytes[i + ao.offset : n/8].
f. Push the value (nt.const extend,’|,,; (c)) to the stack.

z; (at.const i) (nt.load x ao) < trap
if i + ao.offset 4 |nt|/8 > |z.mems[z].bytes|
z; (at.const i) (nt.load x ao) < (mt.constc)
if bytes,,, (¢) = z.mems|x].bytes[i + ao.offset : |nt|/8]
z; (at.const i) (iv.loadn_sz x ao) < trap
if i + ao.offset + n/8 > |z.mems[z].bytes]|
z; (at.const 7) (iv.loadn_sz ¥ ao) < (in.const extend,,’|(c))
if bytes;,, (c) = z.mems[z].bytes[i + ao.offset : n/8]

vi2g.load M xK_sz x ao
1. Let z be the current state.
2. Assert: Due to validation, a number value is on the top of the stack.
3. Pop the value (at.const ¢) from the stack.
4. If i + ao.offset + M - K/8 > |z.mems[z].bytes|, then:
a. Trap.
5. Let 5% be the result for which (bytes,;(j%) = z.mems|x].bytes[i + ao.offset + k - M/8 : M /8])k<K.
6. Let iv be the result for which N = M - 2.
7. Letcbe lanesijleK(extendffI’N(j)K).
8. Push the value (vi2s.const ¢) to the stack.

z; (at.const i) (vizs.load MxK _sx x ao) < trap if i + ao.offset + M - K/8 > |z.mems|x].bytes]|
z; (at.const i) (vizs.load MxK _sz x ao) < (vizs.const c)

if (bytes;,;(§) = z.mems[z].bytes[i + ao.offset + k- M /8 : M/8])F<K

ANe= I;Ln()s;\r:LXK((>xt(>ndﬁ7N(j)K) AN=M-2

v128.loadN_splat = ao
1. Let z be the current state.
2. Assert: Due to validation, a number value is on the top of the stack.
3. Pop the value (at.const ¢) from the stack.
4. If i + ao.offset + N/8 > |z.mems[z].bytes|, then:
a. Trap.
Let M be 128/N.

e

6. Let iv be the result for which |in| = N.
7. Let j be the result for which bytes; 5 (j) = z.mems[z].bytes[i + ao.offset : N/8§].

4.6. Instructions 153

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

8. Let ¢ be lanesy,, (5M).
9. Push the value (vi2s.const ¢) to the stack.

z; (at.const i) (vizs.loadN_splat ¢ ao) < trap if i + ao.offset + N/8 > |z.mems[z].bytes|
z; (at.const i) (vizs.loadN_splat ¢ ao) < (vi2s.const c)
if bytes;y(j) = z.mems[x].bytes[i + ao.offset : N/8]
AN = |iv]
AM =128/N
A ¢ = lanesyt (M)

v128.load N_zero x ao

1. Let z be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at.const ¢) from the stack.

4. If i + ao.offset + N/8 > |z.mems[z].bytes|, then:

a. Trap.

5. Let j be the result for which bytes;y(j) = z.mems[z].bytes[i + ao.offset : N/8].
6. Let c be extendy 195(7)-

7. Push the value (vi2s.const ¢) to the stack.

z; (at.const i) (vizs.load N_zero x ao) < trap if i + ao.offset + N/8 > |z.mems|z].bytes|
z; (at.const i) (vi2s.load N_zero x ao) < (vi2s.const c)

if bytes;y (j) = z.mems|x].bytes[i + ao.offset : N/§]
A ¢ = extendy 125(J)
vi2g.loadN_lane x ao j

1. Let z be the current state.

2. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

3. Pop the value (vi2s.const ¢1) from the stack.

4. Assert: Due to validation, a number value is on the top of the stack.

5. Pop the value (at.const ¢) from the stack.

6. If i + ao.offset + N/8 > |z.mems[z].bytes|, then:

a. Trap.

7. Let M be |vi2s|/N.

8. Let iv be the result for which |iv| = N.

9. Let k be the result for which bytes; y (k) = z.mems[z].bytes[i + ao.offset : N/8].
10. Let ¢ be lanes; L, (lanesivar (c1)[[j] = &]).
11. Push the value (vi2s.const ¢) to the stack.

z; (at.const i) (vizs.const ¢1) (vizs.loadN_lane z a0 j) < trap if i + ao.offset + N/8 > |z.mems[z].bytes|
z; (at.const 4) (vizs.const ¢1) (vizs.loadN_lane z ao j) < (vizs.const c¢)
if bytes;y (k) = z.mems[x].bytes[i + ao.offset : N/§]
AN = |iN|
A M = |vi2s8|/N
A ¢ = lanesyt (lanesives (c1) [[1] =])

154 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

nt.storestoreop? T ao
1. Let z be the current state.
2. Assert: Due to validation, a number value is on the top of the stack.
3. Pop the value (nt’.const ¢) from the stack.
4. Assert: Due to validation, a value is on the top of the stack.
5. Pop the value (at.const ¢) from the stack.
6. Assert: Due to validation, nt = nt’.
7. If storeop” is not defined, then:
a. If i + ao.offset + |nt’|/8 > |z.mems|x].bytes|, then:
1) Trap.
b. Let b* be bytes,,;/ (¢).
c. Replace z.mems|x].bytes[i + ao.offset : |nt’|/8] with b*.
8. Else:
a. Assert: Due to validation, nt’ is iv.
b. Let n be storeop”.
c. If i + ao.offset + n/8 > |z.mems|z].bytes|, then:
1) Trap.
d. Letd” be bytes;, (wrap|,/ »(c)).

o

. Replace z.mems|x].bytes[i + ao.offset : n/8] with b*.

z; (at.const i) (nt.const ¢) (nt.store x ao) < z;trap
if i + ao.offset + |nt|/8 > |z.mems[z].bytes|
z; (at.const i) (nt.const ¢) (nt.store x a0) < z[.mems[z].bytes[i + ao.offset : |nt|/8] = b*]; €
if b* = bytes,;(c)
z; (at.const i) (iv.const ¢) (iN.storen z ao) <> z;trap
if i + ao.offset + n/8 > |z.mems[z].bytes|
z; (at.const i) (in.const ¢) (iN.storen x ao) < z[.mems[z].bytes[i + ao.offset : n/8] = b*]; e
if b* = bytes;, (wrappy | ,(c))
z;trap if i + ao.offset + |v12g],
z[.mems|z].bytes[i + ao.offset : |vi28|/8] = b*];e if b* = bytes, 05(c)

z; (at.const i) (vi2s.const ¢) (vi2s.store x ao)
z; (at.const 7) (vi2s.const ¢) (vi2s.store x ao)

USRS

vi2g.storeN_lane x ao j
1. Let z be the current state.
Assert: Due to validation, a value of vector type v128 is on the top of the stack.
Pop the value (vi2s.const ¢) from the stack.
Assert: Due to validation, a number value is on the top of the stack.

Pop the value (at.const ¢) from the stack.

AN i

If ¢ + ao.offset + N > |z.mems|x].bytes|, then:
a. Trap.

7. Let M be 128/N.

8. Let inv be the result for which |in] = N.

9. Assert: Due to validation, j < [lanespyyar(c)]-

10. Let b* be bytes; y (lanesinyaz (¢)[4])-

4.6. Instructions 155

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

11.

Replace z.mems[z].bytes[i + ao.offset : N /8] with b*.

z; (at.const i) (vi2s.const ¢) (vizs.storeN_lane x ao j) < z;trap
z; (at.const 7) (vi2s.const ¢) (vizs.storeN_lane z ao j) <+ z[.mems[z].bytes[i + ao.offset : N/8] = b*]; e

memory.size T

1.
2.
3.
4.

Let z be the current state.

Let (at lim page) be the destructuring of z.mems|z].type.
Let n - 64 Ki be the length of z.mems|x].bytes.

Push the value (at.const n) to the stack.

z; (memory.sizex) < (at.constn) ifn-64Ki=|z.mems[z].bytes|
A z.mems[z].type = at lim page

memory.grow x

1.

Let z be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.
3.
4. Either:

Pop the value (at.const n) from the stack.

a. Let mi be the memory instance growmem(z.mems[z],n).
b. Push the value (at.const |z.mems|x].bytes| /(64 Ki)) to the stack.
c. Replace z.mems|x] with m.

Or:

a. Push the value (at.const signcdl_ail (—1)) to the stack.
z; (at.const n) (memory.grow &) < z[.mems[z] = mi]; (at.const |z.mems|x].bytes|/64 Ki)

if mi = growmem(z.mems[z], n)
z; (at.const n) (memory.grow) < z; (at.const signed@l(—l))

Note

The memory.grow instruction is non-deterministic. It may either succeed, returning the old memory size sz,
or fail, returning —1. Failure must occur if the referenced memory instance has a maximum size defined that
would be exceeded. However, failure can occur in other cases as well. In practice, the choice depends on the
resources available to the embedder.

memory.fill z

if i 4+ ao.offset 4
if N = |iv|

AM =128/N

A b* = bytes;y (l:

1. Let 2 be the current state.
2. Assert: Due to validation, a number value is on the top of the stack.
3. Pop the value (at.const n) from the stack.
4. Assert: Due to validation, a value is on the top of the stack.
5. Pop the value val from the stack.
6. Assert: Due to validation, a value of number type at is on the top of the stack.
7. Pop the value (numtype,.const i) from the stack.
156 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

8. If i + n > |z.mems[z].bytes|, then:
a. Trap.

9. If n = 0, then:
a. Do nothing.

10. Else:

a. Push the value (at.const 7) to the stack.
b. Push the value val to the stack.
c. Execute the instruction (i32.store8 x).
d. Push the value (at.const i + 1) to the stack.
e. Push the value val to the stack.
f. Push the value (at.const n — 1) to the stack.

g. Execute the instruction (memory.fill x).

z; (at.const i) val (at.const n) (memory fill z) < trap ifi+4 n > |z.mems|z].bytes|
z; (at.const i) val (at.const n) (memory fill z) — € otherwise, if n = 0
z; (at.const i) val (at.const n) (memory fill z) <

(at.const 7) val (i32.store8 x) otherwise

(at.const i + 1) val (at.const n — 1) (memory.fill x)

memory.copy Ty To
1. Let z be the current state.
2. Assert: Due to validation, a number value is on the top of the stack.
3. Pop the value (at.const n) from the stack.
4. Assert: Due to validation, a number value is on the top of the stack.
5. Pop the value (ats.const i9) from the stack.
6. Assert: Due to validation, a number value is on the top of the stack.
7. Pop the value (at;.const i1) from the stack.
8. If iy +n > |z.mems|x1].bytes| or ix + n > |z.mems[z2].bytes|, then:
a. Trap.
9. If n = 0, then:
a. Do nothing.
10. Else:
a. If i1 < iy, then:
1) Push the value (at;.const i) to the stack.
2) Push the value (ats.const is) to the stack.
3) Execute the instruction (i32.load8_u x2).
4) Execute the instruction (i32.store8 x1).
5) Push the value (at;.const i + 1) to the stack.
6) Push the value (ats.const ig + 1) to the stack.
b. Else:
1) Push the value (at;y.const i1 +n — 1) to the stack.

2) Push the value (ats.const ia +n — 1) to the stack.

4.6. Instructions 157

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3) Execute the instruction (i32.load8_u x2).

4) Execute the instruction (i32.store8 x1).

5) Push the value (at;.const %) to the stack.

6) Push the value (ats.const is) to the stack.
c. Push the value (at.const n — 1) to the stack.
d. Execute the instruction (memory.copy 1 Z3).

z; (atq.const i1) (atg.const ig) (at’.const n) (memory.copy 21 x2) <> trap
if i1 +n > |z.mems[z1].bytes| V i3 + n > |z.mems|xzz].bytes|
; (aty.const iq) (ata.const iz) (at’.const n) (memory.copy x1 x2) < € otherwise, if n = 0
; (atq.const i) (ate.const ig) (at’.const n) (memory.copy z1 x2) <
aty.const i1) (atg.const ig) (i32.l0ad8_u xz9) (i32.store8 x1) otherwise, if i1 < i

z; (
z; (
(
(aty.const i; + 1) (ata.const iy + 1) (at’.const n — 1) (memory.copy x1 x2)
(
(

z; (aty.const i1) (ate.const ig) (at’.const n) (memory.copy z1 x2) <
aty.const iy +n — 1) (atg.constig +n — 1) (i32.l0ad8_u xq) (i32.store8 x1) otherwise
aty.const i1) (ats.const ig) (at’.const n — 1) (memory.copy x1 2)

memory.init x y

1. Let z be the current state.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const n) from the stack.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const j) from the stack.
Assert: Due to validation, a number value is on the top of the stack.

Pop the value (at.const ¢) from the stack.

® Nk wD

If i + n > |z.mems[z].bytes| or j + n > |z.datas[y].bytes|, then:
a. Trap.
9. If n = 0, then:
a. Do nothing.
10. Else:
a. Assert: Due to validation, j < |z.datas[y].bytes|.
b. Push the value (at.const) to the stack.
c. Push the value (i32.const z.datas[y].bytes[j]) to the stack.
d. Execute the instruction (i32.store8 z).

e. Push the value (at.const ¢ + 1) to the stack.

=

Push the value (i32.const j + 1) to the stack.

Push the value (i32.const n — 1) to the stack.

5o,

Execute the instruction (memory.init x y).

z; (at.const) (i32.const j) (i32.const n) (memory.init z y) < trap
ifi +n > |z.mems[z].bytes| V j + n > |z.datas[y].bytes|

z; (at.const) (is2.const j) (i32.const n) (memory.init z y) < € otherwise, if n = 0
z; (at.const i) (i32.const j) (i32.const n) (memory.init x y) <
(at.const) (i32.const z.datas[y].bytes[j]) (i32.store8 x) otherwise
(at.const i+ 1) (i32.const j + 1) (i32.const n — 1) (memory.init z y)

158 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

data.drop x
1. Let z be the current state.
2. Replace z.datas[z].bytes with €.

z; (data.dropz) < z[.datas[z].bytes = €]; e

4.6.10 Reference Instructions

ref.null z
1. Let F be the current frame.
2. Assert: due to validation, the defined type F.module.types|x] exists.
3. Let deftype be the defined type F.module.types|x].
4. Push the value ref.null deftype to the stack.

z; (refanullz) < (ref.null z.types[z])

Note

No formal reduction rule is required for the case ref.null absheaptype, since the instruction form is already a
value.

ref.func z
1. Let z be the current state.
2. Assert: Due to validation, < |z.module.funcs.
3. Push the value (ref.func z.module.funcs[z]) to the stack.

z; (ref.funcz) < (ref.func z.module.funcs|z])

ref.is_null
1. Assert: Due to validation, a reference value is on the top of the stack.
2. Pop the value ref from the stack.
3. If ref is some ref.null heaptype, then:
a. Push the value (i32.const 1) to the stack.
4. Else:
a. Push the value (i32.const 0) to the stack.

ref ref.is_null < (is2.const 1) if ref = (ref.null ht)
ref reflis_null < (i32.const 0) otherwise

ref.as_non_null
1. Assert: Due to validation, a reference value is on the top of the stack.
2. Pop the value ref from the stack.
3. If ref is some ref.null heaptype, then:
a. Trap.

4. Push the value ref to the stack.

4.6. Instructions 159

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ref ref.as_non_null < trap if ref = (ref.null ht)
ref ref.as_non_null < ref otherwise

ref.eq

1. Assert: Due to validation, a reference value is on the top of the stack.
Pop the value 7ef, from the stack.
Assert: Due to validation, a reference value is on the top of the stack.

Pop the value 7ef; from the stack.

A

If ref, is some ref.null heaptype and ref 4 is some ref.null heaptype, then:
a. Push the value (i32.const 1) to the stack.
6. Elseif ref | = ref,, then:
a. Push the value (i32.const 1) to the stack.
7. Else:
a. Push the value (i32.const 0) to the stack.
ref, ref4refieq < (i32.const 1) if ref, = (ref.null hty) A ref o = (ref.null htg)
refy refo ref.eq < (i32.const 1) otherwise, if ref; = ref,
ref, refq ref.eq < (i32.const 0) otherwise
ref.test 1t
1. Let f be the topmost frame.
Assert: Due to validation, a reference value is on the top of the stack.
Pop the value ref from the stack.

Let rt’ be the type of ref.

oA »N

If rt’ matches clos f module (1), then:

a. Push the value (i32.const 1) to the stack.
6. Else:
a. Push the value (i32.const 0) to the stack.

s; fyref (reftest rt) — (is2.const1) if st ref : 7t/
A} 1t < closg.module(Tt)
s; fyref (ref.test rt) < (is2.const 0) otherwise

ref.cast rt

1. Let f be the topmost frame.
Assert: Due to validation, a reference value is on the top of the stack.
Pop the value ref from the stack.

Let rt’ be the type of ref.

A

If rt" does not match clos ¢ moduie (rt), then:
a. Trap.
6. Push the value ref to the stack.

s; fyref (ref.cast rt) < ref ifst ref :rt/
A} E 1t < closf module (1)
s; fyref (ref.cast rt) < trap otherwise

160 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ref.i31
1. Assert: Due to validation, a value of number type i32 is on the top of the stack.
2. Pop the value (i32.const i) from the stack.
3. Push the value (ref.is1 wraps, 31 (4)) to the stack.

(i32.const i) ref.is1 < (ref.i31 wrapsy 3;(7))

i31.get_sx
1. Assert: Due to validation, a value is on the top of the stack.
2. Pop the value val from the stack.
3. If wal is some ref.null heaptype, then:
a. Trap.
4. Assert: Due to validation, val is some ref.i31 us1.
5. Let (ref.i31 ¢) be the destructuring of val.
6. Push the value (i32.const extends] 35(7)) to the stack.

(ref.null ht) (i31.get_sz) < trap
(ref.iz1) (is1.get_sz) < (is2.const extends] 35(i))

struct.new x

—

Let z be the current state.

Assert: Due to validation, the expansion of z.types|x] is some struct list(fieldtype).
Let (struct listg) be the destructuring of the expansion of z.types|x].

Let (mut? 2t)™ be list.

Let a be the length of z.structs.

Assert: Due to validation, there are at least n values on the top of the stack.

Pop the values val™ from the stack.

Let si be the structure instance {type z.types[z], fields pack,,(val)™}.

© ® N kWD

Push the value (ref.struct a) to the stack.
10. Append si to z.structs.

z;val™ (struct.new &) < z[.structs =@ si]; (ref.struct @) if z.types|x] ~ struct (mut? 2t)"
A a = |z.structs|
A si = {type z.types[z], fields (pack,,(val))™}

struct.new_default x
1. Let 2 be the current state.
. Assert: Due to validation, the expansion of z.types|x] is some struct list(fieldtype).
. Let (struct listg) be the destructuring of the expansion of z.types|x].
. Let (mut” zt)* be list.
. Assert: Due to validation, for all z¢ in 2t*, default,;,aci(2¢) is defined.

. Let val® be the value sequence e.

~N N B W

. For each 2zt in zt*, do:

a. Let val be default,pack(zt)-

4.6. Instructions 161

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

b. Append val to val*.
8. Assert: Due to validation, |val™| = |2t*|.
9. Push the values val* to the stack.
10. Execute the instruction (struct.new z).

z; (struct.new_default) < wal® (struct.new) if z.types[z] ~ struct (mut’ zt)*
A (defaulty,pack(zt) = val)*

struct.get_sz’ x i
1. Let z be the current state.
2. Assert: Due to validation, a value is on the top of the stack.
3. Pop the value val from the stack.
4. If val is some ref.null heaptype, then:
a. Trap.
Assert: Due to validation, val is some ref.struct structaddr.
Let (ref.struct a) be the destructuring of val.
Assert: Due to validation, i < |z.structs[a].fields|.
Assert: Due to validation, a < |z.structs|.

Assert: Due to validation, the expansion of z.types|x] is some struct list(fieldtype).

© Y ® =2 W

10. Let (struct listg) be the destructuring of the expansion of z.types|x].
11. Let (mut? 2t)* be listo.

12. Assert: Due to validation, ¢ < |zt*|.
13. Push the value unpack‘:{f 1] (#-structslal.fieldsi]) to the stack.

z; (ref.null ht) (struct.get_sz’ i) < trap
z; (ref struct a) (struct.get_sz’ x4) < unpack(f. i (z.structs[a].fields[i]) if z.types[z] ~ struct (mut” zt)*

struct.set = ¢
1. Let z be the current state.
Assert: Due to validation, a value is on the top of the stack.
Pop the value val from the stack.
Assert: Due to validation, a value is on the top of the stack.

Pop the value val’ from the stack.

SN

If val’ is some ref.null heaptype, then:
a. Trap.

7. Assert: Due to validation, val’ is some ref.struct structaddr.

8. Let (ref.struct a) be the destructuring of val’.

9. Assert: Due to validation, the expansion of z.types|x] is some struct list(fieldtype).
10. Let (struct listo) be the destructuring of the expansion of z.types[z].
11. Let (mut” zt)* be listg.
12. Assert: Due to validation, ¢ < |zt*|.

13. Replace z.structs[a].fields[i] with pack ., (val).

162 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

z; (ref.null ht) val (struct.set x i) < z;trap
z; (ref.struct @) val (struct.set £ 4) < z[structs[a].fields[i] = pack ., (val)];€ if z.types[z] = struct (mut” 2t)*

array.new z
1. Assert: Due to validation, a value of number type i32 is on the top of the stack.
2. Pop the value (i32.const n) from the stack.
3. Assert: Due to validation, a value is on the top of the stack.
4. Pop the value val from the stack.
5. Push the values val™ to the stack.

6

. Execute the instruction (array.new_fixed x n).

val (i32.const n) (array.new z) < wal™ (array.new_fixed = n)

array.new_default
1. Let 2z be the current state.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const n) from the stack.
Assert: Due to validation, the expansion of z.types[x] is some array fieldtype.
Let (array fieldtype,) be the destructuring of the expansion of z.types[z].
Let (mut? 2t) be the destructuring of fieldtype,.
Assert: Due to validation, default,,, aci(z¢) is defined.

Let val be default;pack(zt)-

R A A o R

Push the values val™ to the stack.
10. Execute the instruction (array.new_fixed x n).
z; (i32.const n) (array.new_default z) < wval™ (array.new_fixed x n) if z.types[z] ~ array (mut’ zt)
A default yppack(zt) = val

array.new_fixed z n

1. Let z be the current state.
Assert: Due to validation, the expansion of z.types|z] is some array fieldtype.
Let (array fieldtype,) be the destructuring of the expansion of z.types[z].
Let (mut” zt) be the destructuring of fieldtype,.
Let a be the length of z.arrays.
Assert: Due to validation, there are at least n values on the top of the stack.
Pop the values val™ from the stack.

Let as be the array instance {type z.types[z], fields pack,,(val)™}.

0 ® Nk w D

Push the value (ref.array a) to the stack.
10. Append ai to z.arrays.

z;val™ (array.new_fixed x n) < z[.arrays =@ ail; (ref.array a)
if 2.types[z] ~ array (mut” zt)
A a = |z.arrays| A ai = {type z.types|x], fields (pack,,(val))™}

4.6. Instructions 163

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

array.new_data x y

1. Let z be the current state.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const n) from the stack.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const 7) from the stack.
Assert: Due to validation, the expansion of z.types[z] is some array fieldtype.
Let (array fieldtype,) be the destructuring of the expansion of z.types[z].
Let (mut? 2t) be the destructuring of fieldtype,.

© ® N A » N

If i +n - |2t|/8 > |z.datas[y].bytes|, then:
a. Trap.

10. Let byte™™ be the result for which each byte* has length |2t|/8, and the concatenation of byte™™ is
z.datas[y].bytes[i : n - |2t|/8].

11. Let ¢™ be the result for which (bytes,,(c™) = byte™)*.
12. Push the values unpack(zt).const unpack,, (¢)™ to the stack.
13. Execute the instruction (array.new_fixed x n).

z; (i32.const ¢) (i32.const n) (array.new_dataz y) < trap
if z.types[z] ~ array (mut” zt)
A+ n-|zt|/8 > |z.datas|y].bytes|
z; (i32.const ¢) (i32.const) (array.new_data z y) < (unpack(zt).const unpack,,(c))™ (array.new_fixed x n)
if z.types[z] ~ array (mut” zt)
A P bytes,, (¢)™ = z.datas[y].bytes[i : n - |2t|/8]
array.new_elem z y
1. Let z be the current state.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const n) from the stack.

Assert: Due to validation, a value of number type i32 is on the top of the stack.

Pop the value (i32.const 7) from the stack.

AN

If i + n > |z.elems]y].elem], then:

a. Trap.

7. Let ref™ be z.elems[y].elem[i : n].

8. Push the values ref™ to the stack.

9. Execute the instruction (array.new_fixed x n).
z; (i32.const 7) (i32.const n) (array.new_elem z y) < trap ifi+mn > |z.elems[y].elem|
z; (i32.const ¢) (i32.const n) (array.new_elem z y) < ref™ (array.new_fixed x n)

if ref™ = z.elems[y].elem[i : n]
?

array.get_sr" x

1. Let z be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 7) from the stack.

164 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4. Assert: Due to validation, a value is on the top of the stack.
5. Pop the value val from the stack.
6. If val is some ref.null heaptype, then:

a. Trap.
7. Assert: Due to validation, val is some ref.array arrayaddr.
8. Let (ref.array a) be the destructuring of val.

9. If a < |z.arrays| and ¢ > |z.arrays[a].fields|, then:

a. Trap.

10. If i < |z.arrays|a].fields| and a < |z.arrays|, then:
a. Assert: Due to validation, the expansion of z.types|x] is some array fieldtype.
b. Let (array fieldtype,) be the destructuring of the expansion of z.types|z].

c. Let (mut? 2t) be the destructuring of fieldtype,,.

d. Push the value unpack:y ’ (z.arrays|a].fields[i]) to the stack.

z; (ref.null ht) (is2.const §) (array.get_sz’) < trap

z; (ref.array a) (i32.const i) (array.get_sz’) <> trap if i > |z.arrays|a].fields|
z

: (ref.array a) (i32.const i) (array.get_sz’ z) < unpack‘;‘f?(z.arrays[a].fields[i])
if z.types[z] ~ array (mut” zt)
array.set x
1. Let z be the current state.
Assert: Due to validation, a value is on the top of the stack.
Pop the value val from the stack.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const 7) from the stack.
Assert: Due to validation, a value is on the top of the stack.

Pop the value val’ from the stack.

® Nk w N

If val’ is some ref.null heaptype, then:

a. Trap.

9. Assert: Due to validation, val’ is some ref.array arrayaddr.
10. Let (ref.array a) be the destructuring of val’.
11. If a < |z.arrays| and ¢ > |z.arrays[a].fields|, then:
a. Trap.

12. Assert: Due to validation, the expansion of z.types|x] is some array fieldtype.
13. Let (array fieldtype,) be the destructuring of the expansion of z.types[z].
14. Let (mut’ 2t) be the destructuring of fieldtype,.

15. Replace z.arrays|a].fields[i] with pack,, (val).

z; (ref.null ht) (i32.const ¢) val (array.set z) < z;trap
z; (ref.array a) (i32.const i) val (array.set) < z;trap
z; (ref.array a) (i32.const ¢) val (array.set) < z[.arrays[a].fields[i] = pack,,(val)]; e

if 2.types[z] ~ array (mut” zt)

if i > |z.arrays|a].fields|

4.6. Instructions

165

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

array.len

1.

®© N w

Let z be the current state.

. Assert: Due to validation, a value is on the top of the stack.

2
3.
4

Pop the value val from the stack.

. If val is some ref.null heaptype, then:

a. Trap.
Assert: Due to validation, val is some ref.array arrayaddr.
Let (ref.array a) be the destructuring of val.
Assert: Due to validation, a < |z.arrays|.
Push the value (i32.const |z.arrays|a].fields|) to the stack.

z; (ref.null ht) array.len < trap
z; (ref.array a) array.len < (i32.const |z.arrays|a].fields|)

array.fill x

1.

© ® N kLD

Let z be the current state.

Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const n) from the stack.

Assert: Due to validation, a value is on the top of the stack.

Pop the value val from the stack.

Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const 7) from the stack.

Assert: Due to validation, a value is on the top of the stack.

Pop the value val’ from the stack.

10. If val’ is some ref.null heaptype, then:
a. Trap.
11. Assert: Due to validation, val’ is some ref.array arrayaddr.
12. Let (ref.array a) be the destructuring of val’.
13. If a > |z.arrays|, then:
a. Do nothing.
14. Else if i + n > |z.arrays[al.fields|, then:
a. Trap.
15. If n = 0, then:
a. Do nothing.
16. Else:
a. Push the value (ref.array a) to the stack.
b. Push the value (i32.const 4) to the stack.
c. Push the value val to the stack.
d. Execute the instruction (array.set x).
e. Push the value (ref.array a) to the stack.
f. Push the value (i32.const i + 1) to the stack.
166 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

g. Push the value val to the stack.
h. Push the value (i32.const n — 1) to the stack.

i. Execute the instruction (array.fill z).

ref.array a
ref.array a

i32.const) val (array.set x) otherwise
i32.const ¢ + 1) val (i32.const n — 1) (array.fill z)

z; (ref.null ht) (i32.const 4) val (i32.const n) (array.fillz) < trap
z; (ref.array a) (i32.const ¢) val (i32.const n) (array.fillz) < trap ifi+ n > |z.arrays[al.fields|
z; (ref.array a) (i32.const i) val (i32.const n) (array.fillz) < € otherwise, if n = 0
z; () (array fill z) <
(
(

) ()
) ()
ref.array a) (i32.const ¢) val (i32.const n
) ()
) (

array.copy i T

—

. Let z be the current state.
. Assert: Due to validation, a value of number type i32 is on the top of the stack.
. Pop the value (i32.const n) from the stack.

. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2
3
4
5. Pop the value (i32.const i) from the stack.
6. Assert: Due to validation, a value is on the top of the stack.
7. Pop the value val from the stack.
8. Assert: Due to validation, a value of number type i32 is on the top of the stack.
9. Pop the value (i32.const 1) from the stack.
10. Assert: Due to validation, a value is on the top of the stack.
11. Pop the value val’ from the stack.
12. If val’ is some ref.null heaptype and val is reference value, then:
a. Trap.
13. If val is some ref.null heaptype and val’ is reference value, then:
a. Trap.
14. If val’ is some ref.array arrayaddr, then:
a. Let (ref.array a) be the destructuring of val’.
b. If val is some ref.array arrayaddr, then:
1) If a1 < |z.arrays| and 41 + n > |z.arrays[a4].fields|, then:
a) Trap.
2) Let (ref.array ag) be the destructuring of val.
3) If ag > |z.arrays|, then:
a) Do nothing.
4) Else if i + n > |z.arrays[az].fields|, then:
a) Trap.
5) If n = 0, then:
a) Do nothing.
6) Else:
a) Assert: Due to validation, the expansion of z.types[zs] is some array fieldtype.

b) Let (array fieldtype,) be the destructuring of the expansion of z.types|xa].

4.6. Instructions 167

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

¢) Let (mut’ zt5) be the destructuring of fieldtype,.
d) Let sz” be sz(zts).
e) Push the value (ref.array a;) to the stack.
f) If i1 < 9, then:

1. Push the value (i32.const 4) to the stack.
Push the value (ref.array as) to the stack.
Push the value (i32.const i3) to the stack.
Execute the instruction (array.get_sz” 3).
Execute the instruction (array.set x1).
Push the value (ref.array a1) to the stack.

Push the value (i32.const i1 + 1) to the stack.

o ® Nk w N

(

Push the value (ref.array as) to the stack.
Push the value (i32.const i5 + 1) to the stack.
g) Else:

1. Push the value (i32.const ¢; + n — 1) to the stack.
Push the value (ref.array as) to the stack.
Push the value (i32.const i3 + n — 1) to the stack.
Execute the instruction (array.get_sz” x3).
Execute the instruction (array.set x7).
Push the value (ref.array aq) to the stack.
Push the value (i32.const 41) to the stack.

Push the value (ref.array a9) to the stack.

Y ® =Nk w N

Push the value (i32.const i5) to the stack.
h) Push the value (i32.const n — 1) to the stack.

i) Execute the instruction (array.copy 1 Z3).

168 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

z; (ref.null htq) (i32.const i1) ref (i32.const i9) (i32.const n) (array.copy 21 x2) < trap
z;ref (i32.const i1) (ref.null htg) (i32.const i2) (i32.const n) (array.copy z1 x2) < trap
z; (ref.array aq) (i32.const 41) (ref.array ag) (i32.const i2) (i32.const n) (array.copy z1 x2) <> trap

if i1 +n > |z.arrays[aq].fields|
z; (ref.array aq) (i32.const i1) (ref.array as) (i32.const ig) (i32.const n) (array.copy x1 x2) <> trap
ifio + n > |z.arrays|az].fields|
z; (ref.array aq) (i32.const 41) (ref.array ag) (i32.const i2) (i32.const n) (array.copy z1 x2) < €
otherwise, if n = 0
z; (ref.array ay) (i32.const i) (ref.array ag) (i32.const ig) (i32.const n) (array.copy x1 x3) <>
(ref.array aq) (i32.const i7)
(ref.array az) (i32.const i)
(array.get_sz” x3) (array.set ;)
(ref.array aq) (i32.const 41 + 1) (ref.array ag) (i32.const i 4+ 1) (i32.const n — 1) (array.copy x1 22)
otherwise, if z.types[zo] ~ array (mut” zty)
Ny <iig A sz’ = sz(zts)
z; (ref.array aq) (i32.const i) (ref.array as) (i32.const ig) (i32.const n) (array.copy x1 x3) <>
(ref.array aq) (i32.const i1 +n — 1)
(ref.array ag) (i32.const i +n — 1)
(array.get_sz” x3) (array.set 1)
(ref.array aq) (i32.const 41) (ref.array ag) (i32.const ig) (i32.const n — 1) (array.copy 1 x2)
otherwise, if z.types[zo] ~ array (mut” zty)
A sz’ = sz(zta)

Where:

sz(consttype) =
sz(packtype) = s

array.init_data z y

1.

10.

11.

12.

13.

14.

Let 2z be the current state.

. Assert: Due to validation, a value of number type i32 is on the top of the stack.
. Pop the value (i32.const n) from the stack.
. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2
3
4
5.
6
7
8
9

Pop the value (i32.const j) from the stack.

. Assert: Due to validation, a value of number type i32 is on the top of the stack.

. Pop the value (i32.const 7) from the stack.

. Assert: Due to validation, a value is on the top of the stack.
. Pop the value val from the stack.
If val is some ref.null heaptype, then:
a. Trap.
Assert: Due to validation, val is some ref.array arrayaddr.
Let (ref.array a) be the destructuring of val.
If a < |z.arrays| and i + n > |z.arrays|a].fields|, then:
a. Trap.
If the expansion of z.types[z] is some array fieldtype, then:
a. Let (array fieldtype) be the destructuring of the expansion of z.types|x].
b. Let (mut” zt) be the destructuring of fieldtype,.
c. If j+n-|zt|/8 > |z.datas[y].bytes

, then:

4.6.

Instructions 169

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

15.

1) Trap.
d. If n = 0, then:
1) Do nothing.
e. Else:
1) Let ¢ be the result for which bytes,, (¢) = z.datas[y].bytes[j : |2t|/8].
2) Push the value (ref.array a) to the stack.
3) Push the value (i32.const %) to the stack.
4) Push the value unpack(zt).const unpack,, (c) to the stack.
5) Execute the instruction (array.set x).
6) Push the value (ref.array a) to the stack.
7) Push the value (i32.const ¢ + 1) to the stack.
8) Push the value (i32.const j + |2t|/8) to the stack.
9) Push the value (i32.const n — 1) to the stack.
10) Execute the instruction (array.init_data z y).
Else if n = 0, then:
a. Do nothing.

z; (ref.null ht) (i32.const 4) (i32.const j) (i32.const n) (array.init_data z y)

z; (ref.array a) (i32.const @) (i32.const j) (i32.const n) (array.init_data = y)
if i +n > |z.arrays|al.fields|

z; (ref.array a) (i32.const 7) (i32.const j) (i32.const n) (array.init_dataz y) <
if z.types[x] ~ array (mut” zt)
Aj+mn-|zt|/8 > |z.datas[y].bytes|

z; (ref.array a) (i32.const @) (i32.const j) (i32.const n) (array.init_data z y) <
otherwise, if n = 0

z; (ref.array a) (i32.const ¢) (i32.const j) (i32.const n) (array.init_dataz y) <

(ref.array a) (i32.const ¢) (unpack(zt).const unpack ,(c)) (array.set x)

e

trap
trap

trap

(ref.array a) (i32.const ¢ + 1) (i32.const j + |2t|/8) (i32.const n — 1) (array.init_data x y)

otherwise, if z.types[z] ~ array (mut? zt)
A bytes,,(c) = z.datas[y|.bytes[j : |2t|/8]

array.init_elem z y

1.
2.
3.

o »® N s

10.

11.

Let z be the current state.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const n) from the stack.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const j) from the stack.
Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const i) from the stack.
Assert: Due to validation, a value is on the top of the stack.
Pop the value val from the stack.
If val is some ref.null heaptype, then:
a. Trap.

Assert: Due to validation, val is some ref.array arrayaddr.

170

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

12. Let (ref.array a) be the destructuring of val.
13. If @ < |z.arrays| and ¢ + n > |z.arrays[a].fields|, then:
a. Trap.
14. If j +n > |z.elems[y].elem|, then:
a. Trap.
15. If n = 0, then:
a. Do nothing.
16. Else if j < |z.elems[y].elem|, then:
a. Let ref be the reference value z.elems[y].elem[j].
b. Push the value (ref.array a) to the stack.
c. Push the value (i32.const 4) to the stack.
d. Push the value ref to the stack.

e. Execute the instruction (array.set).

=

Push the value (ref.array a) to the stack.

Push the value (i32.const ¢ + 1) to the stack.

Fom

Push the value (i32.const j 4 1) to the stack.

—

Push the value (i32.const n — 1) to the stack.
j- Execute the instruction (array.init_elem z y).

z; (ref.null ht) (i32.const 4) (i32.const j) (i32.const n) (array.init_elem x y)
z; (ref.array a) (i32.const 7) (i32.const j) (i32.const n) (array.init_elem z y)
if i +n > |z.arrays|a].fields|
z; (ref.array a) (i32.const ¢) (i32.const j) (i32.const n) (array.init_elem z y) < trap
if j + n > |z.elems[y].elem|
z; (ref.array a) (i32.const i) (i32.const j) (i32.const n) (array.init_elem zy) — €
otherwise, if n = 0
z; (ref.array a) (i32.const ¢) (i32.const j) (i32.const n) (array.init_elem z y) <
(ref.array a) (i32.const i) ref (array.set x)
(ref.array a) (i32.const ¢ + 1) (i32.const j + 1) (i32.const n — 1) (array.init_elem z y)
otherwise, if ref = z.elems[y].elem[j]

trap
trap

e

any.convert_extern

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. If wal is some ref.null heaptype, then:
a. Push the value (ref.null any) to the stack.

4. If val is some ref.extern addrref, then:
a. Let (ref.extern addrref) be the destructuring of val.
b. Push the value addrref to the stack.

(ref.null ht) any.convert_extern < (ref.null any)
(ref.extern addrref) any.convert_extern < addrref

4.6. Instructions 171

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

extern.convert_any
1. Assert: Due to validation, a value is on the top of the stack.
2. Pop the value val from the stack.
3. If val is some ref.null heaptype, then:
a. Push the value (ref.null extern) to the stack.
4. If val is address value, then:
a. Push the value (ref.extern val) to the stack.

(ref.null ht) extern.convert_any < (ref.null extern)
addrref extern.convert_any < (ref.extern addrref)

4.6.11 Numeric Instructions

Numeric instructions are defined in terms of the generic numeric operators. The mapping of numeric instructions
to their underlying operators is expressed by the following definition:

opin (1, oyig) = dopy(i,..., k)
Opf]\“'(zla"wzk) = fopN(Zla"'aZk)
And for conversion operators:
? ?
cvutopiy 4, (e) = cvtop'lsfl‘,ltzl(c)

Where the underlying operators are partial, the corresponding instruction will trap when the result is not defined.
Where the underlying operators are non-deterministic, because they may return one of multiple possible NaN
values, so are the corresponding instructions.

Note

For example, the result of instruction i32.add applied to operands i1, i invokes add;3» (41, i2), which maps to the
generic iaddss (i1, 42) via the above definition. Similarly, is4.trunc_f32_s applied to z invokes truncfs, ;5. (2),
which maps to the generic trunc®sg g4(z).

nt.const ¢

1. Push the value (nt.const ¢) to the stack.

Note

No formal reduction rule is required for this instruction, since const instructions already are values.

nt.unop

1. Assert: Due to validation, a value of number type nt is on the top of the stack.

[\

. Pop the value (numtype,.const ¢;) from the stack.

w

. If unopnt(c1) is empty, then:
a. Trap.
4. Let c be an element of unop,.(cy).
5. Push the value (nt.const ¢) to the stack.

(nt.const ¢1) (nt.unop) < (nt.constc) if ¢ € unopne(cr)
(nt.const ¢1) (nt.unop) < trap if unoppi(c1) = e

172 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

nt.binop

1. Assert: Due to validation, a value of number type nt is on the top of the stack.
Pop the value (numtypey.const cz) from the stack.
Assert: Due to validation, a number value is on the top of the stack.

Pop the value (numtype,.const ¢q) from the stack.

A

If binopn(c1,co) is empty, then:

a. Trap.
6. Let ¢ be an element of binop,¢(cy, ca).
7. Push the value (nt.const ¢) to the stack.

(nt.const ¢1) (nt.const ¢a) (nt.binop) < (nt.constc) ifc € binopui(cr,ca)
(nt.const ¢1) (nt.const ca) (nt.binop) < trap if binoppt(ci,ca) =€

nt.testop
1. Assert: Due to validation, a value of number type nt is on the top of the stack.
2. Pop the value (numtype.const c1) from the stack.
3. Let ¢ be testopp(cy).
4. Push the value (i32.const ¢) to the stack.

(nt.const ¢1) (nt.testop) < (i32.conste) if ¢ = testoppi(c)

nt.relop
1. Assert: Due to validation, a value of number type nt is on the top of the stack.
2. Pop the value (numtype,.const cz) from the stack.
3. Assert: Due to validation, a number value is on the top of the stack.
4. Pop the value (numtypey.const ¢1) from the stack.
5. Let ¢ be reloppi(cr, c2).
6. Push the value (i32.const ¢) to the stack.

(nt.const ¢1) (nt.const ¢a) (nt.relop) < (i32.const¢) if ¢ = relopye(cy,ca)

nts.cvtop_nty
1. Assert: Due to validation, a value of number type nt; is on the top of the stack.
2. Pop the value (numtype,.const c1) from the stack.
3. If cutoppt, nt,(c1) is empty, then:
a. Trap.
4. Let ¢ be an element of cvtop i, nt, (c1)-
5. Push the value (ntq.const ¢) to the stack.

(nti.const ¢1) (nta.cutop_nti) — (ntg.conste) if ¢ € cvtoppt, nt,(c1)
(ntq.const ¢1) (ntg.cutop_nty) < trap if cvtopnty mt,(c1) =€

4.6. Instructions 173

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.6.12 Vector Instructions

Vector instructions that operate bitwise are handled as integer operations of respective bit width.
opn (i1, yig) = dopn(it,... i)

Most other vector instructions are defined in terms of numeric operators that are applied lane-wise according to
the given shape.

0Py (M1, yng) = lanes; \ (op,(it, ..., ix)*) (if 37 = lanespv (1) A -+ - Ay, = lanesyov (ng)

Note

For example, the result of instruction i32x4.add applied to operands vy, vo invokes addisoxa(v1,v2), which
maps to I;Ln(esig21X4(addi32(i1, i2)*), where 77 and i} are sequences resulting from invoking lanes;so(v1) and
lanes;soxa (v2) respectively.

For non-deterministic operators this definition is generalized to sets:
0Py (1, ng) = {lanes; (i) | i* € x(opy (i1, ..., ik)*) A i} = lanespv (ng) A - Ak = lanesyov (ng) }

where x {z*}* transforms a sequence of IV sets of values into a set of sequences of N values by computing the
set product:

X(Sl...SN) = {(El...il'N|(,U1ESl/\"'/\xNESN}

The remaining vector operators use individual definitions.

viz2s.const ¢

1. Push the value (vi2s.const ¢) to the stack.

Note

No formal reduction rule is required for this instruction, since const instructions are already values.

V128.VUUNOP
1. Assert: Due to validation, a value of vector type vi28 is on the top of the stack.
2. Pop the value (vi2s.const ¢;) from the stack.
3. Assert: Due to validation, |vvunop,i2s(c1)| > 0.
4. Let ¢ be an element of vvunop,12s(cy).
5. Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (vizs.vvunop) < (vizs.const¢) if ¢ € vvunop,ia(cy)

v128.vvbinop
1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
2. Pop the value (vi2s.const c¢g) from the stack.
3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.
4. Pop the value (vi2s.const ¢1) from the stack.

5. Assert: Due to validation, |vobinop,128(c1, c2)| > 0.

174 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Let ¢ be an element of vubinop,12s(cy, ca).

7. Push the value (vi2s.const ¢) to the stack.

(vi2s.const ¢1) (vi2s.const ¢g) (vizs.vvbinop) < (vizs.constc) if ¢ € vvbinopyiag(c, ca)

v128.vvternop

1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
Pop the value (vi2s.const c3) from the stack.
Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
Pop the value (vi28.const ¢3) from the stack.
Assert: Due to validation, a value of vector type v128 is on the top of the stack.
Pop the value (vi2s.const ¢1) from the stack.
Assert: Due to validation, |vvternopyiag(ci, 2, c3)| > 0.

Let ¢ be an element of vvternop,izs(cy, ca,c3).

R A o R

Push the value (vi2s.const ¢) to the stack.
(vi2s.const ¢1) (vi2s.const ¢g) (vi2s.const cg) (vizs.vvternop) < (vizs.const ¢)
if ¢ € vuternopyios(cy, ca, c3)

vi2g.any_true

1. Assert: Due to validation, a value of vector type vi28 is on the top of the stack.

2. Pop the value (vi2s.const ¢;) from the stack.

3. Let c be ineyy108/(c1, 0).

4. Push the value (i32.const ¢) to the stack.

(vies.const ¢1) (vizs.any_true) < (is2.constc) if ¢ = inej10g/(c1,0)

sh.vunop
1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
2. Pop the value (vi2s.const ¢;) from the stack.
3. If vunopgp(c1) is empty, then:
a. Trap.
4. Let ¢ be an element of vunopgp(c1).
5. Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (sh.vunop) < (vizs.const ¢) if ¢ € vunopgp(cy)
(vizs.const ¢1) (sh.vunop) < trap if vunopgp(c1) =€

sh.vbinop
1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.
2. Pop the value (vi2s.const c) from the stack.
3. Assert: Due to validation, a value of vector type vi2s is on the top of the stack.
4. Pop the value (vi2s.const ¢1) from the stack.
5. If vbinopsp (c1, c2) is empty, then:

a. Trap.

4.6. Instructions 175

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.
7.

Let ¢ be an element of vbinopgp(c1,ca).
Push the value (vi2s.const ¢) to the stack.

(vi2s.const ¢1) (vies.const ¢z) (sh.vbinop) < (vizs.const¢) if ¢ € vbinopsy(cy,ca)
(vizs.const ¢1) (vies.const ¢z) (sh.vbinop) < trap if vbinopsp(c1,c2) =€

sh.vternop

1.

NS A »N

8.
9.

Assert: Due to validation, a value of vector type vi2s is on the top of the stack.
Pop the value (vi2s.const c3) from the stack.

Assert: Due to validation, a value of vector type vi2s is on the top of the stack.
Pop the value (vi2s.const ¢3) from the stack.

Assert: Due to validation, a value of vector type v128 is on the top of the stack.
Pop the value (vi2s.const ¢1) from the stack.

If vternopsp(c1, ce, c3) is empty, then:

a. Trap.
Let ¢ be an element of vternopgp(c1, ca,c3).

Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (vizs.const ¢z) (vi2s.const cg) (sh.vternop) < (vizs.const ¢) if ¢ € vternopgsy(ci,ca,cs)
(vi2s.const ¢) (vi2s.const ¢g) (vies.const ¢3) (sh.vternop) < trap if vternopgp(c1,co,c3) =€

sh.vtestop

1.
2.
3.
4,

Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
Pop the value (vi2s.const ¢) from the stack.

Let i be vtestopgp(c1).

Push the value (i32.const 4) to the stack.

(vizs.const ¢1) (sh.vtestop) < (is2.consti) ifi = viestopgp(c1)

sh.vrelop

1.

AN i

Assert: Due to validation, a value of vector type vi28 is on the top of the stack.
Pop the value (vi28.const ¢3) from the stack.

Assert: Due to validation, a value of vector type vi2s is on the top of the stack.
Pop the value (vi2s.const ¢;) from the stack.

Let ¢ be vrelopgp (c1, ¢2).

Push the value (vi2s.const ¢) to the stack.

(vi2s.const ¢1) (vi2s.const cg) (sh.vrelop) < (vizs.const ¢) if ¢ = vrelopgy(cy, c2)

sh.vshiftop

1.

A

Assert: Due to validation, a value of number type i32 is on the top of the stack.
Pop the value (i32.const 7) from the stack.

Assert: Due to validation, a value of vector type v128 is on the top of the stack.
Pop the value (vi2s.const ¢1) from the stack.

Let ¢ be vshiftops(c1, 7).

176

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (i32.const) (sh.vshiftop) < (vizs.const ¢) if ¢ = vshiftopg,(c1,i)

sh.bitmask
1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
2. Pop the value (vi2s.const ¢;) from the stack.
3. Let ¢ be bitmaskgy, (¢1).
4. Push the value (i32.const ¢) to the stack.

(vizs.const ¢1) (sh.bitmask) < (i32.const ¢) if ¢ = bitmaskgy(c1)

sh.swizzlop

1. Assert: Due to validation, a value of vector type vi2s is on the top of the stack.
Pop the value (vi28.const ¢3) from the stack.
Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
Pop the value (vi2s.const ¢) from the stack.

Let ¢ be swizzlopsp (c1, c2).

A

Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (vi2s.const ¢g) (sh.swizzlop) < (vizs.const ¢) if ¢ = swizzlopgp (e, c2)

sh.shuffle 7*
1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
2. Pop the value (vi2s.const ¢3) from the stack.
3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.
4. Pop the value (vi2s.const ¢;) from the stack.
5. Let ¢ be shuffleg, (i*, ¢1, ¢2).
6. Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (vi2s.const ca) (sh.shuffle i*) < (vizs.const ¢) if ¢ = shuffleg, (i, ¢1, ¢2)

iNnxM .splat
1. Assert: Due to validation, a value is on the top of the stack.
2. Pop the value (numtype,.const ¢1) from the stack.
3. Assert: Due to validation, numtype, = unpack(iv).
4. Let cbe lanes;), (packyy (¢1)™).

5. Push the value (vi2s.const ¢) to the stack.

(unpack(inv).const ¢;) (ivxM.splat) < (vizs.const ¢) if ¢ = lanesy 5, (packyy (c1)™M)

4.6. Instructions 177

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

lanetypex]ﬂ.extract_lane_sa:’? i
1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
2. Pop the value (vi2s.const ¢;) from the stack.
3. If s2'” is not defined, then:
a. Assert: Due to validation, lanetype is number type.
b. Assert: Due to validation, ¢ < [lanes;qetypexas(€1)]-
c. Let ¢ be lanes;qcrypexar(c1)[2].

d. Push the value (lanetype.const cz) to the stack.

a. Assert: Due to validation, lanetype is packed type.
b. Let sz be sz'".

c. Assert: Due to validation, ¢ < |lanes;qnetypexar(€1)]-
d. Let cp be extend]q, ey pe| 32 (1anesianetypexnr (€1)[i]).-
e. Push the value (i32.const ¢3) to the stack.

(vizs.const ¢1) (ntxM.extract_lanei) < (nt.constcg) if co = lanespsar(c1)[d]
(vi2s.const c1) (ptxM.extract_lane_sz i) < (i32.constcy) if ca = extend|,y so(lanesppar(c1)]i])

iNnxM .replace_lane 4
1. Assert: Due to validation, a value is on the top of the stack.
Pop the value (numtypey.const c) from the stack.
Assert: Due to validation, numtype, = unpack(iv).
Assert: Due to validation, a value of vector type vi28 is on the top of the stack.
Pop the value (vi2s.const ¢1) from the stack.

Let ¢ be lanes;y! (lanespv,az (c1)[[i] = packy (c2)]).

NS R » N

Push the value (vi2s.const ¢) to the stack.

(vi2s.const ¢1) (unpack(in).const ¢g) (inxM.replace_lane i) < (vi2s.const ¢)
if ¢ = lanesyL (lanesivear (c1)[[i] = packyy (c2)])

sho.vextunop_shq
1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
2. Pop the value (vi2s.const ¢;) from the stack.
3. Let ¢ be vextunopgp, shy(€1)-
4. Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (she.vextunop_shy) < (vizs.constc) if vertunopsp, sn,(c1) =c¢

sho.vextbinop_shy

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.
Pop the value (vi2s.const ¢5) from the stack.
Assert: Due to validation, a value of vector type vi2g is on the top of the stack.

Pop the value (vi2s.const ¢) from the stack.

A

Let ¢ be vexthinop s, shy (€1, C2).

178 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (vizs.const ¢g) (she.vextbinop_shi) < (vizs.constc) if vextbinopsy, sh,(c1,c2) =c¢

shy.vextternop_shy
1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
. Pop the value (vi2s.const ¢3) from the stack.
. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

. Pop the value (vi2s.const ¢3) from the stack.

2
3
4
5. Assert: Due to validation, a value of vector type vi2s is on the top of the stack.
6. Pop the value (vi2s.const ¢;) from the stack.

7. Let ¢ be vextternopsn, shy (€1, C2, C3).

8. Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢) (vizs.const cg) (vizs.const cg) (sho.vextternop_shy) < (vizs.constc) if vextternopsp, sh,(€1,c2,¢3) =c¢

sho.narrow_shy_sx
1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.
. Pop the value (vi2s.const ¢z) from the stack.

. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.

ST
. Letebe narrowg . (c1,c2).

2
3
4. Pop the value (vi2s.const ¢) from the stack.
5
6

. Push the value (vi2s.const ¢) to the stack.

(vizs.const c1) (vizs.const ca) (shg.narrow_shy_sz) < (vizs.constc) if ¢ = narrowgy . (c1,c2)

shy.vcvtop_shy
1. Assert: Due to validation, a value of vector type vi2g is on the top of the stack.
2. Pop the value (vi2s.const ¢;) from the stack.
3. Let cbe vevtop gy, s, (vevtop, cr).
4. Push the value (vi2s.const ¢) to the stack.

(vizs.const ¢1) (sha.vcutop_shy) — (vizs.constc) if c = vevtopgy,, g, (vevtop,cr)

4.6.13 Expressions

An expression is evaluated relative to a current frame pointing to its containing module instance.

eval_expr instr*
1. Execute the sequence instr*.
2. Pop the value val from the stack.
3. Return val.

zyinstr® —* 2Zliwal® if zyinstr® —* 2’5 val®

4.6. Instructions 179

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

Evaluation iterates this reduction rule until reaching a value. Expressions constituting function bodies are
executed during function invocation.

4.7 Modules

For modules, the execution semantics primarily defines instantiation, which allocates instances for a module and
its contained definitions, initializes memories and tables from contained data and element segments, and invokes
the start function if present. It also includes invocation of exported functions.

4.7.1 Allocation

New instances of tags, globals, memories, tables, functions, data segments, and element segments are allocated in
a store s, as defined by the following auxiliary functions.
Tags
alloctag(s, tagtype)
1. Let taginst be the tag instance {type tagtype}.
2. Let a be the length of s.tags.
3. Append taginst to s.tags.

4. Return a.

alloctag(s, tagtype) = (s @ {tags taginst}, |s.tags|)
if taginst = {type tagtype}

Globals

allocglobal(s, globaltype, val)
1. Let globalinst be the global instance {type globaltype, value val}.
2. Let a be the length of s.globals.
3. Append globalinst to s.globals.

4. Return a.

allocglobal(s, globaltype, val) = (s @ {globals globalinst}, |s.globals|)
if globalinst = {type globaltype, value val}

Memories
allocmem(s, at [i .. j] page)
1. Let meminst be the memory instance {type (at [i .. j] page), bytes 0x00*64Ki},
2. Let a be the length of s.mems.
3. Append meminst to s.mems.
4

. Return a.

allocmem(s, at [i..j] page) = (s @® {mems meminst},|s.mems|)
if meminst = {type (at [i .. j] page), bytes (0x00)"64Ki}

180 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Tables

alloctable(s, at [i .. j] rt, ref)
1. Let tableinst be the table instance {type (at [i .. j] rt), elem ref*}.
2. Let a be the length of s.tables.
3. Append tableinst to s.tables.

4. Return a.

alloctable(s, at [i.. j] rt,ref) = (s @ {tables tableinst}, |s.tables|)
if tableinst = {type (at [i..] rt), elem ref*}

Functions

allocfunc(s, deftype, code, moduleinst)
1. Let funcinst be the function instance {type deftype, module moduleinst, code code}.
2. Let a be the length of s.funcs.
3. Append funcinst to s.funcs.

4. Return a.
allocfunc(s, deftype, code, moduleinst) = (s @ {funcs funcinst},|s.funcs|)
if funcinst = {type deftype, module moduleinst, code code}

Data segments

allocdata(s, ok, byte™)
1. Let datainst be the data instance {bytes byte*}.
2. Let a be the length of s.datas.
3. Append datainst to s.datas.

4. Return a.

allocdata(s, ok, byte®) = (s @ {datas datainst},|s.datas|)
if datainst = {bytes byte™}

Element segments

allocelem(s, elemtype, ref ™)
1. Let eleminst be the element instance {type elemtype, elem ref™}.
2. Let a be the length of s.elems.
3. Append eleminst to s.elems.

4. Return a.

allocelem(s, elemtype, ref*) = (s @ {elems eleminst}, |s.elems|)
if eleminst = {type elemtype, elem ref*}

4.7. Modules 181

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Growing memotries

growmem (meminst, n)

1. Let {type (at [i .. j] page), bytes b*} be the destructuring of meminst.

2. If |b*| /(64 Ki) + n > j, then:
a. Fail.

3. Let i be [b*|/(64Ki) + n.

4. Let meminst’ be the memory instance {type (at [i’ .. j] page), bytes b* 0x00™64Ki},

5. Return meminst’.

growmem(meminst,n) = meminst’ if meminst = {type (at [i..j] page), bytes b*}

A meminst’ = {type (at [i' .. j] page), bytes b* (0x00)
N = |b*]/(64Ki) +n <j

Growing tables

growtable(tableinst, n,r)

1. Let {type (at [i..j] rt), elem 7'*} be the destructuring of tableinst.

2. If 7’|+ n > j, then:
a. Fail.

3. Let# be |r'*| + n.

4. Let tableinst’ be the table instance {type (at [i’ .. j] rt), elem r'* rn}.

5. Return tableinst’.

n-64 Ki}

growtable(tableinst,n,r) = tableinst’ if tableinst = {type (at [i .. j] rt), elem r'*}
A tableinst’ = {type (at [i' .. j] rt), elem r'* r™}

AN =" +n <

Modules

allocmodule(s, module, externaddr®, valy, ref, refs”)

1. Let (module type* import* tag* global® mem* table® func* data™ elem™ start’ export*) be the destruc-

turing of module.

Let aa} be tags(exzternaddr™).

Let ga; be globals(exzternaddr™).

Let fa be funcs(externaddr™).

Let ma; be mems(externaddr™).

Let ta; be tables(externaddr™).

Let fa™ be |s.funcs| + if for all 4¢ from O to |func*| — 1.

Let tagtype™ be the tag type sequence e.

D A B

For each tag in tag*, do:
a. Let (tag tagtype) be the destructuring of tag.
b. Append tagtype to tagtype®.

10. Let byte*™ be the byte sequence sequence e.

11. For each data in data™, do:

a. Let (data byte™ datamode) be the destructuring of data.

182

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

12.
13.

14.
15.

16.
17.

18.
19.
20.

21.
22.
23.
24.

25.

26.

27.
28.

29.
30.

31.

b. Append byte™ to byte*™.
Let globaltype™ be the global type sequence e.
For each global in global*, do:
a. Let (global globaltype expr,) be the destructuring of global.
b. Append globaltype to globaltype™.
Let tabletype™ be the table type sequence e.
For each table in table™, do:
a. Let (table tabletype expr,) be the destructuring of table.
b. Append tabletype to tabletype™.
Let memtype* be the memory type sequence €.
For each mem in mem™, do:
a. Let (memory memtype) be the destructuring of mem.
b. Append memtype to memtype*.
Let dt™ be alloctype™ (type*).
Let elemtype™ be the reference type sequence e.
For each elem in elem”™, do:
a. Let (elem elemtype expr’ elemmode) be the destructuring of elem.
b. Append clemtype to elemtype®.
Let capry be the expression sequence e.

Let local™™

be the local sequence sequence e.
Let z* be the type index sequence e.

For each func in func™®, do:

o

. Let (func @ local™ expry) be the destructuring of func.
b. Append expr¢ to expry.
c. Append local* to local™™.
d. Append x to x*.

Let aa™ be e.

For each tagtype in tagtype*, do:
a. Let aa be the tag address alloctag(s, tagtype[:= dt*]).
b. Append aa to aa*.

Let ga™ be e.

For each globaltype in globaltype™ and valg in valg, do:

a. Let ga be the global address allocglobal(s, globaltype[:= dt*], valg).

b. Append ga to ga*.

Let ma™ be €.

For each memtype in memtype*, do:
a. Let ma be the memory address allocmem (s, memtype[:= dt*]).
b. Append ma to ma*.

Let ta™* be e.

4.7.

Modules

183

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

32. For each tabletype in tabletype™ and ref, in ref;, do:
a. Let ta be the table address alloctable(s, tabletype[:= dt™], ref).
b. Append ta to ta*.
33. Letzi* bee.
34. For each export in export™, do:
a. Let 27 be the export instance allocexport(moduleinst, export).
b. Append zi to zi*.
35. Let da” be e.
36. For each byte™ in byte™™, do:
a. Let da be the data address allocdata(s, ok, byte™).
b. Append da to da*.
37. Let ea™ be e.
38. For each elemtype in elemtype™ and ref? in ref’”, do:
a. Let ea be the elem address allocelem(s, elemtype[:= dt*], ref?).
b. Append ea to ea*.
39. Let moduleinst be the module instance {types dt*, tags aa aa*, globals ga’ ga*, mems ma; ma*, tables ta} ta*, funcs,
40. Let funcaddry be €.
41. For each expry in expry and local® in local™™ and z in z*, do:
a. Let funcaddr, be the function address allocfunc(s, d¢*[z], func x local™ expre, moduleinst).
b. Append funcaddrg to funcaddry.
42. Assert: Due to validation, funcaddry = fa.

43. Return moduleinst.

184 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

allocmodule(s, module, externaddr®, valy, ref{, (refe)*) = (s7, moduleinst)
if module = module type* import* tag* global® mem* table* func* data™ elem* start’ export*
A tag* = (tag tagtype)*
A global™ = (global globaltype expr,)*
A mem* = (memory memtype)*
A table™ = (table tabletype expr,)*
A func® = (func x local® expre)*
A data™ = (data byte™ datamode)*
A elem™ = (elem elemtype exprs elemmode)*
A aal = tags(externaddr™)
A gai = globals(externaddr™)
A mai = mems(externaddr™)
A ta¥ = tables(externaddr™)
A fai = funcs(ezternaddr™)
A dt* = alloctype™ (type*)
A fa* = (|s.funcs| + i)t <lunc’l
A (s1, aa*) = alloctag™* (s, tagtype[:= dt*]")
A (82, ga*) = allocglobal*(sy, globaltype[:= dt*]", valg)
(53, ma*) = allocmem™(sg, memtype[:= dt*]")
(s4, ta*) = alloctable®(s3, tabletype[:= dt*]*, ref¥)
(s5, da*) = allocdata* (sg, okl9@t™| | (byte*)*)
(s6, ea*) = allocelem™ (ss, elemtype[:= dt*|", (ref)*)
A (s7, fa*) = allocfunc* (sg, dt*[z]*, (func z local* expre)*, moduleinst™" 1)
A zi* = allocexport™({tags aa’ aa*, globals gai ga*, mems ma; ma*, tables taf ta*, funcs fa;" fa*}, export®)
A moduleinst = {types dt*,
tags aa;" aa*, globals gai ga*,
mems ma;" ma®,
tables ta* ta*, funcs fa fa*, datas da®,
elems ea*, exports zi*}

Here, the notation allocx™ is shorthand for multiple allocations of object kind X, defined as follows:

allocX* (s, €, €) (s,€)
allocX*(5, X X", Y Y'") = (sg,ad’™) if(s1,a)=allocX(X,Y,s, X,Y)
A (s2,a"™) = allocX*(s1, X", Y'")

For types, however, allocation is defined in terms of rolling and substitution of all preceding types to produce a list
of closed defined types:

alloctype™ (type™)
1. If type”™ = e, then:
a. Return e.
Let type'™ type be type’™.
Let (type rectype) be the destructuring of type.
Let deftype’™ be alloctype™ (type’™).
Let z be the length of deftype’”.
Let deftype* be roll}; (rectype)[:= deftype’™].

A T o

Return deftype’™ deftype®.

alloctype® () = ¢

alloctype* (type’™ type) = deftype’™ deftype® if deftype’™ = alloctype* (type’™)
N type = type rectype
A deftype® = roll} (rectype)[:= deftype’™]
Az = |deftype’™]

Finally, export instances are produced with the help of the following definition:

4.7. Modules 185

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

allocexport(moduleinst, export name externidz)

1.

5.
6.
7.

allocexport(moduleinst, export name (tag x)) = {name name, addr (tag moduleinst.tags[z])}
allocexport(moduleinst, export name (global x)) = {name name, addr (global moduleinst.globals[z])}
allocexport(moduleinst, export name (memory)) = {name name, addr (mem moduleinst.mems|z])}
allocexport(moduleinst, export name (table x)) = {name name, addr (table moduleinst.tables[z])}
allocexport(moduleinst, export name (func z)) = {name name, addr (func moduleinst.funcs|z])}

If externidz is some tag tagidz, then:

a. Let (tag x) be the destructuring of externidz.

b. Return {name name, addr (tag moduleinst.tags|z])}.
If externidz is some global globalidz, then:

a. Let (global) be the destructuring of externidz.

b. Return {name name, addr (global moduleinst.globals[z])}.
If externidzr is some memory memidx, then:

a. Let (memory z) be the destructuring of externidz.

b. Return {name name, addr (mem moduleinst.mems[xz])}.
If externidr is some table tableidz, then:

a. Let (table z) be the destructuring of externidz.

b. Return {name name, addr (table moduleinst.tables[x])}.
Assert: Due to validation, externidz is some func funcidz.
Let (func x) be the destructuring of exzternidz.

Return {name name, addr (func moduleinst.funcslz])}.

Note

The definition of module allocation is mutually recursive with the allocation of its associated functions, because
the resulting module instance is passed to the allocators as an argument, in order to form the necessary closures.
In an implementation, this recursion is easily unraveled by mutating one or the other in a secondary step.

4.7.2 Instantiation

Given a store s, a module is instantiated with a list of external addresses exzternaddr® supplying the required

imports as follows.

Instantiation checks that the module is valid and the provided imports match the declared types, and may fail with
an error otherwise. Instantiation can also result in an exception or trap when initializing a table or memory from
an active segment or when executing the start function. It is up to the embedder to define how such conditions are

reported.

instantiate(s, module, externaddr™)

1.

2.
3.

4.

If module is not valid, then:
a. Fail.

Let 2t — at? be the destructuring of the type of module.

Let (module type* import* tag* global* mem* table* func* data® elem™ start’ export*) be the destruc-

turing of module.
If |externaddr™| # |xt|, then:

a. Fail.

186

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

. Let instr} be the concatenation of rundata,, (data™[i4])

. For all ezternaddr in externaddr™, and corresponding zt; in zt:

a. If externaddr is not valid with type zt;, then:

1) Fail.

1g<|data™|

. Let instr} be the concatenation of runelemy, (elem* [ie])%<leleml,

. Let expr; be the expression sequence €.

. For each table in table*, do:

a. Let (table tabletype expr,) be the destructuring of table.

b. Append capr, to expry.

. Let moduleinsto be the module instance {types alloctype™ (type*), globals globals(externaddr™), funcs funcs(esternaddr’

11. Let expry be the expression sequence e.
12. Let globaltype™ be the global type sequence €.
13. For each global in global™, do:
a. Let (global globaltype expr,) be the destructuring of global.
b. Append expr, to expry.
c. Append globaltype to globaltype™.
14. Let expr’™ be the expression sequence sequence e.
15. For each elem in elem™, do:
a. Let (elem reftype exprl elemmode) be the destructuring of elem.
b. Append expry to expri™.
16. Let z be the state (s, {module moduleinsto}).
17. Let F be the frame z.frame.
18. Push the frame F.
19. Let valg be evalglobal®(z, globaltype™, expry).
20. Pop the frame f from the stack.
21. Let f be the frame f.
22. Push the frame f.
23. Let ref{ be the reference value sequence .
24. For each expr, in expry, do:
a. Let ref, be the result of evaluating expr, with state 2.
b. Append ref, to ref;.
25. Pop the frame f from the stack.
26. Let f be the frame f.
27. Push the frame f.
28. Let ref” be the reference value sequence sequence e.
29. For each expr? in expr:®, do:
a. Let ref be the reference value sequence €.
b. For each expr, in expry, do:
1) Let ref, be the result of evaluating ezpr, with state z.
4.7. Modules 187

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2) Append ref, to ref .
c. Append ref’ to ref i
30. Pop the frame f from the stack.
31. Let moduleinst be allocmodule(s, module, externaddr™, valg, refy, refs”).
32. Let F be the frame {module moduleinst}.
33. Push the frame F'.
34. Execute the sequence instr.
35. Execute the sequence instry.
36. If start’ is defined, then:
a. Let (start x) be start’.
b. Let instrs be the instruction (call).
c. Execute the instruction instrs.
37. Pop the frame F from the stack.

38. Return moduleinst.

instantiate(s, module, externaddr*) = s';{module moduleinst}; instr? instry instr!
if - module : xt¥ — xt}
A (st externaddr : at;)*
A module = module type* import* tag* global* mem* table* func* data® elem™ start” export*
A global™ = (global globaltype expry)*
A table™ = (table tabletype expr,)*
A data™ = (data byte™ datamode)*
A elem™ = (elem reftype expry elemmode)*
A start” = (start x)’
A moduleinsty = {types alloctype™ (type*),
globals globals(externaddr™),
funcs funcs(externaddr*) (|s.funcs| + ig)¥<lfunc™l}
A z = s;{module moduleinsty}
A (2', valy) = evalglobal®(z, globaltype®, expry)
A (25 expry —* 25 ref)
A (25 expre —* 25 ref)*™
A (s, moduleinst) = allocmodule(s, module, externaddr™, valg, refy, (ref2)*)
A instry = @ rundata,, (data*[ig])%<lete’|
A instr? = @ runelem;, (elem*[ie])%<lelem”|

A instr?! = (call z)*

where:

evalglobal®(z, globaltype™, expr'™)
1. If expr”™ = e, then:
a. Assert: Due to validation, globaltype™ = e.
b. Return e.
2. Else:
a. Let expr expr’™ be expr™.
b. Assert: Due to validation, |globaltype®| > 1.

. Let gt gt'" be globaltype™.

o

o

. Let (s, f) be the destructuring of z.

188 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

e. Let val be the result of evaluating expr with state z.

f. Let a be allocglobal(s, gt, val).
g. Append a to f.module.globals.
h. Let val’™ be evalglobal®((s, f), gt'™, expr'™).
i. Return val val’".
evalglobal®(z, €, €) = (z,¢)
evalglobal*(z, gt gt'™, expr expr'™) = (2',val val'™)
if z; expr —* z;val
Nz=s;f

A (8',a) = allocglobal(s, gt, val)
A (2, val’™) = evalglobal*((s’; f[.module.globals =@ a)), gt'*, expr’™)
rundata, (data b" datamode)
1. If datamode = passive, then:
a. Return e.
2. Assert: Due to validation, datamode is some active memidz expr.
3. Let (active y instr™) be the destructuring of datamode.

4. Return instr™ (i32.const 0) (i32.const n) (memory.init y =) (data.drop z).

runelem,, (elem 7t e™ elemmode)
1. If elemmode = passive, then:
a. Returne.
2. If elemmode = declare, then:
a. Return (elem.drop z).
3. Assert: Due to validation, elemmode is some active tableidx expr.
4. Let (active y instr*) be the destructuring of elemmode.
5. Return instr* (is2.const 0) (i32.const n) (table.init y z) (elem.drop z).

rundata,(data b™ (passive)) = €
rundata,(data b™ (active y instr™)) =
instr* (i32.const 0) (i32.const n) (memory.init y x) (data.drop x)

runelem, (elem 7t e™ (passive)) = ¢
runelem, (elem 7t e™ (declare)) = (elem.drop z)
runelem, (elem rt e (active y instr™)) =

instr* (i32.const 0) (i32.const n) (table.init y) (elem.drop)

Note

Checking import types assumes that the module instance has already been allocated to compute the respective
closed defined types. However, this forward reference merely is a way to simplify the specification. In practice,
implementations will likely allocate or canonicalize types beforehand, when compiling a module, in a stage
before instantiation and before imports are checked.

Similarly, module allocation and the evaluation of global and table initializers as well as element segments
are mutually recursive because the global initialization values val;, ref ., and element segment contents ref
are passed to the module allocator while depending on the module instance moduleinst and store s’ returned
by allocation. Again, this recursion is just a specification device. In practice, the initialization values can be
determined beforehand by staging module allocation such that first, the module’s own function instances are
pre-allocated in the store, then the initializer expressions are evaluated in order, allocating globals on the way,

4.7. Modules 189

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

then the rest of the module instance is allocated, and finally the new function instances’ module fields are set to
that module instance. This is possible because validation ensures that initialization expressions cannot actually
call a function, only take their reference.

All failure conditions are checked before any observable mutation of the store takes place. Store mutation is
not atomic; it happens in individual steps that may be interleaved with other threads.

Evaluation of constant expressions does not affect the store.

4.7.3 Invocation

invoke(s, funcaddr, val™)

1.
2.
3.

11.
12.
13.

Assert: Due to validation, the expansion of s.funcs[funcaddr].type is some func resulttype — resulttype.
Let (funct] — t3) be the destructuring of the expansion of s.funcs[funcaddr].type.
If |¢%] # |val®|, then:
a. Fail.
For all ¢, in ¢}, and corresponding val in val™:
a. If val is not valid with type ¢, then:
1) Fail.

5. Let k be the length of ¢3.

6. Let F be the frame {module {}} whose arity is k.
7.
8
9

Push the frame F'.

. Push the values val™ to the stack.
. Push the value (ref.func funcaddr) to the stack.
10.

Execute the instruction (call_ref s.funcs[funcaddr].type).
Pop the values val’ ¥ from the stack.
Pop the frame F' from the stack.

Return val’".

Once a module has been instantiated, any exported function can be invoked externally via its function address
funcaddr in the store s and an appropriate list val* of argument values.

Invocation may fail with an error if the arguments do not fit the function type. Invocation can also result in an
exception or trap. It is up to the embedder to define how such conditions are reported.

Note

If the embedder API performs type checks itself, either statically or dynamically, before performing an invoca-
tion, then no failure other than traps or exceptions can occur.

The following steps are performed:

1.

Assert: S.funcs[funcaddr] exists.

. Let funcinst be the function instance S.funcs|funcaddr].

2
3.
4

Let func [t}7] — [¢5"] be the composite type expand(funcinst.type).

. If the length |val*| of the provided argument values is different from the number n of expected arguments,

then:

a. Fail.

190

Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5. For each value type ¢; in ¢7 and corresponding value val; in val*, do:
a. If wal; is not valid with value type ¢;, then:
i. Fail.
6. Let F be the dummy frame {module {}, locals €}.
7. Push the frame F' to the stack.
8. Push the values val* to the stack.
9. Invoke the function instance at address funcaddr.
Once the function has returned, the following steps are executed:
1. Assert: due to validation, m values are on the top of the stack.
2. Pop wal}}, from the stack.
3. Assert: due to validation, the frame F' is now on the top of the stack.

4. Pop the frame F' from the stack.

The values val;,, are returned as the results of the invocation.

invoke(s, funcaddr,val®) = s;{module {}}; val® (ref.func funcaddr) (call_ref s.funcs|[funcaddr].type)
if s.funcs[funcaddr].type =~ func t} — t3
A (st wal :t1)*

4.7. Modules 191

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

192 Chapter 4. Execution

CHAPTER D

Binary Format

5.1 Conventions

The binary format for WebAssembly modules is a dense linear encoding of their abstract syntax.?

The format is defined by an attribute grammar whose only terminal symbols are bytes. A byte sequence is a
well-formed encoding of a module if and only if it is generated by the grammar.

Each production of this grammar has exactly one synthesized attribute: the abstract syntax that the respective byte
sequence encodes. Thus, the attribute grammar implicitly defines a decoding function (i.e., a parsing function for
the binary format).

Except for a few exceptions, the binary grammar closely mirrors the grammar of the abstract syntax.

Note

Some phrases of abstract syntax have multiple possible encodings in the binary format. For example, numbers
may be encoded as if they had optional leading zeros. Implementations of decoders must support all possible
alternatives; implementations of encoders can pick any allowed encoding.

The recommended extension for files containing WebAssembly modules in binary format is “.wasm” and the rec-
ommended Media Type®’ is “application/wasm”.

5.1.1 Grammar

The following conventions are adopted in defining grammar rules for the binary format. They mirror the conven-
tions used for abstract syntax. In order to distinguish symbols of the binary syntax from symbols of the abstract
syntax, typewriter font is adopted for the former.

» Terminal symbols are bytes expressed in hexadecimal notation: 0xOF.
* Nonterminal symbols are written in typewriter font: valtype, instr.
e B is asequence of n > 0 iterations of B.

* B* isapossibly empty sequence of iterations of B. (This is a shorthand for B" used where n is not relevant.)

28 Additional encoding layers — for example, introducing compression — may be defined on top of the basic representation defined here.
However, such layers are outside the scope of the current specification.
27 https://www.iana.org/assignments/media-types/media- types.xhtml

193

https://www.iana.org/assignments/media-types/media-types.xhtml

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

 B” is an optional occurrence of B. (This is a shorthand for B™ where n < 1.)

» z:B denotes the same language as the nonterminal B, but also binds the variable z to the attribute synthesized
for B. A pattern may also be used instead of a variable, e.g., 7:B.

* Productions are written sym ::= B; = A; | ... | B, = A,, where each A4, is the attribute that is syn-
thesized for sym in the given case, usually from attribute variables bound in B;.

» Large productions may be split into multiple definitions, indicated by ending the first one with explicit el-
lipses, sym ::= B; | ..., and starting continuations with ellipses, sym ::= ... | Bo.

¢ Some productions are augmented by side conditions in parentheses, which restrict the applicability of the
production. They provide a shorthand for a combinatorial expansion of the production into many separate
cases.

* If the same meta variable or non-terminal symbol appears multiple times in a production (in the syntax or
in an attribute), then all those occurrences must have the same instantiation. (This is a shorthand for a side
condition requiring multiple different variables to be equal.)

Note

For example, the binary grammar for number types is given as follows:

0x7C = fes

numtype =
| 0x7D = fz
|
|

0X7E = 64
0x7F = i3

Consequently, the byte 0x7F encodes the type i32, 0x7E encodes the type i64, and so forth. No other byte value
is allowed as the encoding of a number type.

The binary grammar for limits is defined as follows:

limitsy == 0x00 n:u64 = (32, [n..2N 1))
| 0x01 n:u64 m:u6d = (i32,[n..m])
| 0x04 n:u6d = (ie4,[n.. 2N = 1))
| 0x05 n:u64 muesd = (ie4,[n..m])

That is, a limits pair is encoded as either the byte 0x00 followed by the encoding of a us; value, or the byte 0x01
followed by two such encodings. The variables n and m name the attributes of the respective u64 nonterminals,
which in this case are the actual unsigned integers those decode into. The attribute of the complete production
then is the abstract syntax for the limit, expressed in terms of the former values.

The variable IV is a parameter to the grammer symbol that can be instantiated differently at each use site. In
this example, it controls the value range of the limits.

5.1.2 Auxiliary Notation
When dealing with binary encodings the following notation is also used:
* ¢ denotes the empty byte sequence.

* ||B|] is the length of the byte sequence generated from the production B in a derivation.
5.1.3 Lists
Lists are encoded with their u32 length followed by the encoding of their element sequence.

list(X) == nmu32 (el:X)" = el

194 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.2 Values
5.2.1 Bytes

Bytes encode themselves.

byte = 0x00 | ... | OxFF

5.2.2 Integers

All integers are encoded using the LEB 128% variable-length integer encoding, in either unsigned or signed variant.

Unsigned integers are encoded in unsigned LEB128%" format. As an additional constraint, the total number of
bytes encoding a ulN value must not exceed ceil(IN/7) bytes.

ulN == n:byte = n ifn<2"An <2V
| nibyte mu(N -7 = 27-m+n—-27) ifn>2"TAN>7

Signed integers are encoded in signed LEB1283! format, which uses a two’s complement representation. As an
additional constraint, the total number of bytes encoding an sN value must not exceed ceil(IN/7) bytes.

sN n:byte = n ifn <20 An<2N-1

| n:byte = n-27 if26 <n<2TAn>27—2N-1
| nmibyte iu(N—-7) = 27-i+(n—-27) ifn>2"TAN>T7

Uninterpreted integers are encoded as signed integers.

iN == @:sN = signedy'(i)

Note

The side conditions N > 7 in the productions for non-terminal bytes of the /N and sN encodings restrict the
encoding’s length. However, “trailing zeros” are still allowed within these bounds. For example, 0x03 and
0x83 0x00 are both well-formed encodings for the value 3 as a us. Similarly, either of 0x7E and OxFE Ox7F
and OxFE OxFF 0x7F are well-formed encodings of the value —2 as an si6.

The side conditions on the value n of terminal bytes further enforce that any unused bits in these bytes must be 0
for positive values and 1 for negative ones. For example, 0x83 0x10 is malformed as a us encoding. Similarly,
both 0x83 0x3E and OxFF 0x7B are malformed as ss encodings.

5.2.3 Floating-Point

Floating-point values are encoded directly by their IEEE 754°? (Section 3.4) bit pattern in little endian®* byte order:

fN == b byteMN/® = bthSFJ\}(b*)

29 https://en.wikipedia.org/wiki/LEB128

30 https://en.wikipedia.org/wiki/LEB128#Unsigned_LEB128
31 https://en.wikipedia.org/wiki/LEB128#Signed_LEB128
32 https://ieeexplore.ieee.org/document/8766229

33 https://en.wikipedia.org/wiki/Endianness#Little-endian

5.2. Values 195

https://en.wikipedia.org/wiki/LEB128
https://en.wikipedia.org/wiki/LEB128#Unsigned_LEB128
https://en.wikipedia.org/wiki/LEB128#Signed_LEB128
https://ieeexplore.ieee.org/document/8766229
https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.2.4 Names

Names are encoded as a list of bytes containing the Unicode** (Section 3.9) UTF-8 encoding of the name’s character
sequence.

name = b*:list(byte) = name if utfs(name) = b*

The auxiliary utfs function expressing this encoding is defined as follows:

utfs(ch™) = Putfs(ch)*
utfs(ch) = b if ch < U+80
Ach=b
utfs(ch) = by by if U480 < ch < U+40800
A ch = 2% - (b; — 0xCO) + cont(by)
utfs(ch) = by by bs if U4+0800 < ch < U+D800 v U+E000 < ch < U+410000
A ch = 212 . (by — 0xEO) + 25 - cont(by) + cont(bs)
utfs(ch) = by ba bsby if U410000 < ch < U+11000

A ch = 28 . (by — 0xFO0) + 212 - cont(by) + 25 - cont(bs) + cont(by4)

where cont(b) = b — 0x80 if (0x80 < b < 0xC0)

Note

Unlike in some other formats, name strings are not O-terminated.

5.3 Types

Note

In some places, possible types include both type constructors or types denoted by type indices. Thus, the
binary format for type constructors corresponds to the encodings of small negative s/N values, such that they
can unambiguously occur in the same place as (positive) type indices.

5.3.1 Number Types

Number types are encoded by a single byte.

numtype == O0x7C = fe4
| 0x7D = fz
| Ox7E = 64
| Ox7F = i3
5.3.2 Vector Types
Vector types are also encoded by a single byte.
vectype = O0x7B = vi28

34 https://www.unicode.org/versions/latest/

196 Chapter 5. Binary Format

https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.3.3 Heap Types

Heap types are encoded as either a single byte, or as a type index encoded as a positive signed integer.

absheaptype 1= 0x68 = cont
| 0x69 = exn
| 0x6A = array
| 0x6B = struct
| 0x6C = i3
| 0x6D = eq
| O0x6E = any
| 0x6F = extern
| 0x70 = func
| 0x71 = none
| 0x72 = noextern
| 0x73 = nofunc
| 0x74 = noexn
| 0x75 = nocont
heaptype ::= ht:absheaptype = ht
| x:s33 = =z ifx >0

Note

The heap type bot cannot occur in a module.

5.3.4 Reference Types

Reference types are either encoded by a single byte followed by a heap type, or, as a short form, directly as an
abstract heap type.

reftype 0x63 ht:heaptype = ref null ht

| 0x64 ht:heaptype = ref ht
| ht:absheaptype = ref null ht

5.3.5 Value Types
Value types are encoded with their respective encoding as a number type, vector type, or reference type.

valtype nt:numtype = nt

| ovtivectype = ut
| rtireftype = 1t

Note

The value type bot cannot occur in a module.

Value types can occur in contexts where type indices are also allowed, such as in the case of block types. Thus,
the binary format for types corresponds to the signed LEB128% encoding of small negative sN values, so that
they can coexist with (positive) type indices in the future.

5.3.6 Result Types

Result types are encoded by the respective lists of value types.

resulttype == t*:list(valtype) = t*

35 https://en.wikipedia.org/wiki/LEB128#Signed_LEB128

5.3. Types 197

https://en.wikipedia.org/wiki/LEB128#Signed_LEB128

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.3.7 Composite Types

Composite types are encoded by a distinct byte followed by a type encoding of the respective form.

mut = 0x00 = €

| 0x01 = mut
comptype := O0x5D tu:heaptype = conttu

| OxBE ft:fieldtype = array ft

| O0x5F ft*:list(fieldtype) = struct ft*

| 0x60 tj:resulttype ti:resulttype = funct] — ¢}
fieldtype := zi:storagetype mut’mut = mut? 2t

storagetype = {:valtype =

| ptpacktype = pt

packtype u= 0x77 = 16
=

| 0x78 is
5.3.8 Recursive Types

Recursive types are encoded by the byte 0x4E followed by a list of sub types. Additional shorthands are recognized
for unary recursions and sub types without super types.

rec st*
rec st

rectype = Ox4E st*:list(subtype)
| st:subtype

=
=
subtype = Ox4F z*:list(typeidx) ct:comptype = subfinal z* ct
| 0x50 z*:list(typeidx) ct:comptype = subaz* ct

| =

ct:comptype sub final € ct

5.3.9 Limits

Limits are encoded with a preceding flag indicating whether a maximum is present, and a flag for the address type.

limitsy == 0x00 n:u64 = (32, [n..2N —1])
| 0x01 nu6d mmued = (i32,[n..m])
| 0x04 n:ubd = (ie4,[n.. 2N = 1))
| 0x05 n:u64 muesd = (ies,[n..m])
5.3.10 Tag Types
Tag types are encoded by a type index denoting a function type.
tagtype = 0x00 z:typeidx =

Note

In future versions of WebAssembly, the preceding zero byte may encode additional attributes.

5.3.11 Global Types

Global types are encoded by their value type and a flag for their mutability.

globaltype := ¢{:valtype mut mut = mut’¢

198 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.3.12 Memory Types

Memory types are encoded with their limits.

memtype = (at,lim):1imits|q/eaxi) = at lim page

5.3.13 Table Types

Table types are encoded with their limits and the encoding of their element reference type.

tabletype = rtireftype (at,lim):limits|q = at lim 1t

5.3.14 External Types

External types are encoded by a distiguishing byte followed by an encoding of the respective form of type.

= 0x00 z:typeidx = funcz
| 0x01 tt:tabletype = table ¢t
| 0x02 mt:memtype = mem mt
| 0x03 gt:globaltype = global gt
| = tagjt

externtype

0x04 jt:tagtype

5.4 Instructions

Instructions are encoded by opcodes. Each opcode is represented by a single byte, and is followed by the instruc-
tion’s immediate arguments, where present. The only exception are structured control instructions, which consist
of several opcodes bracketing their nested instruction sequences.

Note

The byte codes chosen to encode instructions are historical and do not follow a consistent pattern. In this section,
instructions are hence not presented in opcode order, but instead grouped consistently with other sections in
this document. An instruction index ordered by opcode can be found in the Appendix.

Gaps in the byte code ranges are reserved for future extensions.

5.4.1 Parametric Instructions

Parametric instructions are represented by single byte codes, possibly followed by a type annotation.

instr 2= 0x00 = unreachable
| 0x01 = nop
| Ox1A = drop
| 0x1B = select
| 0x1C t*:list(valtype) = selectt*
|

5.4.2 Control Instructions

Control instructions have varying encodings. For structured instructions, the instruction sequences forming nested
blocks are delimited with explicit opcodes for end and else.

5.4. Instructions 199

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Block types are encoded in special compressed form, by either the byte 0x40 indicating the empty type, as a single
value type, or as a type index encoded as a positive signed integer.

blocktype = 0x40
| t:valtype
| 533
instr o= ...
| 0x02 bt:blocktype (in:instr)* 0xOB
| 0x03 bt:blocktype (in:instr)* 0xOB
| 0x04 bt:blocktype (in:instr)* 0xOB
| 0x04 bt:blocktype (inj:instr)*
0x05 (ing:instr)* 0xOB
| 0x08 z:tagidx
| 0x0A
| 0x0C Il:labelidx
| 0xOD l:labelidx
| OxOE [*:list(labelidx) l,:labelidx
| 0xOF
| 0x10 z:funcidx
| 0x11 y:typeidx z:tableidx
| 0x12 x:funcidx
| 0x13 y:typeidx z:tableidx
| 0x1F bt:blocktype c¢*:list(catch) (in:instr)* 0x0B
| OxEO z:typeidx
| O0xEl x:typeidx y:typeidx
| O0xE2 x:tagidx
| O0xE3 z:typeidx hdl*:list(hdl)
| O0xE4 x:typeidx y:tagidx hdl*:list(hdl)
| O0xE5 z:typeidx y:tagidx
|
catch = 0x00 z:tagidx [:labelidx
| 0x01 z:tagidx l:labelidx
| 0x02 [l:labelidx
| 0x03 l:labelidx
hdl = 0x00 z:typeidx y:labelidx
| 0x01 x:typeidx
Note

LR

block bt in*
loop bt in*

if bt in™ else €
if bt in] else inj

LR

throw =

throw_ref

br{

br_if [

br_table [* [,

return

call

call_indirect z y
return_call x
return_call_indirect x y
try_table bt ¢* in*
cont.new x

cont.bind x y

suspend x

resume z hdl*
resume_throw z y hdl*
switch x y

S R A

catchz [
catch_ref x [
catch_all {
catch_all _ref

onxy
on x switch

A R

The else opcode 0x05 in the encoding of an if instruction can be omitted if the following instruction sequence

is empty.

Unlike any other occurrence, the type index in a block type is encoded as a positive signed integer, so that its
signed LEB128 bit pattern cannot collide with the encoding of value types or the special code 0x40, which
correspond to the LEB128 encoding of negative integers. To avoid any loss in the range of allowed indices, it
is treated as a 33 bit signed integer.

200

Chapter 5. Binary Format

ifi >0

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.4.3 Variable Instructions

Variable instructions are represented by byte codes followed by the encoding of the respective index.

instr

5.4.4 Table Instructions

0x20 x:localidx

= local.get z
0x21 z:localidx = local.setx
0x22 x:localidx = local.teex
0x23 z:globalidx = global.get x
0x24 x:globalidx = global.setz

Table instructions are represented either by a single byte or a one byte prefix followed by a variable-length unsigned

integer.

instr o= ...

0x25
0x26
OxFC
0xFC
0xFC
OxFC
OxFC
OxFC

x:tableidx
x:tableidx

12:u32
13:u32
14:u32
15:u32
16:u32
17:u32

5.4.5 Memory Instructions

y:elemidx zx:tableidx
x:elemidx

x1:tableidx xo:tableidx
x:tableidx

x:tableidx

x:tableidx

S 2 R A

table.get =
table.set x
table.init x y
elem.drop x
table.copy x1 x2
table.grow x
table.size x
table.fill

Each variant of memory instruction is encoded with a different byte code. Loads and stores are followed by the
encoding of their memarg immediate, which includes the memory index if bit 6 of the flags field containing
alignment is set; the memory index defaults to O otherwise.

5.4. Instructions

201

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

memarg

instr

n:u32 m:u32
n:u32 r:memidx m:u32

0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F
0x40
0xFC
0xFC
OxFC
OxFC

Z, qo):memarg
T, a0):memarg

8

, @0)memarg
T, ao):memarg
, 60):memarg
T, ao):memarg

]

8

, ao)memarg

8

, ao)memarg

8]

, G0)memarg
, G0)memarg

)
)
)
)
)
)
)
)
)
)
, a0):memarg
)
)
)
)
)
)
)
)
)
)
)

3]

8

, G0)memarg
, G0)memarg

8 8

, 00):memarg
, G0):memarg
, G0)memarg
, G0)memarg

8 8 8 8

, ao)memarg

8

, G0):memarg
, G0):memarg

Z, ao)memarg

T, a0):memarg

(x, ao)memarg

r:memidx

rmemidx

8:u32 y:dataidx xmemidx
9:u32 z:dataidx

10:u32 zi:memidx xo:memidx
11:u32 z:memidx

8

/\/\/\AA/\/\/\/\A/\@/\/\A/\/\/\/\/-\A/\

5.4.6 Reference Instructions

4

L R R O A

(0, {align n, offset m})
(x, {align (n — 2°), offset m})

i32.load x ao
i64.load x ao
f32.load x ao
fea.load x ao
i32.l0ads_s = ao
i32.loads_u x ao
i32.l0ad16_s x ao
i32.load16_u = ao
i64.loads_s x ao
i64.loads_u x ao
i64.l0ad16_s x ao
i64.load16_u x ao
i64.l0ad32_s x ao
i64.l0ad32_u x ao
i32.store x ao
i64.store x ao
f32.store x ao
fea.store & ao
i32.stores x ao
i32.storei6 T ao
i64.s5tores & ao
i64.store16 x ao
i64.store32 x ao
memory.size z
memory.grow T
memory.init T y
data.drop x
Memory.copy xj T2
memory.fill z

ifn <26
if20 <n <27

Generic reference instructions are represented by single byte codes, others use prefixes and type operands.

202

Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr = ...
| 0xDO ht:heaptype = ref.null ht
| 0xD1 = ref.is_null
| 0xD2 z:funcidx = ref.funca
| 0xD3 = ref.eq
| 0xD4 = ref.as_non_null
| 0xD5 l:labelidx = br_on_null{
| 0xD6 l:labelidx = br_on_non_null{
| OxFB 0:u32 z:typeidx = struct.new x
| OxFB 1:u32 z:typeidx = struct.new_default x
| OxFB 2:u32 z:typeidx 7:u32 = struct.getx ¢
| 0xFB 3:u32 z:typeidx 4:u32 = struct.get_ szt
| O0xFB 4:u32 z:typeidx :u32 = struct.get uzxi
| O0xFB 5:u32 z:typeidx 4:u32 = struct.setz ¢
| OxFB 6:u32 x:typeidx = array.new z
| OxFB T7:u32 x:typeidx = array.new_default ©
| 0xFB 8:u32 z:typeidx m:u32 = array.new_fixed z n
| 0xFB 9:u32 z:typeidx y:dataidx = array.new_dataz y
| O0xFB 10:u32 z:typeidx y:elemidx = array.new_elem z y
| O0xFB 11:u32 x:typeidx = array.getx
| OxFB 12:u32 x:typeidx = array.get_sx
| 0xFB 13:u32 x:typeidx = array.get_ucx
| 0xFB 14:u32 z:typeidx = array.setx
| OxFB 15:u32 = array.len
| OxFB 16:u32 x:typeidx = array.fillz
| OxFB 17:u32 zj:typeidx mg:typeidx = array.copy Ti T2
| OxFB 18:u32 x:typeidx y:dataidx = array.init_dataz y
| 0xFB 19:u32 z:typeidx y:elemidx = array.init_elemz y
| OxFB 20:u32 hi:heaptype = ref.test (ref ht)
| OxFB 21:u32 ht:heaptype = ref.test (ref null ht)
| OxFB 22:u32 hi:heaptype = ref.cast (ref ht)
| OxFB 23:u32 hi:heaptype = ref.cast (ref null ht)
| OxFB 24:u32 (null, null}):castop = br_on_cast (ref null} hty) (ref null} hts)

l:1abelidx hti:heaptype hts:heaptype
| 0xFB 25:u32 (null},null}):castop = br_on_cast_fail I (ref null} hty) (ref null}, hts)
l:labelidx ht;:heaptype hts:heaptype

| 0xFB 26:u32 = any.convert_extern
| 0xFB 27:u32 = extern.convert_any
| OxFB 28:u32 = ref.is
| O0xFB 29:u32 = i3l.get_s
| O0xFB 30:u32 = i3l.get_u
|

castop == 0x00 = (e€)
| 0x01 = (null,e)
| 0x02 = (enull)
| 0x03 = (null,null)

5.4.7 Numeric Instructions
All variants of numeric instructions are represented by separate byte codes.

The const instructions are followed by the respective literal.

5.4. Instructions 203

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| 0x41 n:u32
| 0x42 n:u64d
| 0x43 p:£32
| 0x44 p:f64
|

R

i32.const n
i64.const n
f32.const p
fe4.const p

All other numeric instructions are plain opcodes without any immediates.

instr = ...

| 0x45
| 0x46
| o0x47
| 0x48
| 0x49
| oxaA
| 0x4B
| oxac
| 0x4D
| Ox4E
| 0x4F
| 0x50
| 0x51
| 0x52
| 0x53
| 0x54
| 0x55
| 0x56
| 0x57
| 0x58
| 0x59
| 0x5A
|

instr o= ...

0x5B
0x5C
0x5D
0x5E
0x5F
0x60
0x61
0x62
0x63
0x64
0x65
0x66

R O e O O R 2

LR R 0 0 R A A

i32.eqz
i32.eq
i32.ne
i32.1t
i32.1t
i32.gt
i32.gt
i32.le
i32.le
i32.ge
i32.ge
i64.€qZ
i64.eq
i64.ne
i64.1t
i64.It
i64.gt
i64.gt
i64.le
i64.le
i64.g€
i64.ge

f32.eq
f32.ne
f3o.lt
f32.gt
f32.le
f32.ge
fe4.eq
fe4.ne
fea.lt
fea.gt
fos.le
fesa.ge

204

Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr

0x67
0x68
0x69
0x6A
0x6B
0x6C
0x6D
0x6E
0x6F
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
OxT7A
0x7B
0x7C
0x7D
0x7E
OxTF
0x80
0x81
0x82
0x83
0x84
0x85
0x86
0x87
0x88
0x89
0x8A

L R R O R O O O O R A O A

i32.clz
i32.ctz
i32.popcnt
i32.add
i32.sub
i32.mul
i32.div
i32.div
i32.rem
i32.rem
i32.and
i32.0r
i32.x0r
i32.shl
i32.shr
i32.shr
i32.rotl
i32.rotr
i64.clz
i64.ctz
i64.popcnt
i64.add
i64.sub
i64.mu
i64.div
i64.div
i64.rem
i64.rem
i64.and
i64.0r
i64.x0r
i64.shl
i64.shr
i64.shr
i64.rotl
i64.rotr

5.4. Instructions

205

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr

instr =

0x8B
0x8C
0x8D
0x8E
0x8F
0x90
0x91
0x92
0x93
0x94
0x95
0x96
0x97
0x98
0x99
0x9A
0x9B
0x9C
0x9D
0x9E
0x9F
0xAO
OxA1
0xA2
0xA3
0xA4
0xA5
0xA6

0xA7
0xA8
0xA9
OxAA
0xAB
0xAC
0xAD
OxAE
OxAF
0xBO
0xB1
0xB2
0xB3
0xB4
0xB5
0xB6
0xB7
0xB8
0xB9
0xBA
0xBB
0xBC
0xBD
OxBE
O0xBF

S R | A R 0 A2

L A O 2R

f32.abs
f32.neg
f32.ceil
f32.floor
f32.trunc
f32.nearest
f32.sqrt
f32.add
f32.sub
f32.mul
f32.div
f32.min
f32.max
f32.copysign
f64.abs
fe4.neg
fea.ceil
fea.floor
fea.trunc
fea.nearest
fea.sqrt
fe4.add
fea.sub
fea.mul
fea.div
f64.min
fea.max
fe4.copysign

i32.wrap_i64
i32.trunc_f32
i32.trunc_f32
i32.trunc_fe4
i32.trunc_fe4
i64.extend_i32
i64.extend_i32
i64.trunc_f32
i64.trunc_f32
i64.trunc_fe4
i64.trunc_fe4
f32.convert_i32
f32.convert_i32
f32.convert_is4
f32.convert_is4
f32.demote_fe4
fea.convert_i32
fea.convert_i32
fea.convert_isa
fea.convert_isa
f32.promote_fe4
i32.reinterpret_f32
i64.reinterpret_fe4
f32.reinterpret_i32
fea.reinterpret_ies4

206

Chapter 5.

Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr

| 0xCO
| o0xC1
| 0xC2
| 0xC3
| 0xC4
|

Uil

i32.extend
i32.extend
i64.extend
i64.extend
i64.extend

The saturating truncation instructions all have a one byte prefix, whereas the actual opcode is encoded by a variable-

length unsigned integer.

instr

5.4.8 Vector Instructions

OxFC
0xFC
OxFC
OxFC
OxFC
OxFC
0xFC
OxFC

0:u32
1:u32
2:u32
3:u32
4:u32
5:u32
6:u32
7:u32

L 2R R R A

i32.trunc_sat_f32
i32.trunc_sat_f32
i32.trunc_sat_fe4
i32.trunc_sat_fe4
i64.trunc_sat_f32
i64.trunc_sat_f32
i64.trunc_sat_fe4
i64.trunc_sat_fe4

All variants of vector instructions are represented by separate byte codes. They all have a one byte prefix, whereas
the actual opcode is encoded by a variable-length unsigned integer.

Vector loads and stores are followed by the encoding of their memarg immediate.

laneidx ::=

instr =

I'byte

OxFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
O0xFD

0:u32
1:u32
2:u32
3:u32
4:u32
5:u32
6:u32
7:u32
8:u32
9:u32
10:u32
11:u32
84:u32
85:u32
86:u32
87:u32
88:u32
89:u32
90:u32
91:u32
92:u32
93:u32

T, q0)memarg
T, ao)memarg
T, ao)memarg

I, ao0)memarg

8
)

‘memarg
0):memarg

Z, @o)memarg

T, qo0)memarg

)
)
)
)
Z, a0):memarg
)
)
)
)
)

I, ao0)memarg

X, a0):memarg
X, a0):memarg
x, a0):memarg
x, a0):memarg
X, a0):memarg
T, ao0):memarg
X, a0):memarg
x, a0):memarg
x, ao):memarg
x, qo):memarg
T, a0):memarg
X, a0):memarg

t:laneidx
1:laneidx
i:laneidx
1:laneidx
i:laneidx
t:laneidx
t:laneidx
i:laneidx

4

S e I R O e O A

vizs.load x ao
vi2s.loadsxs_s x ao
vi2s.loadsxs_u x ao
vi2s.loadi6x4_s x ao
vizs.loadiexa_u x ao
vi2s.load32x2_s x ao
viz2s.load32x2_u x ao
vizg.loads_splat & ao
vi2g8.load16_splat x ao
vizs.load32_splat x ao
vi2s.loade4_splat = ao
vizg.store x ao
vi2s.loads_lane x ao ©
vi2s.loadi6_lane x ao 7
vi2s.load32_lane x ao i
viz2s.loades_lane x ao i
vizg.stores_lane x ao @
vi2g.store16_lane x ao %
vi2g.store32_lane x ao ¢
vi28.storeé4_lane x ao ©
viz2s.load32_zero x ao
vi2s.loade4_zero x ao

The const instruction for vectors is followed by 16 immediate bytes, which are converted into an u:2s in

5.4. Instructions

207

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

littleendian byte order:

instr

} OxFD 12:u32 (b:byte)'® = vizs.const bytesg((0)'%)

The shuffle instruction is also followed by the encoding of 16 laneidz immediates.

instr

0xFD 13:u32 (I:laneidx)!® = isxie.shuffle [1©
OxFD 14:u32
OxFD 256:u32

= isx16.swizzle
= isx16.relaxed_swizzle

Lane instructions are followed by the encoding of a laneidr immediate.

instr =

0xFD
0xFD
0xFD
0xFD
0xFD
0xFD
0xFD
0xFD
OxFD
0xFD
0xFD
0xFD
0xFD
0xFD

21:u32 [:laneidx
22:u32 [:laneidx
23:u32 [:laneidx
24:u32 [:laneidx
25:u32 [:laneidx
26:u32 [:laneidx
27:u32 [:laneidx
28:u32 [:laneidx
29:u32 [:laneidx
30:u32 [:laneidx
31:u32 [:laneidx
32:u32 [:laneidx
33:u32 [:laneidx
34:u32 l:laneidx

S I

isx16.extract_lane_s [
isx16.extract_lane_ul
isx16.replace_lane [
i16x8.extract_lane_s
it6xs.extract_lane_u [
it6xs.replace_lane [
i32x4.extract_lane [
i32x4.replace_lane [
i64x2.extract_lane [
ie4x2.replace_lane [
f32xa.extract_lane [
f32xa.replace_lane [
feax2.extract_lanel
feax2.replace_lane [

All other vector instructions are plain opcodes without any immediates.

instr

OxFD
OxFD
OxFD
OxFD
OxFD
OxFD

15:u32
16:u32
17:u32
18:u32
19:u32
20:u32

R R R 2

isx16.splat
i16x8.splat
i32x4.splat
i64x2.splat
f32x4.splat
feax2.splat

208

Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr =

instr =

0xFD
0xFD
0xFD
0xFD
OxFD
0xFD
0xFD
0xFD
0xFD
OxFD
O0xFD
0xFD
0xFD
0xFD
0xFD
OxFD
0xFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
0xFD
OxFD
0xFD
0xFD
0xFD
0xFD

35:u32
36:u32
37:u32
38:u32
39:u32
40:u32
41:u32
42:u32
43:u32
44:u32
45:u32
46:u32
47:u32
48:u32
49:u32
50:u32
51:u32
52:u32
53:u32
54:u32
55:u32
56:u32
57:u32
58:u32
59:u32
60:u32
61:u32
62:u32
63:u32
64:u32
214:u32
215:u32
216:u32
217:u32
218:u32
219:u32

OxFD 65:u32
OxFD 66:u32
OxFD 67:u32
OxFD 68:u32
0xFD 69:u32
OxFD 70:u32
OxFD 71:u32
OxFD 72:u32
O0xFD 73:u32
OxFD 74:u32
OxFD 75:u32
OxFD 76:u32

L R R O e R

S O O R 2 A A

i8x16.eq
i8x16.ne
igx16.1t
i8x16.t
i8x16.gt
i8x16.gt
igx16.le
igx16.le
i8x16.ge
i8x16.ge
i16x8.eq
i16x8.ne
i16x8.1t
i16x8.t
i16x8.gt
i16x8.gt
i16x8.le
i16x8.le
i16x8.ge
i16x8.ge
i32x4.eq
i32x4.ne
i32x4.1t
i32x4.1t
i32x4.gt
i32x4.gt
i32x4.le
i32x4.le
i32x4.ge
i32x4.ge
i64x2.eq
i64x2.ne
i6ax2.lt_s
i64x2.gt_s
i64x2.le_s
i64x2.ge_s

faoxa.eq
f32x4.ne
faoxa.lt
f3ox4.gt
f3oxa.le
faoxa.ge
feax2.eq
feax2.ne
feaxa.It
feax2.gt
feaxa.le
feax2.ge

5.4. Instructions

209

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr

instr =

0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD

OxFD 77:u32
OxFD 78:u32
OxXFD 79:u32
0xFD 80:u32
OxFD 81:u32
OxFD 82:u32
OxFD 83:u32

96:u32

97:u32

98:u32

99:u32

100:u32
101:u32
102:u32
107:u32
108:u32
109:u32
110:u32
111:u32
112:u32
113:u32
114:u32
115:u32
118:u32
119:u32
120:u32
121:u32
123:u32

S O O

S A

vi2g.not
vizs.and
viz2g.andnot
V128.0r
V128.XO0r

v128.bitselect
vi2g.any_true

i8x16.abs
i8x16.neg
i8x16.popcnt
isx16.all_true
isx16.bitmask

i8X16.Narrow_i16x8_s
i8X16.Narrow_i16xs_u

isx16.shl
isx16.shr
i8x16.shr
isx16.add
isx16.add_sat
isx16.add_sat
isx16.sub
isx16.sub_sat
isx16.sub_sat
i8x16.min
i8x16.min
i8x16.max
i8x16.max
i8x16.avgr

210

Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr = ...

O0xFD 124:u32
O0xFD 125:u32
OxFD 128:u32
0xFD 129:u32
0xFD 131:u32
0xFD 132:u32
0xFD 133:u32
OxFD 134:u32
0xFD 135:u32
0xFD 136:u32
0xFD 137:u32
0xFD 138:u32

i16x8.extadd_pairwise_isx16
i16x8.extadd_pairwise_isx16
i16x8.abs

i16x8.neg

i16xs.all_true

i16x8.bitmask
116X8.Narrow_i32x4_s
116X8.Narrow_i32x4_u
i16x8.extend_isx16
i16x8.extend_isx16
i16x8.extend_isx16
i16x8.extend_isx16

0xFD 139:u32 i16x8.shl
0xFD 140:u32 i16x8.shr
O0xFD 141:u32 i16x8.shr

0xFD 130:u32
0xFD 273:u32
OxFD 142:u32
O0xFD 143:u32
OxFD 144:u32
0xFD 145:u32
0xFD 146:u32
OxFD 147:u32

i16x8.q1smulr_sat
it6xs.relaxed_q15mulr
i16x8.add
i16x8.add_sat
i16xs.add_sat
i16x8.sub
i16x8.sub_sat
i16x8.sub_sat

O0xFD 149:u32 i16xs.mul
0xFD 150:u32 i16x8.min
0xFD 151:u32 i16x8.min
0xFD 152:u32 116X8.max
0xFD 153:u32 116X8.max
0xFD 155:u32 i16x8.avgr

O0xFD 156:u32
0xFD 157:u32
0xFD 158:u32
0xFD 159:u32
OxFD 274:u32

i16x8.extmul_isx16
i16x8.extmul_isx16
i16x8.extmul_isx16
i16x8.extmul_isx16
i16x8.relaxed_dot_isx16

L I e R

5.4. Instructions 211

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr o= ...

OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
OxFD
0xFD
0xFD

instr =

126:u32
127:u32
160:u32
161:u32
163:u32
164:u32
167:u32
168:u32
169:u32
170:u32
171:u32
172:u32
173:u32
174:u32
177:u32
181:u32
182:u32
183:u32
184:u32
185:u32
186:u32
188:u32
189:u32
190:u32
191:u32
275:u32

S R O AR R

0xFD 192:u32
0xFD 193:u32
0xFD 195:u32

i32x4.extadd_pairwise_i16x8
i32x4.extadd_pairwise_i16xs

i32x4.abs
i32x4.neg
i32x4.all_true
i32x4.bitmask
i32x4.extend_i16xs
i32x4.extend_i16xs
i32x4.extend_i16x8
i32x4.extend_i16x8
i32x4.shl
i32x4.shr_s
i32x4.shr_u
i32x4.add

i32x4.sub
i32x4.mul
i32x4.min
i32x4.min
i32x4.max
i32x4.max
i32x4.dot_i16x8
i32x4.extmul_i16x8
i32x4.extmul_i16xs
i32x4.extmul_i16xs
i32x4.extmul_i16x8

i32x4.relaxed_dot_add_ii6xs

i64x2.abs
i64x2.neg
i64x2.all_true

0xFD
OxFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD

196:u32
199:u32
200:u32
201:u32
202:u32
203:u32
204:u32
205:u32
206:u32
209:u32
213:u32
220:u32
221:u32
222:u32
223:u32

S R R O e A

i64x2.bitmask
i64x2.extend_i32x4
i6ax2.extend_i32x4
i64x2.extend_i32x4
i6ax2.extend_i32x4
i64x2.shl
i64x2.shr_s
i64x2.shr_u
i64x2.add

i64x2.sub

i64x2.mul
i64x2.extmul_i32x4
i64x2.extmul_i32x4
i6ax2.extmul_i32x4
i64x2.extmul_i32x4

212

Chapter 5.

Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr =

instr =

0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
OxFD
0xFD
0xFD
0xFD
OxFD
OxFD
0xFD
0xFD
0xFD

0xFD
OxFD
O0xFD
O0xFD
0xFD
0xFD
0xFD
0xFD
OxFD
0xFD
0xFD
0xFD
0xFD
OxFD
O0xFD
0xFD
0xFD
OxFD
0xFD
O0xFD
0xFD
0xFD
0xFD

103:u32
104:u32
105:u32
106:u32
224:u32
225:u32
227:u32
228:u32
229:u32
230:u32
231:u32
232:u32
233:u32
234:u32
235:u32
269:u32
270:u32
261:u32
262:u32

116:u32
117:u32
122:u32
148:u32
236:u32
237:u32
239:u32
240:u32
241:u32
242:u32
243:u32
244:132
245:u32
246:u32
247:u32
271:u32
272:u32
263:u32
264:u32
265:u32
266:u32
267:u32
268:u32

S e O

R O O O

f32x4.ceil

f32xa.floor
f32xa.trunc
f32x4.nearest
f32x4.abs

f32x4.neg

f32xa.sqrt

f32x4.add

f32x4.sub

f32x4.mul

f32x4.div

f32x4.min
f32x4.max
f32x4.pmin
f32x4.pmax
f32xa.relaxed_min
f3oxa.relaxed_max
f32xa.relaxed_madd
f32xa.relaxed_nmadd

feax2.ceil

feaxa.floor

feax2.trunc
feax2.nearest

feax2.abs

feax2.neg

feax2.sqrt

feax2.add

feax2.sub

feax2.mul

feaxa.div

feax2.min

feax2.max

feax2.pmin

feax2.pmax
feaxa.relaxed_min
feax2.relaxed_max
feax2.relaxed_madd
feax2.relaxed_nmadd
isx16.relaxed_laneselect
i16x8.relaxed_laneselect
i32x4.relaxed_laneselect
i6ax2.relaxed_laneselect

5.4. Instructions

213

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr = ...
OxFD 94:u32
OxFD 95:u32
OxFD 248:u32
OxFD 249:u32
OxFD 250:u32
OxFD 251:u32

| f32x4.demote_zero_fe4x2
|

|

|

|

|

| O0xFD 252:u32
|

|

|

|

|

|

|

feax2.promote_low_f32x4
i32x4.trunc_sat_f32xa
i32x4.trunc_sat_f32x4
f32x4.convert_i32x4
f32x4.convert_i32x4
i32x4.trunc_sat_fe4ax2
i32x4.trunc_sat_feax2
feax2.convert_i3z2x4
feax2.convert_i32x4
i32x4.relaxed_trunc_f32xa
i32x4.relaxed_trunc_f32xa
i32x4.relaxed_trunc_feax2
i32x4.relaxed_trunc_feax2

OxFD 253:u32
OxFD 254:u32
OxFD 255:u32
OxFD 257:u32
OxFD 258:u32
OxFD 259:u32
O0xFD 260:u32

S R A O A A

OxFD 256:u32
OxFD 257:u32
OxFD 258:u32
OxFD 259:u32
0xFD 260:u32
OxFD 261:u32
OxFD 262:u32
OxFD 263:u32
0xFD 264:u32
OxFD 265:u32
0xFD 266:u32
OxFD 267:u32
OxFD 268:u32
OxFD 269:u32
0xFD 270:u32
OxFD 271:u32
OxFD 272:u32
OxFD 273:u32
OxFD 274:u32
0xFD 275:u32

i16xs.relaxed_swizzle
i32xa.relaxed_trunc_f32x4_s
i32x4.relaxed_trunc_f32x4_u
i32x4.relaxed_trunc_f32x4_s_zero
i32x4a.relaxed_trunc_f32x4_u_zero
f32xa.relaxed_madd
f32x4.relaxed_nmadd
feax2.relaxed_madd
feax2.relaxed_nmadd
isx16.relaxed_laneselect
i16x8.relaxed_laneselect
i32xa.relaxed_laneselect
i6ax2.relaxed_laneselect
f32x4.relaxed_min
f32x4.relaxed_max
feax2.relaxed_min
feax2.relaxed_max
i16xs.relaxed_ql5mulr_s
i16x8.relaxed_dot_i8x16_i7x16_s
i16x8.relaxed_dot_i8x16_i7x16_add_s

N R O e O O A

5.4.9 Expressions
Expressions are encoded by their instruction sequence terminated with an explicit 0xOB opcode for end.

*

expr == (in:instr)* 0x0B = in

5.5 Modules

The binary encoding of modules is organized into sections. Most sections correspond to one component of a
module record, except that function definitions are split into two sections, separating their type declarations in the
function section from their bodies in the code section.

Note

This separation enables parallel and streaming compilation of the functions in a module.

214 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.5.1 Indices

All basic indices are encoded with their respective value.

typeidx = zm32 = =z
funcidx = zu32 =
tableidx = zwu32 =
memidx = zu32 = «x
globalidx = zmu32 = =
tagidx == xmu32 = T
elemidx = zu32 =
dataidx = zwu32 =
localidx = w32 = =
labelidx == [u32 = [

External indices are encoded by a distiguishing byte followed by an encoding of their respective value.

externidx = 0x00 z:funcidx = funcz
| 0x01 z:tableidx = tablex
| 0x02 z:memidx = memory x
| 0x03 z:globalidx = globalx
| 0x04 z:tagidx = taguw

5.5.2 Sections
Each section consists of
* aone-byte section id,
e the us2 length of the contents, in bytes,
* the actual contents, whose structure is dependent on the section id.
Every section is optional; an omitted section is equivalent to the section being present with empty contents.

The following parameterized grammar rule defines the generic structure of a section with id N and contents de-
scribed by the grammar X.

sectiony(X) = N:byte lenu32 en*:X = en* iflen =||X||
| € = €

For most sections, the contents X encodes a list. In these cases, the empty result € is interpreted as the empty list.

Note

Other than for unknown custom sections, the size is not required for decoding, but can be used to skip sections
when navigating through a binary. The module is malformed if the size does not match the length of the binary
contents X.

The following section ids are used:

5.5. Modules 215

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

a

Section

custom section
type section
import section
function section
table section
memory section
global section
export section
start section
element section
code section
data section
data count section
tag section

01NN kA W~ O

e \O
W N = O

Note

Section ids do not always correspond to the order of sections in the encoding of a module.

5.5.3 Custom Section

Custom sections have the id 0. They are intended to be used for debugging information or third-party extensions,
and are ignored by the WebAssembly semantics. Their contents consist of a name further identifying the custom
section, followed by an uninterpreted sequence of bytes for custom use.

customsec = sectiong(custom)
custom := name byte*

Note

If an implementation interprets the data of a custom section, then errors in that data, or the placement of the
section, must not invalidate the module.

5.5.4 Type Section

The type section has the id 1. It decodes into the list of recursive types of a module.
typesec u= ty*:section;(list(type)) = ty*

type = gqt:rectype = type ¢t

5.5.5 Import Section

The import section has the id 2. It decodes into the list of imports of a module.
importsec = im*:sectiony(list(import)) = im"

import = mmj:name mmeo:name zt:externtype =- import nmj nmq ot

216 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.5.6 Function Section

The function section has the id 3. It decodes into a list of type indices that classify the functions defined by a
module. The bodies of the respective functions are encoded separately in the code section.

funcsec = gz*:sectiong(list(typeidx)) = z*

5.5.7 Table Section

The table section has the id 4. It decodes into the list of tables defined by a module.

tablesec = tab":sectiong(list(table)) = tab”
table = tt:tabletype = table tt (ref.null ht) if tt = at lim (ref null® ht)
| 0x40 0x00 tt:tabletype e:expr = tablette

Note

The encoding of a table type cannot start with byte 0x40, hence decoding is unambiguous. The zero byte
following it is reserved for future extensions.

5.5.8 Memory Section
The memory section has the id 5. It decodes into the list of memories defined by a module.

memsec = mem*:sections(list(mem)) = mem*

mem = mi:memtype = memory mt

5.5.9 Global Section
The global section has the id 6. It decodes into the list of globals defined by a module.

globalsec = glob™:sectiong(list(global)) = glob™
global := git:globaltype e:expr = global gt e

5.5.10 Export Section
The export section has the id 7. It decodes into the list of exports of a module.

*

exportsec = ex*:sectiony(list(export)) = ez
export = mnm:mame rr:externidx = export nm xx

5.5.11 Start Section

The start section has the id 8. It decodes into the optional start function of a module.

startsec = stm’t?:sectiong(start) = start’
start = x:funcidx = (startx)

5.5. Modules 217

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.5.12 Element Section

The element section has the id 9. It decodes into the list of element segments defined by a module.

elemsec := eclem™:sectiong(list(elem)) = elem”
elemkind = 0x00 = ref null func
elem := 0:u32 e,expr y*:list(funcidx) =
elem (ref func) (ref.func y)* (active 0 e,)
| 1:u32 rt:elemkind y*:list(funcidx) =

elem 7t (ref.func y)* passive
| 2:u32 z:tableidx e:expr rt:elemkind y*:list(funcidx) =
elem 7t (ref.func y)* (active z e)

| 3:u32 rt:elemkind y*:list(funcidx) =
elem 7t (ref.func y)* declare

| 4:u32 eyiexpr e*:list(expr) =
elem (ref null func) e* (active 0 e,)

| 5:u32 rt:reftype e*:list(expr) =
elem 1t e* passive

| 6:u32 z:tableidx e,:expr e*:list(expr) =
elem (ref null func) e* (active x e,)

| 732 rt:reftype e*:list(expr) =

elem rt e* declare

Note

The initial integer can be interpreted as a bitfield. Bit O distinguishes a passive or declarative segment from
an active segment, bit 1 indicates the presence of an explicit table index for an active segment and otherwise
distinguishes passive from declarative segments, bit 2 indicates the use of element type and element expressions
instead of element kind and element indices.

Additional element kinds may be added in future versions of WebAssembly.

5.5.13 Code Section

The code section has the id 10. It decodes into the list of code entries that are pairs of lists of locals and expressions.
They represent the body of the functions defined by a module. The types of the respective functions are encoded
separately in the function section.

The encoding of each code entry consists of
¢ the us2 length of the function code in bytes,
* the actual function code, which in turn consists of
— the declaration of locals,
— the function body as an expression.
Local declarations are compressed into a list whose entries consist of
* a u3s2 count,
* avalue type,

denoting count locals of the same value type.

codesec = code*:sectionjg(list(code)) = code”
code = l[enu32 code:func = code if len = ||func]]
func = loc*":list(locals) e:expr = (Ploc*™,e) if | loc*"| < 232
locals == mn:mu32 t:valtype = (local t)”

Here, code ranges over pairs (local™, expr). Any code for which the length of the resulting sequence is out of
bounds of the maximum size of a list is malformed.

218 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

Like with sections, the code size is not needed for decoding, but can be used to skip functions when navigating
through a binary. The module is malformed if a size does not match the length of the respective function code.

5.5.14 Data Section

The data section has the id 11. It decodes into the list of data segments defined by a module.

datasec u= data*:section;;(list(data)) = data*
data = 0:u32 eexpr b*:list(byte) = data b* (active 0 €)
| 1:u32 b*:list(byte) = data b* passive
| 2:u32 zmemidx e:expr b*:list(byte) = data b* (active z €)

Note

The initial integer can be interpreted as a bitfield. Bit 0 indicates a passive segment, bit 1 indicates the presence
of an explicit memory index for an active segment.

5.5.15 Data Count Section

The data count section has the id 12. It decodes into an optional w32 count that represents the number of data
segments in the data section. If this count does not match the length of the data segment list, the module is

malformed.

”
n?
n

datacntsec := n’:sectionjp(datacnt)
datacnt = n:u32

=
=
Note

The data count section is used to simplify single-pass validation. Since the data section occurs after the code
section, the memory.init and data.drop instructions would not be able to check whether the data segment index
is valid until the data section is read. The data count section occurs before the code section, so a single-pass
validator can use this count instead of deferring validation.

5.5.16 Tag Section

The tag section has the id 13. It decodes into the list of tags defined by a module.

tagsec = lag*:sectionyz(list(tag)) = tag*
tag jt:tagtype = tagjt

5.5.17 Modules

The encoding of a module starts with a preamble containing a 4-byte magic number (the string ‘\Oasm’) and a
version field. The current version of the WebAssembly binary format is 1.

The preamble is followed by a sequence of sections. Custom sections may be inserted at any place in this sequence,
while other sections must occur at most once and in the prescribed order. All sections can be empty.

The lengths of lists produced by the (possibly empty) function and code section must match up.

5.5. Modules 219

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Similarly, the optional data count must match the length of the data segment list. Furthermore, it must be present
if any data index occurs in the code section.

magic = 0x00 0x61 0x73 0x6D
version = 0x01 0x00 0x00 0x00
module := magic version =

customsec® {ype*:typesec
customsec* import*:importsec
customsec* typeids*:funcsec
customsec* fable*:tablesec
customsec* mem™*:memsec
customsec* fag*:tagsec
customsec* global*:globalsec
customsec* ezrport*:exportsec
customsec* start’:startsec
customsec* elem*:elemsec
customsec* n’:datacntsec
customsec* (local®, expr)*:codesec
customsec* data”:datasec
customsec*
module type* import* tag* global* mem* table* func* data* elem™ start’ export*
if (n = |data™|)"
A (n” # eV dataidx(func®) = €)
A (func = func typeidz local” expr)*

Note

The version of the WebAssembly binary format may increase in the future if backward-incompatible changes
have to be made to the format. However, such changes are expected to occur very infrequently, if ever. The
binary format is intended to be extensible, such that future features can be added without incrementing its
version.

220 Chapter 5. Binary Format

CHAPTER O

Text Format

6.1 Conventions

The textual format for WebAssembly modules is a rendering of their abstract syntax into S-expressions®°.

Like the binary format, the text format is defined by an attribute grammar. A text string is a well-formed description
of a module if and only if it is generated by the grammar. Each production of this grammar has at most one
synthesized attribute: the abstract syntax that the respective character sequence expresses. Thus, the attribute
grammar implicitly defines a parsing function. Some productions also take a context as an inherited attribute that
records bound identifiers.

Except for a few exceptions, the core of the text grammar closely mirrors the grammar of the abstract syntax.
However, it also defines a number of abbreviations that are “syntactic sugar” over the core syntax.

The recommended extension for files containing WebAssembly modules in text format is “.wat”. Files with this
extension are assumed to be encoded in UTF-8, as per Unicode?” (Section 2.5).

6.1.1 Grammar

The following conventions are adopted in defining grammar rules of the text format. They mirror the conventions
used for abstract syntax and for the binary format. In order to distinguish symbols of the textual syntax from
symbols of the abstract syntax, typewriter font is adopted for the former.

« Terminal symbols are either literal strings of characters enclosed in quotes or expressed as Unicode?® scalar
values: ‘module’, U+0A. (All characters written literally are unambiguously drawn from the 7-bit ASCII*’
subset of Unicode.)

* Nonterminal symbols are written in typewriter font: valtype, instr.

e T™ is a sequence of n > (iterations of 7.

» T is a possibly empty sequence of iterations of 7'. (This is a shorthand for 7" used where n is not relevant.)
» T'" is a possibly empty sequence of iterations of T". (This is a shorthand for 7™ used where 7 is not relevant.)

« T7 is an optional occurrence of T'. (This is a shorthand for 7" where n < 1.)

36 https://en.wikipedia.org/wiki/S-expression

37 https://www.unicode.org/versions/latest/

38 https://www.unicode.org/versions/latest/

39 https://webstore.ansi.org/RecordDetail.aspx ?sku=INCITS+4- 1986%5bR2012%5d

221

https://en.wikipedia.org/wiki/S-expression
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* z:T denotes the same language as the nonterminal 7', but also binds the variable x to the attribute synthesized
for T'. A pattern may also be used instead of a variable, e.g., 7:7T'.

* Productions are written sym::=Ty = Ay | ... | T, = A,, where each A; is the attribute that is syn-
thesized for sym in the given case, usually from attribute variables bound in 7;.

 Large productions may be split into multiple definitions, indicated by ending the first one with explicit el-
lipses, sym ::= By | ..., and starting continuations with ellipses, sym ::=... | Ba.

* Some productions are augmented by side conditions in parentheses, which restrict the applicability of the
production. They provide a shorthand for a combinatorial expansion of the production into many separate
cases.

* If the same meta variable or non-terminal symbol appears multiple times in a production (in the syntax or in
an attribute), then all those occurrences must have the same instantiation.

* A distinction is made between lexical and syntactic productions. For the latter, arbitrary white space is
allowed in any place where the grammar contains spaces. The productions defining lexical syntax and the
syntax of values are considered lexical, all others are syntactic.

Note

For example, the textual grammar for number types is given as follows:

numtype = ‘i32° = i3
| ‘64’ = ies
| ‘€322 = f3
| ‘64’ = fos
The textual grammar for limits is defined as follows:
limitsy = n:mu6d = [n..2N]

| nwu6d mues = [n..m]

The variables n and m name the attributes of the respective u64 nonterminals, which in this case are the actual
unsigned integers those parse into. The attribute of the complete production then is the abstract syntax for the
limit, expressed in terms of the former values.

The variable N is a parameter to the grammer symbol that can be instantiated differently at each use site. In
this example, it controls the value range of the limits.

6.1.2 Abbreviations

In addition to the core grammar, which corresponds directly to the abstract syntax, the textual syntax also defines
a number of abbreviations that can be used for convenience and readability.

Abbreviations are defined by rewrite rules specifying their expansion into the core syntax:
sym == abbreviated syntax = expanded syntax

These expansions are assumed to be applied, recursively and in order of appearance, before applying the core
grammar rules to construct the abstract syntax.

6.1.3 Contexts

The text format allows the use of symbolic identifiers in place of indices. To resolve these identifiers into concrete
indices, some grammar productions are indexed by an identifier context I as a synthesized attribute that records
the declared identifiers in each index space. In addition, the context records the types defined in the module, so
that parameter indices can be computed for functions.

222 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

It is convenient to define identifier contexts as records / with abstract syntax as follows:

I == {types (name”)*
tags (name”)*

globals (name®)*

mems (name”)

)

tables (name’)*
;

funcs (name*)*

name’

datas Tyx
name’)*

)

)

(
elems (
locals (name?)*
labels (name’
fields ((name”)*)*

typedefs (371,?)//;1/]7(2?)* }

*

For each index space, such a context contains the list of names assigned to the defined indices, which were denoted
by the corresponding identifiers. Unnamed indices are associated with empty (€) entries in these lists. Fields have
dependent name spaces, and hence a separate list of field identifiers per type.

An identifier context is well-formed if no index space contains duplicate identifiers. For fields, names need only
be unique within a single type.

Conventions

To avoid unnecessary clutter, empty components are omitted when writing out identifier contexts. For example,
the record {} is shorthand for an identifier context whose components are all empty.

6.1.4 Lists
Lists are written as plain sequences, but with a restriction on the length of these sequence.

list(X) == (el:X)* = el* if|el"] <232

6.2 Lexical Format

6.2.1 Characters

The text format assigns meaning to source text, which consists of a sequence of characters. Characters are assumed
to be represented as valid Unicode*® (Section 2.4) scalar values.

source := char”*

char == U400 | ... | U+D7FF | U+E000 | ... | U+10FFFF

Note

While source text may contain any Unicode character in comments or string literals, the rest of the grammar is
formed exclusively from the characters supported by the 7-bit ASCII*! subset of Unicode.

6.2.2 Tokens

The character stream in the source text is divided, from left to right, into a sequence of tokens, as defined by the
following grammar.

token = keyword |u| s | f| string | id | ‘(" | ©)’ | reserved
keyword == (‘@’ | ... | ‘2’) idchar*
reserved (idchar | string | | | D | T | U | ‘P)*F

40 https://www.unicode.org/versions/latest/
41 https://webstore.ansi.org/RecordDetail.aspx ?sku=INCITS+4- 1986%5bR2012%5d

6.2. Lexical Format 223

https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Tokens are formed from the input character stream according to the longest match rule. That is, the next token
always consists of the longest possible sequence of characters that is recognized by the above lexical grammar.
Tokens can be separated by white space, but except for strings, they cannot themselves contain whitespace.

Keyword tokens always start with a lower-case letter. The set of keywords is defined implicitly: only those tokens
are defined to be keywords that occur as a terminal symbol in literal form, such as ‘keyword’, in a syntactic
production of this chapter.

Any token that does not fall into any of the other categories is considered reserved, and cannot occur in source text.

Note

The effect of defining the set of reserved tokens is that all tokens must be separated by either parentheses, white
space, or comments. For example, ‘0$x’ is a single reserved token, as is “’a”’”v"”’. Consequently, they are not
recognized as two separate tokens ‘0’ and ‘$x’, or ’a’” and , respectively, but instead disallowed. This
property of tokenization is not affected by the fact that the definition of reserved tokens overlaps with other

token classes.

‘//b/h

6.2.3 White Space

White space is any sequence of literal space characters, formatting characters, comments, or annotations. The
allowed formatting characters correspond to a subset of the ASCII** format effectors, namely, horizontal tabulation
(U+09), line feed (U+0A), and carriage return (U+0D).

space = (“ | format | comment | annot)*
format := newline | U409
newline := U+0A | U+0D | U+0D U+0A

The only relevance of white space is to separate tokens. It is otherwise ignored.

6.2.4 Comments

A comment can either be a line comment, started with a double semicolon ; ;” and extending to the end of the line,

or a block comment, enclosed in delimiters ‘(;” ... ‘;)’. Block comments can be nested.
comment = linecomment | blockcomment
linecomment := ¢;;’ linechar® (newline | eof)
linechar := c:char if ¢ 2 U4+0A A ¢ # U+0D
blockcomment := ‘(;” blockchar*)’

blockchar := c¢:char ife# S Ne#(
| ' cichar ifet T ANe#)
| (" e:char ifc# S ANe#(
| blockcomment

Here, the pseudo token eof indicates the end of the input. The look-ahead restrictions on the productions for
blockchar disambiguate the grammar such that only well-bracketed uses of block comment delimiters are allowed.
Note

Any formatting and control characters are allowed inside comments.

6.2.5 Annotations

An annotation is a bracketed token sequence headed by an annotation id of the form ‘@id’ or ‘@”..."””. No space is
allowed between the opening parenthesis and this id. Annotations are intended to be used for third-party extensions;

42 https://webstore.ansi.org/RecordDetail.aspx ?sku=INCITS+4- 1986%5bR2012%5d

224 Chapter 6. Text Format

https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

they can appear anywhere in a program but are ignored by the WebAssembly semantics itself, which treats them
as white space.

Annotations can contain other parenthesized token sequences (including nested annotations), as long as they are
well-nested. String literals and comments occurring in an annotation must also be properly nested and closed.

s

annot = ‘(@ annotid (space | token)*)

annotid := idchar™ | name

Note

The annotation id is meant to be an identifier categorising the extension, and plays a role similar to the name of a
custom section. By convention, annotations corresponding to a custom section should use the custom section’s
name as an id.

Implementations are expected to ignore annotations with ids that they do not recognize. On the other hand,
they may impose restrictions on annotations that they do recognize, e.g., requiring a specific structure by super-
imposing a more concrete grammar. It is up to an implementation how it deals with errors in such annotations.

6.3 Values

The grammar productions in this section define lexical syntax, hence no white space is allowed.

6.3.1 Integers

All integers can be written in either decimal or hexadecimal notation. In both cases, digits can optionally be
separated by underscores.

sign = €= 41|+ = +1]| - = -1
digit == ‘0O =0] ... | ‘99 =9
hexdigit = d:digit = d
| A =10]| ... | F =15
| @@ =10 ... | ‘£ = 15
num = d:digit = d
| nmum < o7 d:digit = 10n+d
hexnum := hthexdigit = h
| n:hexnum ‘_’? h:hexdigit = 16n+h

The allowed syntax for integer literals depends on size and signedness. Moreover, their value must lie within the
range of the respective type.

uN = mnmum = n ifn <2V
| ‘0x’ nhexnum = n ifn <2V
sN = sisign nuN = s-n if -2V"1<s.n<2N71

Uninterpreted integers can be written as either signed or unsigned, and are normalized to unsigned in the abstract
syntax.
iN = nuN = n
| @:sN = signedy'(d)

6.3. Values 225

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.3.2 Floating-Point

Floating-point values can be represented in either decimal or hexadecimal notation.

frac = d:digit = d/10
| didigit <7 p:frac = (d+p/10)/10
hexfrac = hhexdigit = h/16
| h:hexdigit ‘_’7 prhexfrac = (h+p/16)/16
mant = pmnum ! = D
| pmum ¢ g:ifrac = p+q
hexmant := pthexnum °.”° = D
| p:hexnum ‘. g:hexfrac = p+gq
float == pmant (‘E’ | ‘e’) s:isign emnum = p-10%°
hexfloat = ‘Ox’ p:hexmant (P’ | ‘p’) s:sign emum = p-2°°

The value of a literal must not lie outside the representable range of the corresponding IEEE 754*° type (that is, a
numeric value must not overflow to +-c0), but it may be rounded to the nearest representable value.

Note

Rounding can be prevented by using hexadecimal notation with no more significant bits than supported by the
required type.

Floating-point values may also be written as constants for infinity or canonical NaN (not a number). Furthermore,
arbitrary NaN values may be expressed by providing an explicit payload value.

fN = (41):isign ¢:fNmag = +g¢
| (—1):sign ¢:fNmag = —¢q
fNmag := gq:ifloat = floaty(q) if floaty (q) # oo
| g@hexfloat = floaty(q) if float y(q) # o0
| ‘inf’ = o0
| ‘nan’ = nan(canony)
| ‘nan:O0x’ nchexnum = nan(n) if 1 < n < 2sienif(V)

6.3.3 Strings

Strings denote sequences of bytes that can represent both textual and binary data. They are enclosed in quotation
marks and may contain any character other than ASCII** control characters, quotation marks (**), or backslash
(‘\"), except when expressed with an escape sequence.

string == 7 (b*:stringelem)* " = v if |P b**| < 232
stringelem := ¢ stringchar = utfs(c)

| “\’ hihexdigit hothexdigit = 16hy + ho

Each character in a string literal represents the byte sequence corresponding to its UTF-8 Unicode® (Section 2.5)
encoding, except for hexadecimal escape sequences ‘\hh’, which represent raw bytes of the respective value.

stringchar := c:char = ¢ ife>U+4+20ANc £ U+TF Ac# " Ne# -\
|\t = U+09
| \n’ = U+0A
| \r’ = U+0D
|\ = U+22
| = U427
| A\ = U+5C
| “\u{’ mhexnum ‘}> = n if n < 0xD800 V 0xE800 < n < 0x110000

43 https://ieeexplore.icee.org/document/8766229
4 https://webstore.ansi.org/RecordDetail.aspx 2sku=INCITS+4- 1986%5bR2012%5d
4 https://www.unicode.org/versions/latest/

226 Chapter 6. Text Format

https://ieeexplore.ieee.org/document/8766229
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d
https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.3.4 Names

Names are strings denoting a literal character sequence. A name string must form a valid UTF-8 encoding as
defined by Unicode*® (Section 2.5) and is interpreted as a string of Unicode scalar values.

name = b*istring = ¢* ifb* = utfs(c)

Note

Presuming the source text is itself encoded correctly, strings that do not contain any uses of hexadecimal byte
escapes are always valid names.

6.3.5 Identifiers

Indices can be given in both numeric and symbolic form. Symbolic identifiers that stand in lieu of indices start with
‘$’, followed by eiter a sequence of printable ASCII*” characters that does not contain a space, quotation mark,
comma, semicolon, or bracket, or by a quoted name.

*

id = ‘§ c*:idchar = c
| ‘$° c*name = ¢ if|¢*|>0
idchar == ‘0’ | ‘9’
x|z
| 2| ... | 2
(R e - 7O (20 N R B S e B B
| o< =]>] @ | N |17
Note

The value of an identifier character is the Unicode codepoint denoting it.

Conventions

The expansion rules of some abbreviations require insertion of a fresh identifier. That may be any syntactically
valid identifier that does not already occur in the given source text.

6.4 Types
6.4.1 Number Types

numtype = °‘i32° = i3
| ‘i64’ = 64
| ‘€322 = f3
| 64’ = fos
6.4.2 Vector Types
vectype = ‘v128 = vizs

46 https://www.unicode.org/versions/latest/
47 https://webstore.ansi.org/RecordDetail.aspx ?sku=INCITS+4- 1986%5bR2012%5d

6.4. Types 227

https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.4.3 Heap Types

3 s

absheaptype = ‘any = any
| ‘eq’ = eq
| <131’ = i3
| ‘struct’ = struct
| ‘array’ = array
| ‘none’ = none
| ‘func’ = func
| ‘nofunc’ = nofunc
| ‘exn’ = exn
| ‘cont’ = cont
| ‘noexn’ = noexn
| ‘extern’ = extern
| ‘noextern’ = noextern
| ‘nocont’ = nocont
heaptype; ::= ht:absheaptype = At
| z:typeidx, = =
6.4.4 Reference Types
null == ‘null’ = null
reftype;, == ‘(‘ref’ null®null’ ht:heaptype; ‘)’ = ref null’ ht
Abbreviations
There are shorthands for references to abstract heap types.
reftype; = .
| ‘anyref’ = ‘(C ‘ref’ ‘null’ ‘any’ ‘)’
| ‘eqref’ = ‘(C ‘ref’ ‘null’ ‘eq’ ‘)
| ‘i31iref’ = ‘C ‘ref’ ‘null’ ‘i31”)
| ‘structref’ = ‘C ‘ref’ ‘null’ ‘struct’)
| ‘arrayref’ = ‘(C ‘ref’ ‘null’ ‘array’ ‘)’
| ‘nullref’ = ‘(‘ref’ ‘null’ ‘none’ ‘)
| ‘funcref’ = ‘(‘ref’ ‘null’ ‘func’ ‘)
| ‘nullfuncref’ = ‘C ‘ref’ ‘null’ ‘nofunc’ ‘)’
| ‘exnref’ = ‘C ‘ref’ ‘null’ ‘exn’ ‘)
| ‘nullexnref’ = ‘(‘ref’ ‘null’ ‘noexn’ ‘)’
| ‘externref’ = ‘(‘ref’ ‘null’ ‘extern’)’
| ‘nullexternref’ = ‘(° ‘ref’ ‘null’ ‘noextern’)’
6.4.5 Value Types
valtype; nt:numtype = nt

| wvt:vectype = ot
| rtreftype, = 1t

228 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.4.6 Composite Types

Composite types are parsed into their respective abstract representation, paired with the local identifier context
generated by their bound field or parameter identifiers:

comptype, = ‘(’ ‘struct’ (ft,id")*:list(field;))’ = (struct ft*, {fields (id")*})
| ‘C ‘array’ ft:fieldtype; ‘)’ = (array ft,{})
| ‘func’ (t1,id")*:list(param,) ti:list(result;)) = (functf — t5, {})
| ‘C ‘cont’ tutheaptype,)’ = (cont tu,{})
field; == <’ ‘field’ id':id’ ft:fieldtype,)’ = (ft,id")
param, == °‘(’ ‘param’ id:id’ tvaltype, ‘)’ = (t,id")
result; == ‘(’ ‘result’ f{:valtype; ‘)’ = t
|
fieldtype; := zt:storagetype; =
| ‘C ‘mut’ zt:storagetype; ‘)’ = mutzt
storagetype; := {t:valtype; =
| pt:packtype = pt
packtype = ‘i8 = i
| ‘i16 = 16
Note

The optional identifier names for parameters in a function type only have documentation purpose. They cannot
be referenced from anywhere.

Abbreviations
Multiple anonymous structure fields or parameters or multiple results may be combined into a single declaration:

field; == ... | ‘(" ‘field” fieldtype})’
param;, == ... | ‘(" ‘param’ valtype} ‘)’
resulty ‘(" ‘result’ valtype})’

(‘(C ‘field’ fieldtype, ‘)')"
(‘C ‘param’ valtype; °)’)*
(‘" ‘param’ valtype; °)')*

6.4.7 Recursive Types

Recursive types are parsed into their respective abstract representation, paired with the identifier context generated
by their bound identifiers:

final == ‘final’ = final
subtype, == ‘(" ‘sub’ fin':final’ z*:list(typeidx,) (ct,’):comptype,) = (sub fin’ z* ¢ct,I')
typedef, u= °‘(’ ‘type’ id':id’ (st,I'):subtype;, ‘)’ = (st,I" ® {types (id")})
rectype, == ‘(* ‘rec’ (st,I')*:list(typedef;))’ = (rec st*, concatgerzs (I'™))

Abbreviations
Final sub types with no super-types can omit the ‘sub’ keyword and its arguments:

subtype; == ... | comptype;, = (° ‘sub’ ‘final’ comptype; ‘)’
Similarly, singular recursive types can omit the ‘rec’ keyword:

rectype; u= ... | typedef; = ‘(’ ‘rec’ typedef; ‘)’

6.4. Types 229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.4.8 Address Types

addrtype = ‘132" = i3
| ‘164’ = e
|

Abbreviations

The address type can be omitted, in which case it defaults i32:

addrtype == ... | e = ‘132’

6.4.9 Limits

limitsy = mnubd = [n..2VN]
| nwu6d mued = [n..m]

6.4.10 Tag Types

tagtype, == (z,I'):typeuse;, = x

6.4.11 Global Types

globaltype; := t:valtype; = ¢
| ‘C ‘mut’ t:valtype,) = mutt

6.4.12 Memory Types

memtype; = at:addrtype lim:limits|q_16 = al lim page

6.4.13 Table Types

tabletype; := at:addrtype lim:limitsmﬂ rt:reftype; = at limrt

6.4.14 External Types

ofs

tag jt, {tags (id")})
global gt, {globals (id")})
)

‘tag’ id’:id’ jt:tagtype,)’ (
(
(mem mt, {mems (id")}
(
(

‘global’ id":id’ gt:globaltype, °)

externtype, =
|
| ‘memory’ id’:id’ mtmemtype, ‘)’
|
|

of)

)
table tt, {tables (id")})
func z, {funcs (id")})

‘" ‘table’ id":id’ tt:tabletype,)’

0l

P4 LUl

3

‘func’ id":id” (z,1'):typeuse, ‘)’

230 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.4.15 Type Uses

A type use is a reference to a type definition. Where it is required to reference a function type, it may optionally
be augmented by explicit inlined parameter and result declarations. That allows binding symbolic identifiers to
name the local indices of parameters. If inline declarations are given, then their types must match the referenced
function type.

typeuse, == ‘(* ‘type’ z:typeidx; ‘) = (z,I)
if I.typedefs[z] = sub final (func t] — t3)
AT = {locals ()11}
| ‘type’ a:typeidx,) (t1,id")*:paramt tiresulty = (x,I')
if I.typedefs[z] = sub final (func t§ — t3)
A I" = {locals (id")*}
ANET ok

Note

If inline declarations are given, their types must be synfactically equal to the types from the indexed definition;
possible type substitutions from other definitions that might make them equal are not taken into account. This
is to simplify syntactic pre-processing.

The synthesized attribute of a typeuse is a pair consisting of both the used type index and the local identifier
context containing possible parameter identifiers.

Note

Both productions overlap for the case that the function type is func e — e. However, in that case, they also
produce the same results, so that the choice is immaterial.

The well-formedness condition on I’ ensures that the parameters do not contain duplicate identifiers.

Abbreviations

A type use may also be replaced entirely by inline parameter and result declarations. In that case, a type index is
automatically inserted:

typeuse; = ... | (t1, id?)*:param§ ty:result; = ‘(C ‘type’ a:typeidx;)’ param} result}
if I.typedefs[z] = sub final (func tj — ¢3)
A (I .typedefs[i] # sub final (func tf — t3))*<®

where x is the smallest existing type index whose recursive type definition parses into a singular, final function
type with the same parameters and results. If no such index exists, then a new recursive type of the same form is
inserted at the end of the module.

Abbreviations are expanded in the order they appear, such that previously inserted type definitions are reused by
consecutive expansions.

6.5 Instructions

Instructions are syntactically distinguished into plain and structured instructions.

instry = 4n:plaininstr; = in
| 4n:blockinstr; = in

In addition, as a syntactic abbreviation, instructions can be written as S-expressions in folded form, to group them
visually.

6.5. Instructions 231

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.1 Labels

Structured control instructions can be annotated with a symbolic label identifier. They are the only symbolic
identifiers that can be bound locally in an instruction sequence. The following grammar handles the corresponding
update to the identifier context by composing the context with an additional label entry.

label; == wv:iid = w,{labelsv}® T (if v ¢ I.labels)
| wvid = wv,{labelsv} @ (I with labels[i] =€) (if I.labels[i]] = v)
|

€ = ¢, {labels ()} & T

Note

The new label entry is inserted at the beginning of the label list in the identifier context. This effectively shifts
all existing labels up by one, mirroring the fact that control instructions are indexed relatively not absolutely.

If a label with the same name already exists, then it is shadowed and the earlier label becomes inaccessible.

6.5.2 Parametric Instructions

‘drop’ = drop

plaininstr; =
|
| ‘select’ ((t:resulty)*)’ = select (t*)"

6.5.3 Control Instructions

Structured control instructions can bind an optional symbolic label identifier. The same label identifier may op-
tionally be repeated after the corresponding end or else keywords, to indicate the matching delimiters.

Their block type is given as a type use, analogous to the type of functions. However, the special case of a type use
that is syntactically empty or consists of only a single result is not regarded as an abbreviation for an inline function
type, but is parsed directly into an optional value type.

(tresulty)? = 7
x,I":typeuse; = x (if I’ = {locals (¢)*})
‘block’ (v7,I'):label; bt:blocktype; (in:instry)* ‘end’ v'':id’
= block bt in* (if v = eV =07
‘loop’ (v?,I'):labels bt:blocktyper (in:instrp)* ‘end’ v'7iid?
. x . 17 7 ?
= loop bt in (ifv/" =evd' =0

blocktyper

blockinstry

= if bt in] else in (if vi = e Vo] =07 05 = eV o] =07
‘try_table’ I’:label; bt:blocktype (c:catchy)* (im:instrp)* ‘end’ id’
= try_table bt c* in* (if id? = e vV id? = label)
(’ ‘catch’ x:tagidxy l:labelidxy ‘)’ = catchzl
(" ‘catch_ref’ x:tagidx; l:labelidxj ¢)> = catch_ref x
‘(’ ‘catch_all’ [:labelidxj ‘)’ = catch_alll
‘(’ ‘catch_all_ref’ l:labelidxs)’ = catch_all_ref [

(s ¢

catchy

o ¢

Note

The side condition stating that the identifier context I’ must only contain unnamed entries in the rule for
typeuse block types enforces that no identifier can be bound in any param declaration for a block type.

232 Chapter 6. Text Format

‘“if> (v’ I'):1abel; bt:blocktypes (ini:instrp)* ‘else’ wi:id] (ing:instrp)*

¢ LY G
end’ v5:1d,

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

All other control instruction are represented verbatim.

plaininstr; ::= ‘unreachable’

| nop

| ‘br’ l:labelidx;

| ‘br_if’ l:labelidx;

| ‘br_table’ [*:list(labelidxj) ly:labelidx;

\ ‘br_on_null’ [:labelidx;

\ ‘br_on_non_null’ [:labelidx;

| ‘br_on_cast’ [:labelidx; ty:reftype to:reftype

| ‘br_on_cast_fail’ l:labelidxj t;:reftype to:ireftype
| ‘return’

| ‘call’ a:funcidxj

| ‘call_ref’ mx:typeidx

| ‘call_indirect’ z:tableidx y,I’:typeuser

| ‘return_call’ a:funcidx;

| ‘return_call_ref’ mx:typeidx

| ‘return_call_indirect’ z:tableidx y,I’:typeuse;
| ‘throw’ a:tagidxj

| ‘throw_ref’

|

Note

S R O O L O A

unreachable

nop

br [

br_if [

br_table [* Iy
br_on_null{
br_on_non_null]
br_on_castl ¢ty to
br_on_cast_fail [t1 to
return

call z

call_ref x
call_indirect z y
return_call
return_call_ref x
return_call_indirect z y
throw =

throw_ref

The side condition stating that the identifier context I’ must only contain unnamed entries in the rule for
call_indirect enforces that no identifier can be bound in any param declaration appearing in the type anno-

tation.

Abbreviations

The ‘else’ keyword of an ‘if’ instruction can be omitted if the following instruction sequence is empty.

* ¢ ’

‘if’ label blocktype; instr* ‘end’ =

‘if’ label blocktype; instr* ‘else’

b}

‘end

Also, for backwards compatibility, the table index to ‘call_indirect’ and ‘return_call_indirect’ can be

omitted, defaulting to 0.

‘call_indirect’ typeuse =

‘call_indirect’ 0 typeuse

‘return_call_indirect’ typeuse = ‘return_call_indirect’ 0 typeuse

6.5.4 Variable Instructions

plaininstr; u= ...
| ‘local.get’ z:localidxj = local.get
| ‘local.set’ z:localidxj = local.set
| ‘local.tee’ z:localidxj = local.tee
| ‘global.get’ z:globalidx; = global.getx
| ‘global.set’ w:globalidx; = global.setx

6.5. Instructions

233

(if I’

(if I’

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.5 Table Instructions

plaininstry = ...

| ‘table.get’ x:tableidx; = table.getz

| ‘table.set’ z:tableidxy = table.set x

| ‘table.size’ z:tableidx; = tablesizex

| ‘table.grow’ z:tableidxj = table.grow z

| ‘table.fill’ z:tableidxj = tablefill z

| ‘table.copy’ x:tableidx; y:tableidx; = table.copy zy
| ‘table.init’ wz:tableidx; y:elemidx; = table.initzy

| ‘elem.drop’ z:elemidxj = elem.drop z

Abbreviations

For backwards compatibility, all table indices may be omitted from table instructions, defaulting to 0.

‘table.get’ = ‘table.get’ ‘0’
‘table.set’ = ‘table.set’ ‘0’
‘table.size’ = ‘table.size’ ‘0’
‘table.grow’ = ‘table.grow’ ‘0’
‘table.fill’ = ‘table.fill’ ‘0O’
‘table.copy’ = ‘table.copy’ ‘0’ ‘0’

‘table.init’ x:elemidxy ‘table.init’ ‘0’ z:elemidxj

6.5.6 Memory Instructions

The offset and alignment immediates to memory instructions are optional. The offset defaults to 0, the alignment
to the storage size of the respective memory access, which is its natural alignment. Lexically, an of fset or align

234 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

phrase is considered a single keyword token, so no white space is allowed around the ‘=’.

memargy n= ooffset a:aligny = {align n, offset o}
offset ‘offset="0:u64 = o0
€ = 0
aligny ‘align="a:u64 = a
€ = N
plaininstry ce.
‘132.1oad’ x:memidx; m:memargy i32.load zm
‘i64.load’ xmemidx; m:memargg i64.load x m

f32.load x m

fea.load x m

vizg.load x m
i32.load8_s x m
i32.load8_u x m
i32.load16_sx m
i32.l0ad16_u z m
i64.l0ad8_s x m
i64.l0ad8_u z m
i64.loadl6_sx m
i64.load16_u z m
i64.load32_sxm
i64.10ad32_ux m
v128.l0ad8x8_s x m
vi28.l0ad8x8_u x m
vi2s.loadl6x4_s x m
vi2s.loadl6x4_u x m
vi2s.load32x2_s x m
vi28.l0ad32x2_u x m
vi2s8.load8_splat x m
vi2s8.loadl6_splat z m
v128.l0ad32_splat z m
v128.load64_splat z m
vi2s.l0ad32_zero x m
vi28.load64_zero x m
v128.load8_lane x m y
vi28.loadl6_lane x m y
vi128.load32_lane x m y
vi2g.load64_lane z m y
i32.store x m

i64.store T m

f32.store x m

fea.store x m

vizg.store x m
i32.store8 x m
i32.storelb x m
i64.store8 x m
i64.storelb x m
i64.store32 x m
vi28.store8_lane x m y
vi2g.storel6_lane z m y
vi2g.store32_lane z m y
v128.store64_lane x m y
memory.size x
memory.grow x
memory.fill z
memory.copy & y
memory.init x y
data.drop x

‘£32.1oad’ x:memidx; m:memargy

‘f64.1oad’ xmemidx; m:memargs

‘v128.1oad’ z:memidx; m:memargig
‘132.10ad8_s’ z:memidx; m:memarg;
‘132.10ad8_u’ x:memidx; m:memarg;
‘132.10ad16_s’ x:memidx; m:memargs
‘i32.10ad16_u’ z:memidx; m:memargs
‘i64.1oad8_s’ z:memidx; m:memarg;
‘i64.1oad8_u’ z:memidx; m:memarg;
‘164.10ad16_s’ x:memidx; m:memargs
‘164.10ad16_u’ x:memidx; m:memargs
‘i64.10ad32_s’ x:memidx; m:memargy
‘i64.10ad32_u’ x:memidx; m:memargy
‘v128.10ad8x8_s’ x:memidx; m:memargg
‘v128.10ad8x8_u’ x:memidx; m:memargs
‘v128.1oad16x4_s’ zmemidx; m:memargg
‘v128.1oad16x4_u’ z:memidx; m:memargg
‘v128.10ad32x2_s’ z:memidx; m:memargg
‘v128.10ad32x2_u’ z:memidx; m:memargg
‘v128.10ad8_splat’ x:memidx; m:memarg
‘v128.1oad16_splat’ x:memidx; m:memargs
‘v128.10ad32_splat’ x:memidx; m:memargy
‘v128.1oad64_splat’ xmemidx; m:memargg
‘v128.10ad32_zero’ x:memidx; m:memargy
‘v128.10ad64_zero’ x:memidx; m:memargg
‘v128.10ad8_lane’ z:memidx; m:memarg; y:u8
‘v128.1oad16_lane’ z:memidx; m:memargs y:u8
‘v128.10ad32_lane’ x:memidx; m:memargy y:u8
‘v128.10oad64_lane’ x:memidx; m:memargsg y:u8
‘i32.store’ z:memidx; m:memargy

‘i64.store’ xmemidx; m:memargg

‘£32.store’ xmemidx; m:memargy

‘f64.store’ xmemidx; m:memargg
‘v128.store’ x:memidx; m:memargig
‘1i32.store8’ z:memidx; m:memarg
‘i32.storel6’ xmemidx; m:memargy
‘164.store8’ wxmemidx; m:memarg;
‘164.storel6’ z:memidx; m:memargs
‘i64.store32’ xmemidx; m:memargy
‘v128.store8_lane’ x:memidx; m:memarg; y:u8
‘v128.storel6_lane’ xmemidx; m:memargs y:u8
‘v128.store32_lane’ xmemidx; m:memarg, ¥y:u8
‘v128.store64_lane’ x:memidx; m:memargg y:u8
‘memory.size’ z:memidx;

‘memory.grow’ z:memidxj

‘memory.£fill’ z:memidx;

‘memory.copy’ z:memidx; y:memidxj
‘memory.init’ z:memidx; y:dataidx;
‘data.drop’ x:dataidx;

R i A R R I O O

6.5. Instructions 235

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Abbreviations

As an abbreviation, the memory index can be omitted in all memory instructions, defaulting to O.

numtype‘.load’ memarg
vectype‘.load’ memarg
numtype‘.load’ N‘_’sr memarg
vectype‘.load’ NxM ‘_’sr memarg
vectype‘.load’ N‘_splat’ memarg
vectype‘.load’ N‘_zero’ memarg
vectype‘.load’ N‘_lane’ memarg u8
numtype‘.store’ memarg
vectype‘.store’ memarg
numtype‘.store’ N memarg
vectype‘.store’ N‘_lane’ memarg u8
‘memory.size’

‘memory.grow’

‘memory.£ill’

‘memory.copy’

‘memory.init’ z:elemidxj

6.5.7 Reference Instructions

numtype‘.load’ ‘0’ memarg
vectype‘.load’ ‘0’ memarg
numtype‘.load’ N‘_’sz ‘0’ memarg
vectype‘.load’ NxM‘_’sz ‘0’ memarg
vectype‘.load’ N‘_splat’ ‘0’ memarg
vectype‘.load’ N‘_zero’ ‘0’ memarg
vectype‘.load’ N‘_lane’ ‘0’ memarg u8
numtype‘.store’ ‘0’ memarg
vectype‘.store’ ‘0’ memarg
numtype‘.store’N ‘0’ memarg
vectype‘.store’N‘_lane’ ‘0’ memarg u8
‘memory.size’ ‘0’

‘memory.grow’ ‘0’

‘memory.£fill’ ‘0’

‘memory.copy’ ‘0’ ‘0’

‘memory.init’ ‘0’ x:elemidxy

plaininstry =

‘ref.null’ t:heaptyper

‘ref.func’ x:funcidxy

‘ref.is_null’

‘ref.as_non_null’

‘ref.eq’

‘ref.test’ t:reftypes

‘ref.cast’ t:reftypes

‘struct.new’ x:typeidxy
‘struct.new_default’ z:typeidxy
‘struct.get’ z:typeidxy y:fieldidxy,
‘struct.get_u’ z:typeidxy y:fieldidxy,
‘struct.get_s’ z:typeidxy y:fieldidxy,
‘struct.set’ z:typeidxy y:fieldidxy,
‘array.new’ x:typeidx;
‘array.new_default’ z:typeidx;
‘array.new_fixed’ z:typeidx; m:u3?2
‘array.new_data’ z:typeidx; y:dataidx;
‘array.new_elem’ z:typeidx; y:elemidxy
‘array.get’ z:typeidxy

‘array.get_u’ x:typeidx;

‘array.get_s’ x:typeidx;

‘array.set’ x:typeidxy

‘array.len’

‘array.fill’ x:typeidx;

‘array.copy’ wx:typeidx; y:typeidx;
‘array.init_data’ z:typeidx; y:dataidx;
‘array.init_elem’ z:typeidx; y:elemidx;
‘ref.i31’

‘i31.get_u’

‘i31.get_s’

‘any.convert_extern’
‘extern.convert_any’

S R O R R O R 0 | A 2

ref.null ¢

ref.func x
ref.is_null
ref.as_non_null
ref.eq

ref.test ¢

ref.cast ¢
struct.new x
struct.new_default =
struct.get x y
struct.get_ ux y
struct.get_ sx y
struct.set x y
array.new x
array.new_default =
array.new_fixed z n
array.new_data x y
array.new_elem z y
array.get x
array.get_ux
array.get_sx
array.set x
array.len

array.fill x
array.copy x y
array.init_data x y
array.init_elem z y
ref.i31

i31.get_u

i31.get_s
any.convert_extern
extern.convert_any

236

Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.8 Numeric Instructions

plaininstry

‘i32.const’
‘i64.const’
‘f32.const’
‘f64.const’

‘132.clz’
‘132.ctz’
‘i32.popcnt’
‘132.add’
‘132.sub’
‘132.mul’
‘132.div_s’
‘132.div_u’
‘i32.rem_s’
‘i32.rem_u’
‘132.and’
‘132.o0r’
‘132.xor’
‘132.shl’
‘i32.shr_s’
‘132.shr_u’
‘132.rotl’
‘132.rotr’

‘i64.clz’
‘i64.ctz’
‘i64.popent’
‘i64.add’
‘i64.sub’
‘164.mul’
‘i64.div_s’
‘i64.div_u’
‘i64.rem_s’
‘i64.rem_u’
‘i64.and’
‘i64.or’
‘i64.xor’
‘i64.shl’
‘i64.shr_s’
‘i64.shr u’
‘i64.rotl’
‘i64.rotr’

n:132
n:i64
2:£32
z:f64

S R R A L A

S R e O A A 2 R A

i32.const n
i64.const n
f32.const z
fea.const z

44l

i32.clz
i32.ctz
i32.popcnt
i32.add
i32.sub
i32.mul
i32.div_s
i32.div_u
i32.rem_s
i32.rem_u
i32.and
i32.0r
i32.x0r
i32.shl
i32.shr_s
i32.shr_u
i32.rotl
i32.rotr

i64.clz
i64.ctz
i64.popcnt
i64.add
i64.sub
i64.mul
i64.div_s
i64.div_u
i64.rem_s
i64.rem_u
i64.and
i64.0r
i64.x0r
i64.shl
i64.shr_s
i64.shr_u
i64.rotl
i64.rotr

6.5. Instructions

237

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

‘f32.abs’
‘£32.neg’
‘£32.ceil’
‘f32.floor’
‘f32.trunc’
‘f32.nearest’
‘£32.sqrt’
‘f32.add’
‘£32.sub’
‘£32.mul’
‘£32.div’
‘f32.min’
‘f32.max’
‘£32.copysign’

‘f64.abs’
‘f64.neg’
‘f64.ceil’
‘f64.floor’
‘f64.trunc’
‘f64.nearest’
‘f64.sqrt’
‘f64.add’
‘f64.sub’
‘f64.mul’
‘f64.div’
‘f64.min’
‘f64.max’
‘f64.copysign’

‘i32.eqz’
‘i32.eq’
‘132.ne’
‘132.1t_s’
‘132.1t_u’
‘i32.gt_s’
‘i32.gt_uw’
‘i32.1e_s’
‘i32.1e_ u’
‘i32.ge_s’
‘i32.ge_u’

‘i64.eqz’
‘i64.eq’
‘i64.ne’
‘i64.1t_s’
‘i64.1t_u’
‘i64.gt_s’
‘i6d.gt_uw
‘i64.1e_s’
‘i64.1e_u’
‘i64.ge_s’
‘i64.ge_u’

L I e O O A R

L O R A

L O 0 R R A

f32.abs
f32.neg
f32.ceil
f32.floor
f32.trunc
f32.nearest
f32.sqrt
f32.add
f32.sub
f32.mul
f32.div
f32.min
f32.max
f32.copysign

fea.abs
fe4.neg
fea.ceil
fea.floor
fea.trunc
fea.nearest
fes.sqrt
fe4.add
fe4.sub
fea.mul
fea.div
fea.min
fea.max
fea.copysign

i32.eqz
i32.eq
i32.ne
i32.1t_s
i32.1t_u
i32.gt_s
i32.gt_u
i32.le_s
i32.le_u
i32.ge_s
i32.ge_u

i64.eqz
i64.eq
i64.ne
i64.1t_s
i64.1t_u
i64.gt_s
i64.gt_u
i64.le_s
i64.le_u
i64.ge_s
i64.ge_u

238

Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| ‘£32.eq’
| ‘£32.ne’
| £32.1¢°
| ‘f32.gt’
| £32.1e’
| ‘£32.ge’

| ‘f64.eq’
| ‘f64.ne’
| fe4lt
| fedgt’
| fe4.le’
| ‘f64.ge’

L O R A P

‘i32.wrap_i64’
‘i32.trunc_f32_s’
‘i32.trunc_£32 v’
‘i32.trunc_£f64_s’
‘i32.trunc_f64_u’
‘i32.trunc_sat_f32_s
‘i32.trunc_sat_£f32_u
‘i32.trunc_sat_f64_s
‘i32.trunc_sat_f64 u
‘i64.extend_i32_s’
‘i64.extend_i32_u’
‘i64.trunc_f32_s’
‘i64.trunc_f£f32_u’
‘i64.trunc_f64_s’
‘i64.trunc_£f64 v’
‘i64.trunc_sat_f32_ s
‘i64.trunc_sat_£f32_u
‘i64.trunc_sat_f64_s
‘i64.trunc_sat_f64 u
‘f32.convert_i32_s’
‘f32.convert_i32_u’
‘f32.convert_i64_s’
‘f32.convert_i64_u’
‘f32.demote_£f64°
‘f6d.convert_i32_ s’
‘f64.convert_i32_u’
‘f64.convert_i64_s’
‘f64.convert_i64_u’
‘f64.promote_£32’
‘132.reinterpret_£32
‘i64.reinterpret_£64
‘f32.reinterpret_i32
‘f64.reinterpret_i64

‘i32.extend8_s’
‘i32.extend16_s’
‘i64.extend8_s’
‘i64.extend16_s’
‘i64.extend32_s’

)

b}

b}

>

)

)

k)

b}

k)

b}

)

b}

N

f32.eq

f32.ne

f32.1t
fa2.gt
fa2.le

f32.ge

fes.eq

fea.ne

fea.lt
fea.gt
fea.le

fes.ge

S R R R R O R 2

i32.wrap_i64
i32.trunc_f32_s
i32.trunc_f32_u
i32.trunc_fe4_s
i32.trunc_fe4_u
i32.trunc_sat_f32_s
i32.trunc_sat_f32_u
i32.trunc_sat_fe4_s
i32.trunc_sat_f64_u
i64.extend_i32_s
i64.extend_i32_u
i6a.trunc_f32_s
i64.trunc_f32_u
i64.trunc_fea_s
i64.trunc_fe4_u
i64.trunc_sat_f32_s
i6a.trunc_sat_f32_u
i64.trunc_sat_fe4_s
i64.trunc_sat_fe4_u
f32.convert_i32_s
f32.convert_i32_u
f32.convert_i64_s
f32.convert_i64_u
f32.demote_f64
fea.convert_i32_s
fea.convert_i32_u
fea.convert_i64_s
fea.convert_i6a_u
fe4.promote_f32
i32.reinterpret_f32
i64.reinterpret_fe4
f32.reinterpret_i32
fe4.reinterpret_i64

i32.extend8_s
i32.extend16_s
i64.extend8_s
i64.extend16_s
i64.extend32_s

6.5. Instructions

239

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.9 Vector Instructions

Vector constant instructions have a mandatory shape descriptor, which determines how the following values are
parsed.

‘v128.const’ ‘i8x16° (n:i8)'6 = vi2s.const bytesT L (bytes;g(n)16
i128

‘v128.const’ ‘i16x8 (n:i16)® = vi2s.const bytes i (bytes;ig(n)®
i128

v128.const’ ‘i32x n:i32 = vi2g.const bytes;; vies;sa(n

3 ¢ 4’ 4 b} |1218 b(4

‘vi28.const’ ‘i64x2’ (n:i64)? = vizs.const bytes i, (bytesigs(n)?
i128

‘v128.const’ ‘f32x4’ (z:£32)* = vi2s.const bytes L (bytes r3o(2)*

. i128 f

‘v128.const’ ‘f64x2’ (z:f64)2 = vi2s.const bytes 4 (bytes re4(2)?

i128 f

isx16.shuffle laneidx'6
isx16.swizzle

| ‘i8x16.shuffle’ (laneidz:ug)!®
| ‘i8x16.swizzle’

| ‘i8x16.splat’ isx16.splat
| ‘i16x8.splat’ i16xs.splat
| ‘i32x4.splat’ i32x4.splat
| ‘i64x2.splat’ isax2.splat
| ‘f32x4.splat’ faaxa.splat
| ‘f64x2.splat’ feax2.splat

isxi6.extract_lane_s laneidx
isxi6.extract_lane_u laneidx
isx16.replace_lane laneidx
i16xs.extract_lane_s laneidx
i16xs.extract_lane_u laneidx
it6xs.replace_lane laneidz
i32x4.extract_lane laneidx
i32x4.replace_lane laneidx
i64x2.extract_lane laneidx
i6ax2.replace_lane laneidx
f32xa.extract_lane laneidx
f3oxa.replace_lane laneidz
feaxo.extract_lane laneidz
feaxa.replace_lane laneidx

\ ‘i8x16.extract_lane_s’ laneidz:u8
| ‘i8x16.extract_lane u’ laneidz:u8
| ‘i8x16.replace_lane’ laneidr:u8
| ‘i16x8.extract_lane_s’ laneidx:u8
\ ‘i16x8.extract_lane_u’ laneidz:u8
| ‘i16x8.replace_lane’ laneidz:u8
\ ‘132x4.extract_lane’ laneidz:u8
\ ‘i32x4.replace_lane’ laneidr:u8
| ‘i64x2.extract_lane’ laneidz:u8
| ‘i64x2.replace_lane’ laneidz:u8
| ‘£32x4.extract_lane’ laneidz:u8
\ ‘f32x4.replace_lane’ laneidr:u8
\ ‘f64x2.extract_lane’ laneidz:u8
\ ‘f64x2.replace_lane’ laneidr:u8

S R O A A R 2 T

| ‘i8x16.eq’ = isx16.eq

| ‘i8x16.ne’ = isx16.ne

| ‘i8x16.1t_s’ = isx16.lt_s

\ ‘i8x16.1t_u’ = isxi6.lt_u

\ ‘i8x16.gt_s’ = isx16.gt_s
\ ‘i8x16.gt_uw’ = isx16.gt_u
| ‘i8x16.le_s’ = isxi6.le_s

| ‘i8x16.le_u’ = isxi6.le_u
| ‘i8x16.ge_s’ = i8x16.ge_s
| ‘i8x16.ge_u’ = i8x16.ge_u
| ‘i16x8.eq’ = il6x8.eq

| ‘i16x8.ne’ = i16x8.ne

| ‘i16x8.1t_s’ = j16xs.lt_s

| ‘i16x8.1t_u’ = i16xs.lt_u

| ‘i16x8.gt_s’ = i16x8.gt_s
\ ‘i16x8.gt_u’ = i6x8.gt_u
| ‘116x8.1le_s’ = j16xs.le_s

| ‘i16x8.le_u’ = i16xs.le_u

| ‘i16x8.ge_s’ = i16x8.ge_S
| ‘i16x8.ge_u’ = i16x8.ge_u

240 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

‘132x4.eq’

‘i32x4.ne’

‘i32x4.1t_s’
‘132x4.1t_u’
‘1i32x4.gt_s’
‘132x4.gt_u’
‘i32x4.1le_s’
‘i32x4.le_ w’
‘i32x4.ge_s’
‘132x4.ge_u’

‘i64x2.eq’
‘i64x2.ne’
‘i64x2.1t_s’
‘i64x2.gt_s’
‘i64x2.1e_s’
‘i64x2.ge_s’

‘£32x4.eq’
‘£32x4.ne’
‘£32x4.1t°
‘£32x4.gt’
‘£32x4.1¢e’
‘£32x4.ge’

‘f64x2.eq’
‘f64x2.ne’
‘£64x2.1t°
‘£64x2.gt’
‘f64x2.1e’
‘f64x2.ge’

‘v128.not’
‘v128.and’
‘v128.andnot’
‘v128.or’
‘v128.xo0r’

‘v128.bitselect’
‘v128.any_true’

N R A

L R A

S

i32x4.eq
i32x4.ne
i32x4.1t_s
i32x4.1t_u
i32x4.gt_s
i32x4.gt_u
i32x4.le_s
i32x4.le_u
i32x4.ge_s
i32x4.ge_u

i64x2.eq
i64x2.ne
i64x2.1t_s
i64x2.gt_s
i64x2.le_s
i64x2.ge_s

f32x4.eq
f32x4.ne
f32x4.lt
f3oxa.gt
f32x4.le
f32xa.ge

feax2.eq
feax2.ne
feax2.lt
feax2.gt
feax2.le
feax2.ge

vi2g.not
vi2g.and
vizs.andnot
v128.0r
V128.X0r
v128.bitselect
vi2g.any_true

6.5. Instructions

241

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

‘18x16.abs’

‘i8x16.neg’
‘i8x16.all_true’
‘i8x16.bitmask’
‘i8x16.narrow_i16x8_s’
‘i8x16.narrow_i16x8_u’

i8x16.abs

i8x16.neg
isx16.all_true
isx16.bitmask
isx16.narrow_i16x8_s
isx16.narrow_il6x8_u

‘i8x16.shl’ isx16.shl
‘i8x16.shr_s’ isx16.shr_s
‘i8x16.shr_u’ isx16.shr_u
‘18x16.add’ isx16.add

‘i8x16.add_sat_s’
‘i8x16.add_sat_u’
‘18x16.sub’

‘i8x16.sub_sat_s’
‘i8x16.sub_sat_u’

isx16.add_sat_s
isx16.add_sat_u
i8x16.sub

isx16.sub_sat_s
isx16.sub_sat_u

‘i8x16.min_s’ i8X16.Min_s
‘i8x16.min_u’ isx16.min_u
‘i8x16.max_s’ i8X16.Max_s
‘i8x16.max_u’ i8X16.max_u
‘i8x16.avgr_u’ i8x16.avgr_u

R I O O O e O

‘18x16.popcnt’ i8x16.popcnt
‘116x8.abs’
‘116x8.neg’
‘116x8.all_true’
‘116x8.bitmask’

i16x8.abs

i16x8.neg

i16xs.all_true

i16x8.bitmask
i16x8.narrow_i32x4_s
i16x8.narrow_i32x4_u
i16xs.extend_low_i8x16_s
i16xs.extend_high_i8x16_s
i16x8.extend_low_i8x16_u
i16xs.extend_high_i8x16_u

‘i16x8.narrow i32x4 s’
‘i16x8.narrow_i32x4 u’
‘116x8.extend_low_i8x16_s’
‘i16x8.extend_high i8x16_s’
‘116x8.extend_low_i8x16_u’
‘116x8.extend_high i8x16_u’

‘116x8.shl’ i16x8.shl
‘116x8.shr_s’ i16x8.shr_s
‘116x8.shr_u’ i16xs.shr_u
‘116x8.add’ i16x8.add

‘i16x8.add_sat_s’
‘i16x8.add_sat_u’

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ i16xs.add_sat_s
\

| ‘116x8.sub’

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

i16xs.add_sat_u
i16x8.sub

i16x8.sub_sat_s
i16x8.sub_sat_u

‘116x8.sub_sat_s’
‘116x8.sub_sat_u’

‘116x8.mul’ it6xs.mul

‘i16x8.min_s’ 116X8.min_s
‘116x8.min_u’ 116X8.min_u
‘i16x8.max_s’ 116X8.Max_s
‘116x8.max_u’ i16X8.max_u
‘i16x8.avgr_u’ i16x8.avgr_u

‘116x8.q15mulr_sat_s’
‘1i16x8.extmul low i8x16_s’
‘116x8.extmul_high i8x16_s’
‘116x8.extmul_low_i8x16_u’
‘116x8.extmul_high i8x16_u’
‘116x8.extadd_pairwise_i8x16_s’
‘116x8.extadd_pairwise_i8x16_u’

i16x8.q1smulr_sat_s
i16xs.extmul_low_i8x16_s
it6xs.extmul_high_i8x16_s
i16xs.extmul_low_i8x16_u
it6x8.extmul_high_i8x16_u
i16x8.extadd_pairwise_i8x16_s
i16xs.extadd_pairwise_i8x16_u

R I O R O

242 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

i32x4.abs

i32X4.neg

i32x4.all_true

i32x4.bitmask
i32x4.extadd_pairwise_i16x8_s
i32x4.extadd_pairwise_i16x8_u
i32x4.extend_low_i16x8_s
i32x4.extend_high_i16x8_s
i32x4.extend_low_i16x8_u
i32x4.extend_high_i16x8_u

‘132x4.abs’

‘132x4.neg’

‘i32x4.all_true’

‘132x4.bitmask’
‘132x4.extadd_pairwise_i16x8_s’
‘132x4.extadd_pairwise_i16x8_u’
‘132x4.extend_low_i16x8_ s’
‘i32x4.extend_high i16x8_s’
‘132x4.extend_low_il16x8_u’
‘132x4.extend_high i16x8_u’

‘132x4.shl’ i32x4.shl
‘i32x4.shr_s’ i32x4.shr_s
‘132x4.shr_u’ i32x4.shr_u
‘132x4.add’ i32x4.add
‘132x4.sub’ i32x4.sub
‘i32x4.mul’ i32x4.mul
‘i32x4.min_s’ 132x4.min_s
‘132x4.min_u’ 132x4.min_u
‘i32x4.max_s’ i32x4.max_s
‘i32x4.max_u’ i32x4.max_u

‘132x4.dot_1i16x8_s’
‘i32x4.extmul low_ i16x8 s’
‘132x4.extmul_high i16x8_s’
‘132x4.extmul_low _i16x8_u’
‘1i32x4.extmul_high i16x8_u’

i32x4.dot_i16x8_s
i32xa.extmul_low_i16x8_s
i32x4.extmul_high_i16x8_s
i32x4.extmul_low_i16x8_u
i32x4.extmul_high_i16x8_u

i64x2.abs

i64x2.neg

i6ax2.all_true

i64x2.bitmask
i6ax2.extend_low_i32x4_s
i64x2.extend_high_i32x4_s
i6ax2.extend_low_i32x4 _u
i6ax2.extend_high_i32x4_u

‘i64x2.abs’

‘i64x2.neg’

‘i64x2.all_true’
‘i64x2.bitmask’

‘i64x2.extend low_i32x4 s’
‘164x2.extend_high i32x4_s’
‘i64x2.extend_low_i32x4 u’
‘i64x2.extend_high i132x4 v’

‘i64x2.shl’ i64x2.shl
‘i64x2.shr_s’ i64x2.shr_s
‘i64x2.shr_u’ i6ax2.shr_u
‘164x2.add’ i64x2.add
‘164x2.sub’ i64x2.sub
‘i64x2.mul’ i64x2.mul

‘i64x2.extmul_low_i32x4_s’
‘164x2.extmul_high i32x4_s’
‘i64x2.extmul_low_i32x4 u’
‘i64x2.extmul_high i132x4_u’

i6ax2.extmul_low_i32x4_s
i6ax2.extmul_high_i32x4_s
i64x2.extmul_low_i32x4_u
i6ax2.extmul_high_i32x4_u

S O I A AR

6.5. Instructions 243

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

‘f64x2.trunc’
‘f64x2.nearest’

| ‘£32x4.abs’ = f32xs.abs

| ‘£32x4.neg’ = f32xa.neg

| ‘£32x4.sqrt’ = faxa.sqrt

| ‘f32x4.ceil’ = f32x4.cell

| ‘f32x4.floor’ = f32xa4.floor

| ‘f£32x4.trunc’ = f32xa.trunc

| ‘f32x4.nearest’ = f32x4.nearest

| ‘£32x4.add’ = f32xs.add

| ‘£32x4.sub’ = f32xa.sub

| ‘£32x4.mul’ = faaxa.mul

| ‘£32x4.div’ = faxadiv

| ‘£32x4.min’ = f32x4.min

| ‘£32x4.max’ = f32x4.max

| ‘f32x4.pmin’ = f32x4.pmin

| ‘£32x4.pmax’ = f32xa.pmax
‘f64x2.abs’ feax2.abs
‘f64x2.neg’ feax2.neg
‘f64x2.sqrt’ feax2.sqrt
‘f64x2.ceil’ feaxa.ceil
‘f64x2.floor’ feaxa.floor

feax2.trunc
feax2.nearest

‘f64x2.add’ feax2.add
‘£64x2.sub’ feax2.sub
‘f64x2.mul’ feax2.mul
‘£64x2.div’ feax2.div
‘f64x2.min’ fe4x2.min
‘f64x2.max’ feax2.max
‘f64x2.pmin’ feax2.pmin
‘f64x2.pmax’ feax2.pmax

‘132x4.trunc_sat_£f32x4_s’
‘132x4.trunc_sat_£f32x4 u’
‘132x4.trunc_sat_f64x2_s_zero’
‘i32x4.trunc_sat f64x2 u zero’
‘f32x4.convert_i32x4 s’

| i32xa.trunc_sat_f32x4_s
\

\

\

\

| ‘£32x4.convert_i32x4 u’

\

\

\

\

i32xa.trunc_sat_f32x4_u
i32xa.trunc_sat_f64x2_s_zero
i32xa.trunc_sat_f64x2_u_zero
f32xa.convert_i32x4_s
f32x4.convert_i32x4 _u
feax2.convert_low_i32x4_s
feax2.convert_low_i32x4_u
f32xa.demote_f64x2_zero
feax2.promote_low_f32x4

‘f64x2.convert_low_i32x4_s’
‘f64x2.convert_low_i32x4_u’
‘f32x4.demote_f64x2_zero’
‘f64x2.promote_low_f£f32x4’

S O I O R 0 0 O A O

244 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

isx16.relaxed_swizzle
i32x4a.relaxed_trunc_f32x4_s
i32x4a.relaxed_trunc_f32x4_u
i32xa.relaxed_trunc_f32x4_s_zero
i32xa.relaxed_trunc_f32x4_u_zero
f32x4.relaxed_madd
f32x4.relaxed_nmadd
feax2.relaxed_madd
feax2.relaxed_nmadd
isx16.relaxed_laneselect
i16xs.relaxed_laneselect
i32x4.relaxed_laneselect
i6ax2.relaxed_laneselect
f32x4.relaxed_min
f32x4.relaxed_max
feax2.relaxed_min
feaxa.relaxed_max
i16xs.relaxed_ql5mulr_s
i16xs.relaxed_dot_i8x16_i7x16_s
i16xs.relaxed_dot_i8x16_i7x16_add_s

| ‘i8x16.relaxed_swizzle’

\ ‘132x4.relaxed_trunc_£32x4_s’
| ‘i32x4.relaxed_trunc_£32x4_u’
| ‘i32x4.relaxed_trunc_£f32x4_s_zero’
\ ‘i32x4.relaxed_trunc_£f32x4_u_zero’
| ‘£32x4.relaxed_madd’

| ‘£32x4.relaxed_nmadd’

| ‘f64x2.relaxed_madd’

| ‘f64x2.relaxed_nmadd’

| ‘i8x16.relaxed_laneselect’
\ ‘116x8.relaxed_laneselect’

| ‘132x4.relaxed_laneselect’

| ‘if4x2.relaxed_laneselect’

| ‘f32x4.relaxed_min’

| ‘f32x4.relaxed_max’

\ ‘f64x2.relaxed_min’

\ ‘f64x2.relaxed_max’

| ‘i16x8.relaxed_ql15mulr_s’

\ ‘i16x8.relaxed_dot_i8x16_i7x16_s’

\ ‘116x8.relaxed_dot_i8x16_i7x16_add_s’

L e O A

6.5.10 Folded Instructions

Instructions can be written as S-expressions by grouping them into folded form. In that notation, an instruction is
wrapped in parentheses and optionally includes nested folded instructions to indicate its operands.

In the case of block instructions, the folded form omits the ‘end’ delimiter. For if instructions, both branches have
to be wrapped into nested S-expressions, headed by the keywords ‘then’ and ‘else’.

The set of all phrases defined by the following abbreviations recursively forms the auxiliary syntactic class
foldedinstr. Such a folded instruction can appear anywhere a regular instruction can.

ofs

plaininstr foldedinstr*)’

(foldedinstr* plaininstr
‘(" ‘block’ label blocktype instr* ‘)’

(

(

‘plock’ label blocktype instr® ‘end’
‘loop’ label blocktype instr* ‘end’

LIS

‘(" ‘Lloop’ label blocktype instr*)’
> ‘if’ label blocktype foldedinstr*
‘(’ “then’ instr} ‘)’ (‘(’ ‘else’ instri ‘))" <)

3

foldedinstr* ‘if’ label blocktype instrj
‘else’ (instr})’ ‘end’

‘try_table’ label blocktype
catch® instr* ‘end

‘(" ‘try_table’ label blocktype catch* instr* ‘)’

)

Note

For example, the instruction sequence
(Local.get $x) (i32.const 2) i32.add (i32.const 3) i32.mul
can be folded into
(i32.mul (i32.add (local.get $x) (i32.const 2)) (i32.const 3))

Folded instructions are solely syntactic sugar, no additional syntactic or type-based checking is implied.

6.5. Instructions 245

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.11 Expressions

Expressions are written as instruction sequences. No explicit ‘end’ keyword is included, since they only occur in

bracketed positions.

expr; == (in:instr;)*

6.6 Modules

6.6.1 Indices

= in"

Indices can be given either in raw numeric form or as symbolic identifiers when bound by a respective construct.
Such identifiers are looked up in the suitable space of the identifier context I.

typeidxy
globalidxy
tagidxy
memidx;
tableidxy
funcidxy
dataidxy
elemidxy
localidxy
labelidxy

fieldidxs ,

6.6.2 Tags

x:u32
v:id
x:u32
v:id
x:u32
v:id
x:u32
v:id
x:u32
v:id
x:u32
v:id
x:u32
v:id
xr:u32
v:id
x:u32
v:id
[:u32
v:id
1:u32
v:id

An tag definition can bind a symbolic tag identifier.

tags

Abbreviations

N I O O R I 2
S e~~~z 8RB 8RRRRRRRRRR 8RR

(if Ltypesfa] = v)
(if I.globals[z] = v)
(if I.tags[z] = v)
(if I.mems[z] = v)
(if I tables[z] = v)
(if I.funcs[z] = v)
(if I.datas[z] = v)
(if I elems[z] = v)
(if I.locals[z] = v)
(if I labels[l] = v)

(if I fields[z][i] = v)

n= ‘(" ‘tag’ id’ tt:tagtyper)’

=

Tags can be defined as imports or exports inline:

‘C ‘tag’ id” ‘(" ‘import’ name; namejy ‘)’ tagtype ‘)’

tag tt

‘(’ “import’ name; name, ‘(’ ‘tag’ id’ tagtype ‘) ‘)’

‘(’ ‘tag’ id” ‘(" ‘export’ name ‘)’

R

6(9 ‘export’ name 6(7 ctag’ ld/ 6)7 5)9 s(’ ‘tag’ ld/ . 6)7
(if id” # e A id = id’ vV id” = € A id’ fresh)

246

Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The latter abbreviation can be applied repeatedly, if “...” contains additional export clauses. Consequently, a
memory declaration can contain any number of exports, possibly followed by an import.

6.6.3 Globals

Global definitions can bind a symbolic global identifier.

global; == *(’‘global’ id’ gt:globaltype; eiexpr;)’ = global gte

Abbreviations

Globals can be defined as imports or exports inline:

‘(’ ‘global’ id’ ‘(’ ‘import’ name; name, ‘)’ globaltype)’ =
‘(’ “import’ name; names, ‘(’ ‘global’ id’ globaltype ‘))’
‘(’ ‘global’ id’ ‘(’ ‘export’ name ‘)’ ... ‘) =
‘(’ ‘export’ name ‘(" ‘global’ id’ ‘)’ ‘)’ ‘(" ‘global’ id’ ... ‘)
(if id” # e A id' = id? v id” = e A id’ fresh)

Note

The latter abbreviation can be applied repeatedly, if “...” contains additional export clauses. Consequently, a
global declaration can contain any number of exports, possibly followed by an import.

6.6.4 Memories

Memory definitions can bind a symbolic memory identifier.

mem; = ‘(" ‘memory’ id’ mt:memtypes ‘)’ = memory mt

Abbreviations

A data segment can be given inline with a memory definition, in which case its offset is 0 and the limits of the
memory type are inferred from the length of the data, rounded up to page size:

‘(’ ‘memory’ id’ addrtype’ ‘(’ ‘data’ b™:datastring ‘)’ ‘) =
‘(’ ‘memory’ id’ addrtype’ m m ‘)’
‘(" ‘data’ ‘(* ‘memory’ id’ ‘)’ ‘(" addrtype’‘.const’ ‘0’ ‘)’ datastring ‘)’
(if id® # e A id’ = id? v id” = e A id’ fresh,
if addrtype? # € A addrtype’ = addrtype’ V addrtype’ = € A addrtype’ = 132,
m = ceil(n/64Ki))

Memories can be defined as imports or exports inline:

5 G

- 27?7
‘(" ‘memory’ id’ ‘(’ ‘import’ name; names ‘)’ ?memtype Vo=
‘(" ‘import’ name; names ‘(’ ‘memory’ id’ memtype ¢)’ ‘)’

5 ¢

‘(’ ‘memory’ id’ ‘(’ ‘export’ name ‘)’ ... ‘)’
export’ name memory 1 memory i
Cfr ¢ p b f ¢ y7 d/ ¢\ ¢\ <[> y7 dl ¢\
it 1d’ eNid" =1id’ V id® = e A id’ fres
f ? / ? ? /f h

6.6. Modules 247

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The latter abbreviation can be applied repeatedly, if “...” contains additional export clauses. Consequently, a
memory declaration can contain any number of exports, possibly followed by an import.

6.6.5 Tables

Table definitions can bind a symbolic table identifier.

table; == ‘(" ‘table’ id’ tt:tabletypes e:exprs ‘)’ = tablette

Abbreviations

A table’s initialization expression can be omitted, in which case it defaults to ref.null:

‘(’ ‘table’ id’ tabletype ‘)’ = ‘(’ ‘table’ id’ tabletype ‘(’ref.null bt <) <)’
(if tabletype = addrtype’ limits (" ‘ref’ ‘null’’ ht *)’)

An element segment can be given inline with a table definition, in which case its offset is 0 and the limits of the
table type are inferred from the length of the given segment:

‘C ‘table’ id’ addrtype’ reftype ‘(’ ‘elem’ capr™:list(elemexpr) ‘) ‘) =
‘(’ ‘table’ id’ addrtype’ m n reftype ‘)’
‘(" ‘elem” ‘(’ ‘table’ id’ ©)’ ‘(’ addrtype’‘.const’ ‘0’ ¢)’ reftype list(elemexpr) ‘)
(if id® # e Aid’ = id" v id” = e A id’ fresh,
if addrtype? # € A addrtype’ = addrtype’ V addrtype’ = € A addrtype’ = ‘132’)

>

‘(’ ‘table’ id’ addrtype’ reftype ‘(’ ‘elem’ z™:list(funcidx) ‘) ‘)’ =
‘(’ ‘table’ id’ addrtype’ n n reftype ‘)’
‘(’ ‘elem” ‘(* ‘table’ id’ ‘)" ‘(’ addrtype’‘.const’ ‘0’ ‘)’ reftype list(‘(’ ‘ref.func’ funcidx ‘)’) ‘)’
(if id* # e A id’ = id? vV id” = e A id’ fresh,
if addrtype? # € A addrtype’ = addrtype? V addrtype? = e A\ addrtype’ = ‘i32’)

Tables can be defined as imports or exports inline:
‘(" “table’ id’ ‘(’ ‘import’ name; name, ‘)’ tabletype ‘) =
‘(’ “import’ name; name, ‘(’ ‘table’ id’ tabletype ‘) ‘)’
‘(" ‘table’ id’ ‘(’ ‘export’ name ‘)’ ... ‘) =
‘(’ ‘export’ name ‘(" ‘table’ id’)’)’ ‘(" ‘table’ id ...)
(if id” # e Aid' = id? v id” = e A id/ fresh)

Note

The latter abbreviation can be applied repeatedly, if ““...” contains additional export clauses. Consequently, a
table declaration can contain any number of exports, possibly followed by an import.

6.6.6 Functions
Function definitions can bind a symbolic function identifier, and local identifiers for its parameters and locals.
func; == ‘(" ‘func’ id’ z,I’:typeuses (loc:localy)* (in:instrpm)* ©)’
= funcz loc* in*
(if I" =1 @ I' ® {locals id(1ocal)*} well-formed)

local; == *(’‘local’ id’ t:valtypes ‘)’ = localt

248 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The definition of the local identifier context I uses the following auxiliary function to extract optional identifiers
from locals:

?

id(‘(’ “local’ id’ ...)’) = 1id’

Note

The well-formedness condition on I” ensures that parameters and locals do not contain duplicate identifiers.

Abbreviations
Multiple anonymous locals may be combined into a single declaration:

‘(" ‘local’ valtype* ‘) = (‘" ‘local’ valtype))*
Functions can be defined as imports or exports inline:

‘C “func’ id” ‘(" ‘import’ name; namej)’ typeuse)’ =
‘(’ “import’ name; name, ‘(’ ‘func’ id’ typeuse ‘)’ ‘)’
‘(’ “func’ id” ‘(’ ‘export’ name ‘)’ ... ‘) =
p
‘(’ ‘export’ name ‘(’ ‘func’ id’)’ ¢)’ ‘(" ‘func’ id’ ... ‘)
(if id” # e A id' = id” vV id” = e A id’ fresh)

Note

The latter abbreviation can be applied repeatedly, if “...” contains additional export clauses. Consequently, a
function declaration can contain any number of exports, possibly followed by an import.

6.6.7 Data Segments

Data segments allow for an optional memory index to identify the memory to initialize. The data is written as a
string, which may be split up into a possibly empty sequence of individual string literals.

datay n= ‘(" ‘data’ id’ b*:datastring ‘)’
= data b* passive
| ‘(‘data’ id? a:memuse; (
= datab* activex e
datastring = (b*:string)* = P((b*)*)
memuse; m= ‘(‘memory’ mmemidx; ‘) =

LIS

offset’ erexpry ‘)’ b*:datastring ‘)’

Note

In the current version of WebAssembly, the only valid memory index is O or a symbolic memory identifier
resolving to the same value.

Abbreviations
As an abbreviation, a single folded instruction may occur in place of the offset of an active data segment:
‘(" foldedinstr) = ‘(‘offset’ instr ‘)’
Also, a memory use can be omitted, defaulting to O.
e = ‘(‘memory’ ‘0")

As another abbreviation, data segments may also be specified inline with memory definitions; see the respective
section.

6.6. Modules 249

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.6.8 Element Segments

Element segments allow for an optional table index to identify the table to initialize.

elem; = ‘(‘elem’ id’ (et,e*):elemlisty ‘)’
= elem et e* passive
| “(‘elem’ id’ a:tableuse; (
= elem et e* active z €
‘(’ ‘elem’ id’ ‘declare’ (et,y*):elemlisty ‘)’
= elem et e* declare

s <

offset’ e¢':exprs) (et,e*):elemlist; ‘)’

elemlist; == tireftyper e*:list(elemexpry) = (t,ee”)
elemexpr; == ‘(" ‘item’ eiexpry ‘) = e
tableuse; == ‘(’ ‘table’ x:tableidx; ‘) = =z

Abbreviations

As an abbreviation, a single folded instruction may occur in place of the offset of an active element segment or as
an element expression:

‘(" foldedinstr ¢)’
‘(" foldedinstr)’

‘(" ‘offset’ instr <)’
‘(‘item’ instr ‘)’

Also, the element list may be written as just a sequence of function indices:
‘func’ list(funcidxy) = ‘(ref’ ‘func)’ list(‘(’ ‘ref.func’ funcidx;)’)

A table use can be omitted, defaulting to 0. Furthermore, for backwards compatibility with earlier versions of
WebAssembly, if the table use is omitted, the ‘func’ keyword can be omitted as well.

€ = ‘(‘table’ ‘0’)

‘(" ‘elem’ id” ‘(* ‘offset’ exprs ‘)’
list(funcidxy))’ ‘(" ‘elem’ id” ‘(’ ‘table’ ‘0’ ‘)’ ‘(’ ‘offset’ exprs ‘)’
‘func’ list(funcidxy) ‘)’

As another abbreviation, element segments may also be specified inline with table definitions; see the respective
section.

6.6.9 Start Function

A start function is defined in terms of its index.

start; == ‘(‘start’ xz:funcidxs ‘)’ = startx

Note

At most one start function may occur in a module, which is ensured by a suitable side condition on the module
grammar.

6.6.10 Imports

The external type in imports can bind a symbolic tag, global, memory, or function identifier.

import; == ‘(’ ‘import’ mmj:name nmo:name zx:externtypes)’
= import nmyi nmso T

Abbreviations

As an abbreviation, imports may also be specified inline with tag, global, memory, table, or function definitions;
see the respective sections.

250 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.6.11 Exports

The syntax for exports mirrors their abstract syntax directly.

of

3

exporty n= ‘(’ ‘export’ mm:mname zz:externidxy ‘)’ = export nm zz}
externidx; == ‘(’ ‘tag’ x:tagidxs ‘)’ = tagz

| ‘(" ‘global’ z:globalidxy ‘)’ = globalz

| ‘(‘memory’ x:memidxj ‘)’ = memory x

| ‘(‘table’ x:tableidx;)’ = tablez

| ‘(‘“func’ z:funcidxj ‘)’ = funcz

Abbreviations

As an abbreviation, exports may also be specified inline with tag, global, memory, table, or function definitions;
see the respective sections.

6.6.12 Modules

A module consists of a sequence of fields that can occur in any order. All definitions and their respective bound
identifiers scope over the entire module, including the text preceding them.

A module may optionally bind an identifier that names the module. The name serves a documentary role only.

Note

Tools may include the module name in the name section of the binary format.

module = ‘(" ‘module’ id’ (m:modulefields)* ‘)’ = Pm*
(if I = P idc(modulefield)* well-formed)

modulefield; := ty*irectypey = module ty*

| 4m:import; = module im

| tg:tagy = module tg

| gl:iglobal; = module gl

| me:memy = module me

| tartabley = module ta

| fnifuncy = module fn

| da:datay = module da

| el:elemy = module el

| stistarty = module st

| ex:exporty = module ex

where €@ m* is the module formed by the repeated concatenation of the indivual field sequences in order. The
following restrictions are imposed on this composition: m & meo is defined if and only if

o start] = eV starth =€

* tagl = global] = mem] = table] = func] = €V imports =€

Note

The first condition ensures that there is at most one start function. The second condition enforces that all imports
must occur before any regular definition of a tag, global, memory, table, or function, thereby maintaining the
ordering of the respective index spaces.

The well-formedness condition on [in the grammar for module ensures that no namespace contains duplicate
identifiers.

6.6. Modules 251

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The definition of the initial identifier context I uses the following auxiliary definition which maps each relevant
definition to a singular context with one (possibly empty) identifier:

EIN3

(‘C ‘rec’ typedef* ‘)’)

ide(‘(’ ‘type’ v”:id” subtype))

ide(‘(C ‘tag’ v":id” ... %))

ide(*(’ ‘global’ v’:id” ... *))

(‘(C ‘memory’ v”:id” ... °)")

ide(‘(C “table’ v”:id” ... *))

ide(*(“func’ v”:id? ... 9))

ide(‘(C ‘data’ v":id” ... %))

(‘(C ‘elem’ v":id? ... *))

ide(*(C *import’ ... ‘(" ‘func’ v’:id” ... *)’ *))

(‘C “import’ ... ‘(" ‘table’ v’:id” ...) 9))
(‘C “import’ ... ‘(" ‘memory’ v’:id” ...)))
(‘(C “import’ ... ‘(* ‘global’ v’:id” ...)))
(¢ o))
(‘C ‘sub’ ... comptype ‘)’)
(‘(C ‘struct’ Tfield* <))

idf(‘(‘array’ ...)’)

idf (‘" “func’ ...)")

idf(<(C “field’ v”:id” ... °)’)

3

Abbreviations

In a source file, the toplevel (module ..

modulefield* =

P idc(typedef)”

{types (v"), fields idf (subtype), typedefs st}
{tags (v')}

{globals (v*)}

{mems (v*)}

{tables (v:)}

{funcs (v*)}
{datas (v")}
{elems (v*)}
{funcs (v")}
{tables (v*)}
{mems (v")}
{globals (v*)}
{

idf (comptype)
Pidf (field)*

.) surrounding the module body may be omitted.

‘(" ‘module’ modulefield* ‘)’

252

Chapter 6. Text Format

CHAPTER /

Appendix

7.1 Embedding

A WebAssembly implementation will typically be embedded into a host environment. An embedder implements
the connection between such a host environment and the WebAssembly semantics as defined in the main body of
this specification. An embedder is expected to interact with the semantics in well-defined ways.

This section defines a suitable interface to the WebAssembly semantics in the form of entry points through which
an embedder can access it. The interface is intended to be complete, in the sense that an embedder does not need
to reference other functional parts of the WebAssembly specification directly.

Note

On the other hand, an embedder does not need to provide the host environment with access to all functionality
defined in this interface. For example, an implementation may not support parsing of the text format.

7.1.1 Types

In the description of the embedder interface, syntactic classes from the abstract syntax and the runtime’s abstract
machine are used as names for variables that range over the possible objects from that class. Hence, these syntactic
classes can also be interpreted as types.

For numeric parameters, notation like ¢ : u6; is used to specify a symbolic name in addition to the respective value
range.

7.1.2 Booleans
Interface operation that are predicates return Boolean values:

bool = false | true

7.1.3 Exceptions and Errors

Invoking an exported function may throw or propagate exceptions, expressed by an auxiliary syntactic class:
excepltion ::= exception exnaddr

The exception address exnaddr identifies the exception thrown.

253

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Failure of an interface operation is also indicated by an auxiliary syntactic class:
error = error

In addition to the error conditions specified explicitly in this section, such as invalid arguments or exceptions and
traps resulting from execution, implementations may also return errors when specific implementation limitations
are reached.

Note

Errors are abstract and unspecific with this definition. Implementations can refine it to carry suitable classifi-
cations and diagnostic messages.

7.1.4 Pre- and Post-Conditions

Some operations state pre-conditions about their arguments or post-conditions about their results. It is the embed-
der’s responsibility to meet the pre-conditions. If it does, the post conditions are guaranteed by the semantics.

In addition to pre- and post-conditions explicitly stated with each operation, the specification adopts the following
conventions for runtime objects (store, moduleinst, addresses):

* Every runtime object passed as a parameter must be valid per an implicit pre-condition.

» Every runtime object returned as a result is valid per an implicit post-condition.

Note

As long as an embedder treats runtime objects as abstract and only creates and manipulates them through the
interface defined here, all implicit pre-conditions are automatically met.

7.1.5 Store
store_init() : store
1. Return the empty store.

store_init() = {}

7.1.6 Modules

module_decode(byte*) : module | error

1. If there exists a derivation for the byte sequence byte* as a module according to the binary grammar for
modules, yielding a module m, then return m.

2. Else, return error.

module_decode(b*) m (if module == m:b*)
module_decode(b*) = error (otherwise)

module_parse(char®) : module | error

1. If there exists a derivation for the source char* as a module according to the text grammar for modules,
yielding a module m, then return m.

2. Else, return error.

module_parse(c*) = m (if module == m:c*)
module_parse(c*) = error (otherwise)

254 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

module_validate(module) : error’
1. If module is valid, then return nothing.

2. Else, return error.

module_validate(m) = e (if = m : externtype* — externtype’™)
module_validate(m) = error (otherwise)

module_instantiate(store, module, externaddr*) : (store, moduleinst | exception | error)
1. Try instantiating module in store with external addresses externaddr* as imports:
a. If it succeeds with a module instance moduleinst, then let result be moduleinst.
b. Else, let result be error.

2. Return the new store paired with result.

module_instantiate(S, m, ev*) = (S’, F.module) (if instantiate(S, m, ev*) < *S’; F; €)
module_instantiate(S, m, ev*) = (5’ error) (otherwise, if instantiate(S, m, ev*) < *S’; F'; result)
Note

The store may be modified even in case of an error.

module_imports(module) : (name, name, externtype)*

1. Pre-condition: module is valid with the external import types externtype® and external export types
externtype’”.

Let import™* be the imports of module.

Assert: the length of import* equals the length of externtype®.

A

For each import; in import™ and corresponding externtype; in externtype®, do:
Let import nm;1 nm;s xt; be the deconstruction of import;.
Let result; be the triple (nm;1, nma, externtype;).

Return the concatenation of all result;, in index order.

AN

Post-condition: each ezterntype; is valid under the empty context.

module_imports(m) = (nmq, nmae, externtype)*
(if (import nmy nmy ot*)* € m A = m : externtype* — externtype’™)

module_exports(module) : (name, externtype)*

1. Pre-condition: module is valid with the external import types ezterntype® and external export types
externtype’™.

Let export™ be the exports of module.

Assert: the length of export* equals the length of externtype’™.

Ll

For each export; in export* and corresponding externtypel in externtype’™, do:

®

Let export nm; externidz; be the deconstruction of export;.

=

Let result; be the pair (nm;, externtypel).

5. Return the concatenation of all result;, in index order.

7.1. Embedding 255

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Post-condition: each externtype} is valid under the empty context.

module_exports(m) = (
mathitnm, externtype’)*
(if (export nm xt*)* € m A = m : externtype® — externtype’™)

7.1.7 Module Instances
instance_export(moduleinst, name) : externaddr | error
1. Assert: due to validity of the module instance moduleinst, all its export names are different.
2. If there exists an exportinst; in moduleinst.exports such that name exportinst;.name equals name, then:
a. Return the external address exportinst;.addr.

3. Else, return error.

instance_export(m, name) = m.exports[i|.addr (if m.exports[i].name = name)
instance_export(m, name) = error (otherwise)

7.1.8 Functions

func_alloc(store, deftype, hostfunc) : (store, funcaddr)
1. Pre-condition: the defined type deftype is valid under the empty context and expands to a function type.

2. Let funcaddr be the result of allocating a host function in store with defined type deftype, host function
code hostfunc and an empty module instance.

3. Return the new store paired with funcaddr.

func_alloc(S, dt, code) = (S5, a) (if alloctunc(S, dt, code, {}) = ', a)

Note

This operation assumes that hostfunc satisfies the pre- and post-conditions required for a function instance with
type deftype.

Regular (non-host) function instances can only be created indirectly through module instantiation.

func_type(store, funcaddr) : deftype
1. Let deftype be the definedn type S.funcs[a].type.
2. Return deftype.

3. Post-condition: the returned defined type is valid and expands to a function type.

func_type(S,a) = S.funcslal.type

func_invoke(store, funcaddr, val*) : (store, val* | exception | error)
1. Try invoking the function funcaddr in store with values val* as arguments:
a. If it succeeds with values val’™ as results, then let result be val’™.

b. Else if the outcome is an exception with a thrown exception ref.exn exnaddr as the result, then let result be
exception exnaddr

256 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

c. Else it has trapped, hence let result be error.

2. Return the new store paired with result.

func_invoke(S, a,v*) = (S',v'") (if invoke(S, a, v*) < *S'; F;0'™)
func_invoke(S, a,v*) = (5, exception a’) (if invoke(S, a, v*) < *S'; F'; (ref.exn a’) throw_ref
func_invoke(S, a,v*) = (S, error) (if invoke(S, a, v*) < *S’; F; trap)

Note

The store may be modified even in case of an error.

7.1.9 Tables

table_alloc(store, tabletype, ref) : (store, tableaddr)
1. Pre-condition: the tabletype is valid under the empty context.

2. Let tableaddr be the result of allocating a table in store with table type tabletype and initialization value
ref.
3. Return the new store paired with tableaddr.

table_alloc(S, tt,r) = (5, a) (if alloctable(S, tt,r) = 57, a)

table_type(store, tableaddr) : tabletype
1. Return S.tables|a].type.
2. Post-condition: the returned table type is valid under the empty context.

table_type(S,a) = S.tables[a].type

table_read(store, tableaddr,i : ue;) : ref | error
1. Let ¢i be the table instance store.tables[tableaddr].
2. If ¢ is larger than or equal to the length of ti.elem, then return error.
3. Else, return the reference value ti.elem[q].

table_read(S,a,i) = r (if S.tables[a].elem[i] = r)
table_read(S,a,i) = error (otherwise)

table_write(store, tableaddr, i : us4, ref) : store | error
1. Let ¢i be the table instance store.tables[tableaddr].
2. If 4 is larger than or equal to the length of ¢i.elem, then return error.
3. Replace ti.elem[i] with the reference value ref.
4. Return the updated store.

table_write(S, a, i, 1) S’ (if S’ = S with tables[a].elem[i] = 7)
table_write(S,a,i,r) = error (otherwise)

table_size(store, tableaddr) : us4

1. Return the length of store.tables[tableaddr].elem.

table_size(S,a) = n (if |S.tables[a].elem| = n)

7.1. Embedding 257

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

table_grow(store, tableaddr,n : us4, ref) : store | error

1. Try growing the table instance store.tables[tableaddr] by n elements with initialization value ref:
a. If it succeeds, return the updated store.

b. Else, return error.

table_grow(S,a,n,r) = S’ (if S’ = S with tables[a] = growtable(S.tables[a], n, 7))

table_grow(S,a,n,r) = error (otherwise)

7.1.10 Memories
mem_alloc(store, memtype) : (store, memaddr)

1. Pre-condition: the memtype is valid under the empty context.

2. Let memaddr be the result of allocating a memory in store with memory type memtype.

3. Return the new store paired with memaddr.

mem_alloc(S, mt) = (5, a) (if allocmem(S, mt) = S, a)

mem_type(store, memaddr) : memtype
1. Return S.mems[a].type.
2. Post-condition: the returned memory type is valid under the empty context.

mem_type(S,a) = S.mems[a].type

mem_read(store, memaddr,i : us4) : byte | error
1. Let mi be the memory instance store.mems[memaddr].

2. If 4 is larger than or equal to the length of mi.bytes, then return error.

3. Else, return the byte ms.bytes[i].
mem_read(S,a,i) = b (if S.mems[a].bytes[i] = b)

mem_read(S,a,i) = error (otherwise)

mem_write(store, memaddr, i : ues, byte) : store | error
1. Let mi be the memory instance store.mems[memaddr].

2. If ¢ is larger than or equal to the length of mi.bytes, then return error.
3. Replace mi.bytes[i] with byte.

4. Return the updated store.
S’ (if 8" = S with mems][a].bytes[i] = b)
(otherwise)

mem_write(S, a, i, b)
mem_write(S,a,i,b) = error

mem_size(store, memaddr) : u64

1. Return the length of store.mems|[memaddr].bytes divided by the page size.

mem_size(S,a) = n (if |.S.mems][a].bytes| = n - 64 Ki)

258 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

mem_grow (store, memaddr,n : us4) : store | error
1. Try growing the memory instance store.mems[memaddr] by n pages:
a. If it succeeds, return the updated store.

b. Else, return error.

mem_grow(S,a,n) = S5 (if S = S with mems[a] = growmem(S.mems[a], n))
mem_grow(S,a,n) = error (otherwise)

7.1.11 Tags

tag_alloc(store, tagtype) : (store, tagaddr)
1. Pre-condition: tagtype is valid.
2. Let tagaddr be the result of allocating a tag in store with tag type tagtype.
3. Return the new store paired with tagaddr.

tag_alloc(S,tt) = (9, a) (if alloctag(S, tt) = S, a)

tag_type(store, tagaddr) : tagtype
1. Return S.tags[a].type.

2. Post-condition: the returned tag type is valid.

tag_type(S,a) = S.tags[a].type

7.1.12 Exceptions
exn_alloc(store, tagaddr, val*) : (store, exnaddr)
1. Pre-condition: tagaddr is an allocated tag address.

2. Let exnaddr be the result of allocating an exception instance in store with tag address tagaddr and initial-
ization values val*.

3. Return the new store paired with eznaddr.

exn_alloc(S, tagaddr, val*) = (S @ {exns exninst},|S.exns|) (if exninst = {tag tagaddr, fields val*}

exn_tag(store, exnaddr) : tagaddr
1. Let exninst be the exception instance store.exns[eznaddr].

2. Return the tag address ezninst.tag.

exn_tag(S,a) = exninst.tag (if exninst = S.exnsla))

exn_read(store, exnaddr) : val*
1. Let exninst be the exception instance store.exns[eznaddr].

2. Return the values exninst.fields.

exn_read(S,a) = exninst.fields (if exninst = S.exns[a])

7.1. Embedding 259

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.1.13 Globals
global_alloc(store, globaltype, val) : (store, globaladdr)
1. Pre-condition: the globaltype is valid under the empty context.

2. Let globaladdr be the result of allocating a global in store with global type globaltype and initialization
value val.

3. Return the new store paired with globaladdr.

global_alloc(S, gt,v) = (5',a) (if allocglobal (S, gt,v) = 5, a)

global_type(store, globaladdr) : globaltype
1. Return S.globals[a].type.
2. Post-condition: the returned global type is valid under the empty context.

global_type(S,a) = S.globals[a].type

global_read(store, globaladdr) : val
1. Let gi be the global instance store.globals[globaladdr].
2. Return the value gi.value.

global_read(S,a) = wv (if S.globals[a].value = v)

global_write(store, globaladdr, val) : store | error
1. Let gi be the global instance store.globals[globaladdr].
2. Let mut t be the structure of the global type gi.type.
3. If mut is empty, then return error.
4. Replace gi.value with the value val.

5. Return the updated store.

global_write(S, a, v) S’ (if S.globals[a].type = mut t A S’ = S with globals[a].value = v)
global_write(S,a,v) = error (otherwise)

7.1.14 Values
ref_type(store, ref) : reftype
1. Pre-condition: the reference ref is valid under store S.
2. Return the reference type ¢ with which ref is valid.
3. Post-condition: the returned reference type is valid under the empty context.

ref_type(S,r) = t (if Skr:t)

Note

In future versions of WebAssembly, not all references may carry precise type information at run time. In such
cases, this function may return a less precise supertype.

260 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

val_default(valtype) : val
1. If defaultyqizype is not defined, then return error.
1. Else, return the value defaultyqieype-

val_default(t) = v (if default, = v)
val_default(t) = error (if default; =€)

7.1.15 Matching

match_valtype(valtyper, valtypes) : bool
1. Pre-condition: the value types valtype; and valtypes are valid under the empty context.
2. If valtype; matches valtypes, then return true.
3. Else, return false.

match_reftype(t;, ta) = true (if Ft <t9)
match_reftype(t;,ta) = false (otherwise)

match_externtype(externtypey, externtypes) : bool
1. Pre-condition: the extern types externtype; and externtypeo are valid under the empty context.
2. If externtypey matches externtypes, then return true.
3. Else, return false.

match_externtype(ety, eta) = true (if F ety < ety)
match_externtype(ety, ets) = false (otherwise)

7.2 Profiles

To enable the use of WebAssembly in as many environments as possible, profiles specify coherent language subsets
that fit constraints imposed by common classes of host environments. A host platform can thereby decide to support
the language only under a restricted profile, or even the intersection of multiple profiles.

7.2.1 Conventions

A profile modification is specified by decorating selected rules in the main body of this specification with a profile
annotation that defines them as conditional on the choice of profile.

For that purpose, every profile defines a profile marker, an alphanumeric short-hand like ABC. A profile annotation
of the form ['ABC XYZ] o a rule indicates that this rule is excluded for either of the profiles whose marker is ABC
or XY7Z.

There are two ways of subsetting the language in a profile:
* Syntactic, by omitting a feature, in which case certain constructs are removed from the syntax altogether.

» Semantic, by restricting a feature, in which case certain constructs are still present but some behaviours are
ruled out.

Syntax Annotations

To omit a construct from a profile syntactically, respective productions in the grammar of the abstract syntax are
annotated with an associated profile marker. This is defined to have the following implications:

1. Any production in the binary or textual syntax that produces abstract syntax with a marked construct is
omitted by extension.

2. Any validation or execution rule that handles a marked construct is omitted by extension.

7.2. Profiles 261

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The overall effect is that the respective construct is no longer part of the language under a respective profile.

Note

For example, a “busy” profile marked BUSY could rule out the nop instruction by marking the production for
it in the abstract syntax as follows:

nstr

[BUSY] | pop
|

unreachable

A rule may be annotated by multiple markers, which could be the case if a construct is in the intersection of
multiple features.

Semantics Annotations

To restrict certain behaviours in a profile, individual validation or reduction rules or auxiliary definitions are an-
notated with an associated marker.

This has the consequence that the respective rule is no longer applicable under the given profile.

Note
For example, an “infinite” profile marked INF' could define that growing memory never fails:

S; F'; (i32.const n) memory.grow z < S’; F'; (i32.const s2)
(if F.module.mems|z] = a
A sz = |S.mems|a].datas| /64 Ki
A S = S with mems[a] = growmem(S.mems[a], n))
['INF]

S; F; (i32.const n) memory.grow x < S; F'; (i32.const signedz; (—1))
Properties
All profiles are defined such that the following properties are preserved:

 All profiles represent syntactic and semantic subsets of the full profile, i.e., they do not add syntax or alter
behaviour.

* All profiles are mutually compatible, i.e., no two profiles subset semantic behaviour in inconsistent or am-
biguous ways, and any intersection of profiles preserves the properties described here.

* Profiles do not violate soundness, i.e., all configurations valid under that profile still have well-defined exe-
cution behaviour.

Note

Tools are generally expected to handle and produce code for the full profile by default. In particular, producers
should not generate code that depends on specific profiles. Instead, all code should preserve correctness when
executed under the full profile.

Moreover, profiles should be considered static and fixed for a given platform or ecosystem. Runtime condition-
ing on the “current” profile is not intended and should be avoided.

7.2.2 Defined Profiles

262 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The number of defined profiles is expected to remain small in the future. Profiles are intended for broad and
permanent use cases only. In particular, profiles are not intended for language versioning.

Full Profile (FUL)

The full profile contains the complete language and all possible behaviours. It imposes no restrictions, i.e., all rules
and definitions are active. All other profiles define sub-languages of this profile.

Deterministic Profile (DET)

[IDET]

The deterministic profile excludes all rules marked . It defines a sub-language that does not exhibit any

incidental non-deterministic behaviour:
* All NaN values generated by floating-point instructions are canonical and positive.
» All relaxed vector instructions have a fixed behaviour that does not depend on the implementation.

Even under this profile, the memory.grow and table.grow instructions technically remain non-deterministic, in
order to be able to indicate resource exhaustion.

Note

In future versions of WebAssembly, new non-deterministic behaviour may be added to the language, such that
the deterministic profile will induce additional restrictions.

7.3 Implementation Limitations

Implementations typically impose additional restrictions on a number of aspects of a WebAssembly module or
execution. These may stem from:

* physical resource limits,

e constraints imposed by the embedder or its environment,

* limitations of selected implementation strategies.

This section lists allowed limitations. Where restrictions take the form of numeric limits, no minimum requirements
are given, nor are the limits assumed to be concrete, fixed numbers. However, it is expected that all implementations
have “reasonably” large limits to enable common applications.

Note

A conforming implementation is not allowed to leave out individual features. However, designated subsets of
WebAssembly may be specified in the future.

7.3.1 Syntactic Limits

Structure

An implementation may impose restrictions on the following dimensions of a module:
* the number of types in a module
¢ the number of functions in a module, including imports
* the number of tables in a module, including imports

¢ the number of memories in a module, including imports

7.3. Implementation Limitations 263

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

the number of globals in a module, including imports
the number of tags in a module, including imports

the number of element segments in a module

the number of data segments in a module

the number of imports to a module

the number of exports from a module

the number of sub types in a recursive type

the subtyping depth of a sub type

the number of fields in a structure type

the number of parameters in a function type

the number of results in a function type

the number of parameters in a block type

the number of results in a block type

the number of locals in a function

the number of instructions in a function body

the number of instructions in a structured control instruction
the number of structured control instructions in a function
the nesting depth of structured control instructions

the number of label indices in a br_table instruction
the number of instructions in a constant expression

the length of the array in a array.new_fixed instruction
the length of an element segment

the length of a data segment

the length of a name

the range of characters in a name

If the limits of an implementation are exceeded for a given module, then the implementation may reject the vali-

dation, compilation, or instantiation of that module with an embedder-specific error.

Note

The last item allows embedders that operate in limited environments without support for Unicode*® to limit the

names of imports and exports to common subsets like ASCI

4.

Binary Format

For a module given in binary format, additional limitations may be imposed on the following dimensions:

the size of a module
the size of any section
the size of an individual function’s code

the size of a structured control instruction

48 https://www.unicode.org/versions/latest/

49 https://webstore.ansi.org/RecordDetail.aspx ?sku=INCITS+4- 1986%5bR2012%5d

264

Chapter 7. Appendix

https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* the size of an individual constant expression’s instruction sequence

¢ the number of sections

Text Format
For a module given in text format, additional limitations may be imposed on the following dimensions:
* the size of the source text
* the size of any syntactic element
* the size of an individual token
¢ the nesting depth of folded instructions
¢ the length of symbolic identifiers

* the range of literal characters allowed in the source text

7.3.2 Validation

An implementation may defer validation of individual functions until they are first invoked.

If a function turns out to be invalid, then the invocation, and every consecutive call to the same function, results in
a trap.

Note

This is to allow implementations to use interpretation or just-in-time compilation for functions. The function
must still be fully validated before execution of its body begins.

7.3.3 Execution
Restrictions on the following dimensions may be imposed during execution of a WebAssembly program:
¢ the number of allocated module instances
e the number of allocated function instances
* the number of allocated table instances
¢ the number of allocated memory instances
¢ the number of allocated global instances
* the number of allocated tag instances
¢ the number of allocated structure instances
¢ the number of allocated array instances

* the number of allocated exception instances

the size of a table instance

the size of a memory instance

the size of an array instance
¢ the number of frames on the stack
¢ the number of labels on the stack

¢ the number of values on the stack

7.3. Implementation Limitations 265

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

If the runtime limits of an implementation are exceeded during execution of a computation, then it may terminate
that computation and report an embedder-specific error to the invoking code.

Some of the above limits may already be verified during instantiation, in which case an implementation may report
exceedance in the same manner as for syntactic limits.

Note

Concrete limits are usually not fixed but may be dependent on specifics, interdependent, vary over time, or
depend on other implementation- or embedder-specific situations or events.

7.4 Type Soundness

The type system of WebAssembly is sound, implying both type safety and memory safety with respect to the We-
bAssembly semantics. For example:

» All types declared and derived during validation are respected at run time; e.g., every local or global variable
will only contain type-correct values, every instruction will only be applied to operands of the expected type,
and every function invocation always evaluates to a result of the right type (if it does not diverge, throw an
exception, or trap).

* No memory location will be read or written except those explicitly defined by the program, i.e., as a local, a
global, an element in a table, or a location within a linear memory.

 There is no undefined behavior, i.e., the execution rules cover all possible cases that can occur in a valid
program, and the rules are mutually consistent.

Soundness also is instrumental in ensuring additional properties, most notably, encapsulation of function and
module scopes: no locals can be accessed outside their own function and no module components can be accessed
outside their own module unless they are explicitly exported or imported.

The typing rules defining WebAssembly validation only cover the static components of a WebAssembly program.
In order to state and prove soundness precisely, the typing rules must be extended to the dynamic components of
the abstract runtime, that is, the store, configurations, and administrative instructions.>

7.4.1 Contexts

In order to check rolled up recursive types, the context is locally extended with an additional component that records
the sub type corresponding to each recursive type index within the current recursive type:

C == {...,recs subtype* }

7.4.2 Types

Well-formedness for extended type forms is defined as follows.

Heap Type bot
* The heap type is valid.

C F bot : ok

50 The formalization and theorems are derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan
Gohman, Luke Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly>!. Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

31 https://dl.acm.org/citation.cfm?doid=3062341.3062363

266 Chapter 7. Appendix

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Heap Type rec i
* The recursive type index ¢ must exist in C'.recs.

* Then the heap type is valid.

C'.recs[i] = subtype
C treci: ok

Value Type bot

* The value type is valid.
C + bot : ok

Recursive Types rec subtype*
* Let C’ be the current context C, but where recs is subtype*.
¢ There must be a type index x, such that for each sub type subtype; in subtype™*:

— Under the context C’, the sub type subtype; must be valid for type index x + ¢ and recursive type index
i.

* Then the recursive type is valid for the type index x.

C, recs subtype* = rec subtype* : ok(z,0)
C'+ rec subtype* : ok(x)

C' b subtype : ok(x, 1) C rec subtype’™ : ok(x +1,i+1)
C - rece: ok(z,1) C = rec subtype subtype’™ : ok(z,1)

Note

These rules are a generalisation of the ones previously given.

Sub types sub final” ht* comptype
* The composite type comptype must be valid.
* The sequence ht* may be no longer than 1.

* For every heap type htj, in ht™:

The heap type ht;, must be ordered before a type index x and recursive type index a ¢, meaning:
Either hty, is a defined type.
Or hiy is a type index yy, that is smaller than z.

% Or hty, is a recursive type index rec j; where ji is smaller than <.

Let sub type subtypey, be the unrolling of the heap type hiy, meaning:
* Either hty, is a defined type deftypey, then subtype;, must be the unrolling of deftypey.
Or hty is a type index yg, then subtypey, must be the unrolling of the defined type C'.types|yx]-.

% Or hiy, is a recursive type index rec j, then subtypey, must be C'.recs[j].

The sub type subtypey, must not contain final.

Let comptype), be the composite type in subtypey,.

The composite type comptype must match comptypey,.

* Then the sub type is valid for the type index x and recursive type index <.

7.4. Type Soundness 267

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

|ht*| <1 (ht < x,i)* (unrollg(ht) = sub ht'" comptype’)*
C F comptype : ok (C F comptype < comptype’)*
C I sub final? ht™ comptype : ok(z, 1)

where:
(deftype < x,i) = true
(y < x,1) = y<z
(recj < x,1) = j<i
unrollg(deftype) = unroll(deftype)
unrolle (y) = unroll(C.types[y])
unrolle(rec §) = C.recs[j]

Note

This rule is a generalisation of the ones previously given, which only allowed type indices as supertypes.

Defined types rectype.i
The defined type (rectype.i) is valid if:
* The recursive type rectype is valid for the type index x.
* The recursive type rectype is of the form (rec subtype™).

* ¢ is less than n.
C' = rectype : ok(zx) rectype = rec subtype™ i<n

C' I rectype.i : ok

7.4.3 Subtyping

In a rolled-up recursive type, a recursive type indices rec ¢ matches another heap type ht if:
« Let sub final” ht'" comptype be the sub type C.recs]i].
* The heap type ht is contained in ht'".

C.recs[i] = sub final” (ht] ht ht3) comptype
ClFreci < ht

Note

This rule is only invoked when checking validity of rolled-up recursive types.

7.4.4 Results

Results can be classified by result types as follows.

Results val*
¢ For each value val; in val*:
— The value val; is valid with some value type ;.
e Let t* be the concatenation of all ¢;.

* Then the result is valid with result type [t*].
(S Fwal : t)*
St val* : [t¥]

268 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Results (ref.exn a) throw_ref
¢ The value ref.exn a must be valid.

* Then the result is valid with result type [¢*], for any valid closed result types.

St ref.exn a : ref exn F[t*] : ok
S+ (ref.exn a) throw_ref : [¢t*]

Results trap
o The result is valid with result type [¢*], for any valid closed result types.
E[t*] : ok
St trap : [t*]

7.4.5 Store Validity

The following typing rules specify when a runtime store .S is valid. A valid store must consist of tag, global,
memory, table, function, data, element, structure, array, exception, and module instances that are themselves valid,
relative to S.

To that end, each kind of instance is classified by a respective tag, global, memory, table, function, or element,
type, or just ok in the case of data structures, arrays, or exceptions. Module instances are classified by module
contexts, which are regular contexts repurposed as module types describing the index spaces defined by a module.

Store S
 Each tag instance taginst; in S.tags must be valid with some tag type tagtype;.
¢ Each global instance globalinst; in S.globals must be valid with some global type globaltype;.
» Each memory instance meminst; in S.mems must be valid with some memory type memtype;.
* Each table instance tableinst; in S.tables must be valid with some table type tabletype;.
¢ Each function instance funcinst; in S.funcs must be valid with some defined type deftype;.
¢ Each data instance datainst; in S.datas must be valid.
¢ Each element instance eleminst; in S.elems must be valid with some reference type reftype;.
¢ Each structure instance structinst; in S.structs must be valid.
¢ Each array instance arrayinst; in S.arrays must be valid.
* Each exception instance exninst; in S.exns must be valid.

* No reference to a bound structure address must be reachable from itself through a path consisting only of
indirections through immutable structure, or array fields or fields of exception instances.

* No reference to a bound array address must be reachable from itself through a path consisting only of indi-
rections through immutable structure or array fields or fields of exception instances.

* No reference to a bound exception address must be reachable from itself through a path consisting only of
indirections through immutable structure or array fields or fields of exception instances.

¢ Then the store is valid.

7.4. Type Soundness 269

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(S F taginst : tagtype)* (S F globalinst : globaltype)*
(S F meminst : memtype)* (S F tableinst : tabletype)*
(S & funcinst : deftype)* (S F datainst : ok)* (S F eleminst : reftype)*
(S b structinst : ok)* (S F arrayinst : ok)* (S + exninst : ok)*
S = {tags taginst™®, globals globalinst*, mems meminst*, tables tableinst™®, funcs funcinst*,
datas datainst*, elems eleminst™, structs structinst™, arrays arrayinst®, exns exninst™*}
(S.structsag] = structinst)* ((ref.struct ag) & (ref.struct as))*
(S.arrays[a,] = arrayinst)* ((ref.array a,) %& (ref.array a,))*
(S.exns[ae] = exninst)* ((ref.exn ae) B& (ref.exn ae))*
F.S:ok

where valy >>§ valy denotes the transitive closure of the following immutable reachability relation on values:

ref.struct a) >g S.structs[a].fields[i] if expand(S.structs[a).type) = struct ft% st ft}
ref.array a) >g S.arrays[al.fields[i] if expand(S.arrays[a].type) = array st

ref.exn a) >g S.exns|a].fields[i]

ref.extern ref) >g ref

A~~~

Note

The constraint on reachability through immutable fields prevents the presence of cyclic data structures that can
not be constructed in the language. Cycles can only be formed using mutation.

Tag Instances {type tagtype}
* The tag type tagtype must be valid under the empty context.

* Then the tag instance is valid with tag type tagtype.
F tagtype : ok
S {type tagtype} : tagtype

Global Instances {type mut t, value val}
* The global type mut ¢ must be valid under the empty context.
e The value val must be valid with some value type t'.
* The value type ¢’ must match the value type ¢.

» Then the global instance is valid with global type mut t.

F mut t: ok S wal: t Ft <t
S+ {type mut t,value val} : mut t

Memory Instances {type (addrtype limits), bytes b* }
* The memory type addrtype limits must be valid under the empty context.
* Let limits be [n..m)].
* The length of b* must equal m multiplied by the page size 64 Ki.

* Then the memory instance is valid with memory type addrtype limits.
F addrtype [n..m] : ok |b*| = n - 64Ki
S+ {type (addrtype [n..m]), bytes b*} : addrtype [n .. m]

270 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table Instances {type (addrtype limits t),elem ref*}
¢ The table type addrtype limits t must be valid under the empty context.
* Let limits be [n..m)].
 The length of ref* must equal n.
* For each reference ref; in the table’s elements ref™:
— The reference ref; must be valid with some reference type .

— The reference type ¢; must match the reference type ¢.

Then the table instance is valid with table type addrtype limits t.
F addrtype [n..m] t : ok |ref*| =n (SEref : t')* (Ft <#)*
S+ {type (addrtype [n..m] t),elem ref*} : addrtype [n..m] t

Function Instances {type deftype, module moduleinst, code func}
 The defined type deftype must be valid under an empty context.
¢ The module instance moduleinst must be valid with some context C'.
¢ Under context C"
— The function func must be valid with some defined type deftype’.
— The defined type deftype’ must match deftype.
¢ Then the function instance is valid with defined type deftype.

F deftype : ok S+ moduleinst : C
C & func : deftype’ C + deftype’ < deftype
S+ {type deftype, module moduleinst, code func} : deftype

Host Function Instances {type deftype, hostfunc hf}
¢ The defined type deftype must be valid under an empty context.
* The expansion of defined type deftype must be some function type func [tf] — [¢3].
* For every valid store S; extending .S and every sequence val* of values whose types coincide with ¢7:
— Executing hf in store S with arguments val/* has a non-empty set of possible outcomes.
— For every element R of this set:
% Either R must be L (i.e., divergence).
% Or R consists of a valid store Sy extending Sy and a result result whose type coincides with [t3].
¢ Then the function instance is valid with defined type deftype.

VSy,val*, B S ok A S =< S ASyEoval*: [t] =
hf (Sy;val*) DO A
- deftype : ok VR € hf(Sy;val*), R=1V
deftype = func [t7] — [t3] 3Ss, result, = Sg 1 ok A= Sy = S3 A Sa = result : [t5] A R = (Sa; result)

S+ {type deftype, hostfunc hf} : deftype

Note

This rule states that, if appropriate pre-conditions about store and arguments are satisfied, then executing the
host function must satisfy appropriate post-conditions about store and results. The post-conditions match the
ones in the execution rule for invoking host functions.

7.4. Type Soundness 271

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Any store under which the function is invoked is assumed to be an extension of the current store. That way, the

function itself is able to make sufficient assumptions about future stores.

Data Instances {bytes b*}

¢ The data instance is valid.

S+ {bytes b*} : ok

Element Instances {type t, elem ref*}
* The reference type ¢ must be valid under the empty context.
¢ For each reference ref; in the elements ref™:
— The reference ref; must be valid with some reference type t.
— The reference type t; must match the reference type t.

* Then the element instance is valid with reference type ¢.
Ft: ok (St ref : t')* (Ft' <t)*
S+ {type t,elem ref*} : ¢

Structure Instances {type deftype, fields fieldval*}
¢ The defined type deftype must be valid under the empty context.

* The expansion of deftype must be a structure type struct fieldtype*.

 The length of the sequence of field values fieldval* must be the same as the length of the sequence of field

types fieldtype*.

* For each field value fieldval; in fieldval* and corresponding field type fieldtype; in fieldtype*:

— Let fieldtype; be mut storagetype;.
— The field value fieldval; must be valid with storage type storagetype;.

¢ Then the structure instance is valid.

F dt : ok expand(dt) = struct (mut st)* (SE fu:st)*

S+ {type dt, fields fu*} : ok

Array Instances {type deftype, fields fieldval*}
¢ The defined type deftype must be valid under the empty context.
* The expansion of deftype must be an array type array fieldtype.
e Let fieldtype be mut storagetype.
* For each field value fieldval; in fieldval*:
— The field value fieldval; must be valid with storage type storagetype.

* Then the array instance is valid.

F dt : ok expand(dt) = array (mut st) (SFE fu:st)*

S+ {type dt, fields fu*} : ok

272

Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Field Values ficldval
o If fieldval is a value val, then:
— The value val must be valid with value type ¢.
— Then the field value is valid with value type t.
¢ Else, fieldval is a packed value packval:
— Let packtype.pack i be the field value fieldval.
— Then the field value is valid with packed type packtype.

S pt.pack i : pt

Exception Instances {tag a, fields val*}
* The store entry S.tags[a] must exist.
* The expansion of the tag type S.tags[a].type must be some function type func [t*] — [t/"].
* The result type [t'*] must be empty.
* The sequence val®st of values must have the same length as the sequence t* of value types.

* For each value val; in val®st and corresponding value type ¢; in ¢*, the value val; must be valid with type
t;.
* Then the exception instance is valid.
S.tags|a].type ~ func [t*] — |] (S F wal : t)*
S F {tag a, fields val*} : ok

Export Instances {name name, addr externaddr}
* The external address ezternaddr must be valid with some external type externtype.

* Then the export instance is valid.

S b externaddr : externtype

S+ {name name, addr externaddr} : ok

Module Instances moduleinst
¢ Each defined type deftype; in moduleinst.types must be valid under the empty context.

¢ For each tag address tagaddr; in moduleinst.tags, the external address tag tagaddr; must be valid with
some external type tag tagtype;.

* For each global address globaladdr; in moduleinst.globals, the external address global globaladdr; must be
valid with some external type global globaltype;.

 For each memory address memaddr; in moduleinst.mems, the external address mem memaddr; must be
valid with some external type mem memtype;.

¢ For each table address tableaddr; in moduleinst.tables, the external address table tableaddr; must be valid
with some external type table tabletype;.

¢ For each function address funcaddr; in moduleinst.funcs, the external address func funcaddr; must be
valid with some external type func deftypeg;.

* For each data address dataaddr; in moduleinst.datas, the data instance S.datas[dataaddr;] must be valid
with ok;.

7.4. Type Soundness 273

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* For each element address elemaddr; in moduleinst.elems, the element instance S.elems[elemaddr;] must
be valid with some reference type reftype;.

 Each export instance exportinst; in moduleinst.exports must be valid.

¢ For each export instance ezportinst; in moduleinst.exports, the name exportinst;.name must be different
from any other name occurring in moduleinst.exports.

e Let deftype™ be the concatenation of all deftype; in order.

e Let tagtype™ be the concatenation of all tagtype; in order.

e Let globaltype™ be the concatenation of all globaltype; in order.
e Let memtype* be the concatenation of all memtype; in order.
e Let tabletype™ be the concatenation of all tabletype; in order.

* Let deftypeg be the concatenation of all deftyper; in order.

e Let reftype* be the concatenation of all reftype; in order.

 Let ok™ be the concatenation of all ok; in order.

* Let m be the length of moduleinst.funcs.

* Let 2™ be the sequence of function indices from 0 to m — 1.

* Then the module instance is valid with context {types deftype*, tags tagtype*, globals globaltype*,
mems memtype*, tables tabletype*, funcs deftypef, datas ok™, elems reftype*, refs x*}.

(- deftype : ok)* (S F tag tagaddr : tag tagtype)*

(S F global globaladdr : global globaltype)* (S F func funcaddr : func deftypeg)*
(S F mem memaddr : mem memtype)* (S | table tableaddr : table tabletype)*
(S + S.datas[dataaddr] : ok)* (S F S.elems|elemaddr] : reftype)*
(S F exportinst : ok)* (exportinst.name)* disjoint

S+ {types deftype*,

tags tagaddr®,

globals globaladdr*,

mems memaddr*,

tables tableaddr®,

funcs funcaddr*,

datas dataaddr®,

elems elemaddr*,

exports exportinst™ } : {types deftype*,
tags tagtype*,
globals globaltype*,
mems memtype*,
tables tabletype*,
funcs deftypeg,
datas ok™,
elems reftype*,
refs O...(|funcaddr*| —1) }

7.4.6 Configuration Validity

To relate the WebAssembly type system to its execution semantics, the typing rules for instructions must be ex-
tended to configurations .S; 7", which relates the store to execution threads.

Configurations and threads are classified by their result type. In addition to the store S, threads are typed under a
return type resulttype’, which controls whether and with which type a return instruction is allowed. This type is
absent (¢) except for instruction sequences inside an administrative frame instruction.

274 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Finally, frames are classified with frame contexts, which extend the module contexts of a frame’s associated module
instance with the locals that the frame contains.

Configurations S; T
* The store S must be valid.
¢ Under no allowed return type, the thread 7" must be valid with some result type [t*].

* Then the configuration is valid with the result type [t*].
F.S: ok S;ebT: [t*]
FS;T: [t¥]

Threads F'; instr*
o Let resulttype” be the current allowed return type.
e The frame F' must be valid with a context C'.
e Let C' be the same context as C, but with return set to resulttype7.

* Under context C’, the instruction sequence instr* must be valid with some type [— [¢*].

Then the thread is valid with the result type [t*].

SHF:C S; C, return resulttype’ = instr* : [| — [t¥]
S; resulttype” = F';instr* : [t*]

Frames {locals val*, module moduleinst}
¢ The module instance moduleinst must be valid with some module context C'.
 Each value val; in val* must be valid with some value type ¢;.
e Let t* be the concatenation of all ¢; in order.
 Let C’ be the same context as C, but with the value types t* prepended to the locals list.

o Then the frame is valid with frame context C".
S+ moduleinst : C (S +wal : t)*
S I {locals val*, module moduleinst} : (C, locals t*)

7.4.7 Administrative Instructions

Typing rules for administrative instructions are specified as follows. In addition to the context C, typing of these
instructions is defined under a given store S.

To that end, all previous typing judgements C' - prop are generalized to include the store, as in S;C F prop, by
implicitly adding S to all rules — S is never modified by the pre-existing rules, but it is accessed in the extra rules
for administrative instructions given below.

trap

* The instruction is valid with any valid instruction type of the form [t] — [t5].
CH[t] — [th] : ok
S;C' & trap : [t] — [t5]

7.4. Type Soundness 275

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

val
e The value val must be valid with value type t.

* Then it is valid as an instruction with type [| — [t].

StEwal i t
S;CFowal :] = [t]

invoke funcaddr
* The external function address func funcaddr must be valid with external function type func deftype’.
¢ The expansion of the defined type deftype must be some function type func [¢5] — [¢3]).
* Then the instruction is valid with type [t]] — [t5].

S F func funcaddr : func deftype deftype = func [t]] — [t3]
S; C F invoke funcaddr : [t}] — [t5]

label,, {instrg} instr*
* The instruction sequence instrg must be valid with some type [¢]] — .« [t5].
¢ Let C” be the same context as C', but with the result type [¢7] prepended to the labels list.
¢ Under context C’, the instruction sequence instr* must be valid with type [| — 5= [t5].

* Then the compound instruction is valid with type [| — [t3].
S;C = instry « [t7] —a= [t5] S; C, labels [t7] F instr* « [] =g+ [t3]
S; C + label, {instrg} instr* : [| — [t3]

frame, {F'} instr*
* Under the valid return type [t"], the thread F'; instr* must be valid with result type [t"].

¢ Then the compound instruction is valid with type [| — [¢t"].
C I [t"] : ok S; [t F F;instr* : [t")
S; C = frame, {F'} instr* : [| — [t"]

handler,, { catch*} instr*
* For every catch clause catch; in catch™®, catch; must be valid.
* The instruction sequence instr* must be valid with some type [t7] — [t5].
* Then the compound instruction is valid with type [t7] — [t3].
(C b catch : ok)* S; CF anstr* : [t] — [t3]
S; C F handler, {catch*} instr* : [t;] — [t3]

7.4.8 Store Extension

Programs can mutate the store and its contained instances. Any such modification must respect certain invariants,
such as not removing allocated instances or changing immutable definitions. While these invariants are inherent
to the execution semantics of WebAssembly instructions and modules, host functions do not automatically adhere
to them. Consequently, the required invariants must be stated as explicit constraints on the invocation of host
functions. Soundness only holds when the embedder ensures these constraints.

276 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The necessary constraints are codified by the notion of store extension: a store state S’ extends state S, written
S < §’, when the following rules hold.

Note

Extension does not imply that the new store is valid, which is defined separately above.

Store S
* The length of S.tags must not shrink.
* The length of S.globals must not shrink.
* The length of S.mems must not shrink.
* The length of S.tables must not shrink.
 The length of S.funcs must not shrink.
* The length of S.datas must not shrink.
* The length of S.elems must not shrink.
* The length of S.structs must not shrink.
 The length of S.arrays must not shrink.
* The length of S.exns must not shrink.
* For each tag instance taginst, in the original S.tags, the new tag instance must be an extension of the old.

* For each global instance globalinst; in the original S.globals, the new global instance must be an extension
of the old.

* For each memory instance meminst; in the original S.mems, the new memory instance must be an extension
of the old.

* For each table instance tableinst; in the original S.tables, the new table instance must be an extension of the
old.

* For each function instance funcinst; in the original S.funcs, the new function instance must be an extension
of the old.

* For each data instance datainst; in the original S.datas, the new data instance must be an extension of the
old.

* For each element instance eleminst; in the original S.elems, the new element instance must be an extension
of the old.

* For each structure instance structinst; in the original S.structs, the new structure instance must be an ex-
tension of the old.

* For each array instance arrayinst; in the original S.arrays, the new array instance must be an extension of
the old.

* For each exception instance exninst; in the original S.exns, the new exception instance must be an extension
of the old.

7.4. Type Soundness 277

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Si.tags = taginst} So.tags = taginsty™ taginst’ (F taginst; =< taginst})*
S1.globals = globalinst; Ss.globals = globalinsty™ globalinst} (- globalinst; =< globalinst})*
S1.mems = meminst} Sy.mems = meminst;™ meminst} (F meminst; < meminst})*
S .tables = tableinst} Sy.tables = tableinst}™ tableinst} (- tableinsty < tableinst))*
Sy.funcs = funcinst] Sy.funcs = funcinst}™ funcinst} (F funcinst; < funcinst})*
Si.datas = datainst} Sy.datas = datainst|” datainst’ (F datainst; < datainst})*
Sy.elems = eleminst} So.elems = eleminsty™ eleminst} (- eleminst; < eleminst))*
S1.structs = structinst; Sa.structs = structinst|” structinsty (- structinst; =< structinst})*
S1.arrays = arrayinst; Sp.arrays = arrayinst|,” arrayinsty (- arrayinst; < arrayinst})*
S1.exns = exninst] Sa.exns = exninsty” exninst} (F exninst; < exninsty)*

FS1 <95

Tag Instance taginst

* A tag instance must remain unchanged.

F taginst < taginst

Global Instance globalinst
* The global type globalinst.type must remain unchanged.
e Let mut t be the structure of globalinst.type.

* If mut is empty, then the value globalinst.value must remain unchanged.

mut = mut V val; = valsy
F {type (mut t),value valy } < {type (mut t),value valy}

Memory Instance meminst
e The memory type meminst.type must remain unchanged.

* The length of meminst.bytes must not shrink.
ny < Ng
F {type mt, bytes b]"* } < {type mt, bytes b5?}

Table Instance tableinst
* The table type tableinst.type must remain unchanged.

* The length of tableinst.elem must not shrink.
ny < ng
F {type tt, elem (fal)m1} < {type tt, elem (fa3)2}

Function Instance funcinst

* A function instance must remain unchanged.

F funcinst < funcinst

278 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Data Instance datainst
e The list datainst.bytes must:
— either remain unchanged,

— or shrink to length 0.

 {bytes b*} < {bytes b*}

F {bytes b*} < {bytes ¢}

Element Instance cleminst
* The reference type eleminst.type must remain unchanged.
¢ The list eleminst.elem must:
— either remain unchanged,

— or shrink to length 0.

F {type t,elem a*} < {type t,elem a*}

F {type t,elem a*} < {type t,elem €}

Structure Instance structinst
* The defined type structinst.type must remain unchanged.
* Assert: due to store well-formedness, the expansion of structinst.type is a structure type.
¢ Let struct fieldtype™ be the expansion of structinst.type.
 The length of the list structinst.fields must remain unchanged.
* Assert: due to store well-formedness, the length of structinst.fields is the same as the length of fieldtype™.
* For each field value fieldval; in structinst.fields and corresponding field type fieldtype; in fieldtype*:
— Let mut; st; be the structure of fieldtype;.

— If mut; is empty, then the field value fieldval; must remain unchanged.

(mut = mut V fieldvaly = fieldvals)*
F {type (mut st)*,fields fieldvali} < {type (mut st)*,fields fieldval}}

Array Instance arrayinst
* The defined type arrayinst.type must remain unchanged.
* Assert: due to store well-formedness, the expansion of arrayinst.type is an array type.
e Let array fieldtype be the expansion of arrayinst.type.
¢ The length of the list arrayinst.fields must remain unchanged.
e Let mut st be the structure of fieldtype.

* If mut is empty, then the sequence of field values arrayinst.fields must remain unchanged.
mut = mutV fieldval} = fieldval}
F {type (mut st), fields fieldvali} < {type (mut st),fields fieldval}}

7.4. Type Soundness 279

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Exception Instance exninst

* An exception instance must remain unchanged.

F erninst < exninst

7.4.9 Theorems

Given the definition of valid configurations, the standard soundness theorems hold.’>>*

Theorem (Preservation). If a configuration S; 7 is valid with result type [t*] (i.e., = S;T : [t*]), and steps to
ST (ie., S;T < S;T), then S’; T” is a valid configuration with the same result type (i.e., = S';T7 : [t*]).
Furthermore, S’ is an extension of S (i.e., = S < S").

A terminal thread is one whose sequence of instructions is a result. A terminal configuration is a configuration
whose thread is terminal.

Theorem (Progress). If a configuration S; T is valid (i.e., = S; T : [t*] for some result type [t*]), then either it is
terminal, or it can step to some configuration S’; 7" (i.e., S; T < S’;T").

From Preservation and Progress the soundness of the WebAssembly type system follows directly.

Corollary (Soundness). If a configuration S; T is valid (i.e., = S; T : [t*] for some result type [t*]), then it either
diverges or takes a finite number of steps to reach a terminal configuration S’; 7" (i.e., S;T < *S’;T") that is
valid with the same result type (i.e., - S’; T : [¢t*]) and where S’ is an extension of S (i.e., .S < 5”).

In other words, every thread in a valid configuration either runs forever, traps, throws an exception, or terminates
with a result that has the expected type. Consequently, given a valid store, no computation defined by instantiation or
invocation of a valid module can “crash” or otherwise (mis)behave in ways not covered by the execution semantics
given in this specification.

7.5 Type System Properties

7.5.1 Principal Types

The type system of WebAssembly features both subtyping and simple forms of polymorphism for instruction types.
That has the effect that every instruction or instruction sequence can be classified with multiple different instruction

types.

However, the typing rules still allow deriving principal types for instruction sequences. That is, every valid instruc-
tion sequence has one particular type scheme, possibly containing some unconstrained place holder type variables,
that is a subtype of all its valid instruction types, after substituting its type variables with suitable specific types.

Moreover, when deriving an instruction type in a “forward” manner, i.e., the input of the instruction sequence is
already fixed to specific types, then it has a principal output type expressible without type variables, up to a possibly
polymorphic stack bottom representable with one single variable. In other words, “forward” principal types are
effectively closed.

Note

For example, in isolation, the instruction ref.as_non_null has the type [(ref null ht)] — [(ref ht)] for any choice
of valid heap type ht. Moreover, if the input type [(ref null ht)] is already determined, i.e., a specific At is given,
then the output type [(ref ht)] is fully determined as well.

52 A machine-verified version of the formalization and soundness proof of the PLDI 2017 paper is described in the following article: Conrad
Watt. Mechanising and Verifying the WebAssembly Specification®®. Proceedings of the 7th ACM SIGPLAN Conference on Certified Programs
and Proofs (CPP 2018). ACM 2018.

33 https://dl.acm.org/citation.cfm?id=3167082

54 Machine-verified formalizations and soundness proofs of the semantics from the official specification are described in the following article:
Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, Philippa Gardner. Two Mechanisations of WebAssembly 1.0%. Proceedings
of the 24th International Symposium on Formal Methods (FM 2021). Springer 2021.

35 https:/link.springer.com/chapter/10.1007/978-3-030-90870-6_4

280 Chapter 7. Appendix

https://dl.acm.org/citation.cfm?id=3167082
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_4

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The implication of the latter property is that a validator for complete instruction sequences (as they occur in
valid modules) can be implemented with a simple left-to-right algorithm that does not require the introduction
of type variables.

A typing algorithm capable of handling partial instruction sequences (as might be considered for program
analysis or program manipulation) needs to introduce type variables and perform substitutions, but it does not
need to perform backtracking or record any non-syntactic constraints on these type variables.

Technically, the syntax of heap, value, and result types can be enriched with type variables as follows:

null = null? | apun

heaptype = ... | Qheaptype

reftype = ref null heaptype

U(lltypf’ = e | avaltype | anumvectype
resulttype = [O‘Z(Lzm,pe* valtype*|

where each ay,, ranges over a set of type variables for syntactic class zyz, respectively. The special class
numuectype is defined as numtype | vectype | bot, and is only needed to handle unannotated select instructions.

A type is closed when it does not contain any type variables, and open otherwise. A type substitution o is a finite
mapping from type variables to closed types of the respective syntactic class. When applied to an open type, it
replaces the type variables « from its domain with the respective o ().

Theorem (Principal Types). If an instruction sequence instr* is valid with some closed instruction type instrtype
(i.e., C' & instr* : instrtype), then it is also valid with a possibly open instruction type instrtypemy (i-e., C =
instr* : instrtypemin), such that for every closed type instriype’ with which instr* is valid (i.e., for all C'
instr* : instrtype’), there exists a substitution o, such that o(instrtypemin) is a subtype of instrtype’ (i.e.,
C t o(instrtypemin) < instrtype’). Furthermore, instrtypemi, is unique up to the choice of type variables.

Theorem (Closed Principal Forward Types). If closed input type [t7] is given and the instruction sequence instr*
is valid with instruction type [t]] — 4+ [t3] (i.e., C - instr* : [ti] — 4« [t5]), then it is also valid with instruction
type [t7] =2+ [Quaityper 7] (ee., C & instr* : [t5] =4+ [Quaiyper t7]), where all ¢* are closed, such that for
every closed result type [t5*] with which instr* is valid (i.e., for all C' = instr* : [t7] —,+ [t57]), there exists a

substitution o, such that [t5"] = [o(apartypes) t*].

7.5.2 Type Lattice

The Principal Types property depends on the existence of a greatest lower bound for any pair of types.

Theorem (Greatest Lower Bounds for Value Types). For any two value types ¢; and ¢, that are valid (i.e.,
C F ty : okand C F t5 : 0ok), there exists a valid value type ¢ that is a subtype of both t; and ¢ (i.e., C F ¢ : ok
and C' =t < t; and C + t < t5), such that every valid value type ' that also is a subtype of both ¢; and ¢ (i.e.,
forall C -t :okand C' ¢ <t; and C Ft' <), is a subtype of ¢ (i.e., C -t < t).

Note

The greatest lower bound of two types may be bot.
Theorem (Conditional Least Upper Bounds for Value Types). Any two value types ¢; and ¢, that are valid (i.e.,
C F ty : okand C F t : ok) either have no common supertype, or there exists a valid value type ¢ that is a
supertype of both ¢; and ¢5 (i.e., C' ¢ : ok and C I ¢; < tand C I t5 < t), such that every valid value type ¢’
that also is a supertype of both #; and ¢, (i.e., forall C ¢’ : okand C' - t; < t' and C I~ t5 < t'), is a supertype
oft Ge.,,CHt<t).

Note

If a top type was added to the type system, a least upper bound would exist for any two types.

7.5. Type System Properties 281

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Corollary (Type Lattice). Assuming the addition of a provisional top type, value types form a lattice with respect
to their subtype relation.

Finally, value types can be partitioned into multiple disjoint hierarchies that are not related by subtyping, except
through bot.

Theorem (Disjoint Subtype Hierarchies). The greatest lower bound of two value types is bot or ref bot if and
only if they do not have a least upper bound.

In other words, types that do not have common supertypes, do not have common subtypes either (other than bot
or ref bot), and vice versa.

Note

Types from disjoint hierarchies can safely be represented in mutually incompatible ways in an implementation,
because their values can never flow to the same place.

7.5.3 Compositionality
Valid instruction sequences can be freely composed, as long as their types match up.

Theorem (Composition). If two instruction sequences instry and instrs are valid with types [t7] —4: [t*] and
[t*] —ay [t5], respectively (i.e., C I instry : [t7] —4x [t*] and C & instry : [t*] =45 [t3]), then the concatenated
instruction sequence (instry instry) is valid with type [t7] —ox o5 [t3] (ie., C &= instry instry : [t7] —ax 23 [5]).

Note

More generally, instead of a shared type [t*], it suffices if the output type of instr is a subtype of the input
type of instry, since the subtype can always be weakened to its supertype by subsumption.

Inversely, valid instruction sequences can also freely be decomposed, that is, splitting them anywhere produces two
instruction sequences that are both valid.

Theorem (Decomposition). If an instruction sequence instr™ that is valid with type [t] —,~ [t5] (.e., C
instr* ¢ [t7] —g- [t3]) is split into two instruction sequences instr; and instr} at any point (i.e., instr* =
instry instry), then these are separately valid with some types [t7] —,: [t*] and [t*] —,; [t3], respectively (i.e.,

C = instry : [t7] —r [t*] and C &= instry : [t*] — 4y [t3]), where 2* = 7] 5.

Note

This property holds because validation is required even for unreachable code. Without that, instr5 might not
be valid in isolation.

7.6 Validation Algorithm
The specification of WebAssembly validation is purely declarative. It describes the constraints that must be met
by a module or instruction sequence to be valid.

This section sketches the skeleton of a sound and complete algorithm for effectively validating code, i.e., sequences
of instructions. (Other aspects of validation are straightforward to implement.)

In fact, the algorithm is expressed over the flat sequence of opcodes as occurring in the binary format, and performs
only a single pass over it. Consequently, it can be integrated directly into a decoder.

The algorithm is expressed in typed pseudo code whose semantics is intended to be self-explanatory.

282 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.6.1 Data Structures
Types

Value types are representable as sets of enumerations:

type num_type = I32 | I64 | F32 | F64
type vec_type = V128
type heap_type =

Any | Eq | I31 | Struct | Array | None |

Func | Nofunc | Exn | Noexn | Extern | Noextern | Bot |

Def(def : def_type)
type ref_type = Ref(heap : heap_type, null : bool)
type val_type = num_type | vec_type | ref_type | Bot

func is_num(t : val_type) : bool
return t = I32 || t =164 || t

func is_vec(t : val_type) : bool
return t = V128 || t = Bot

func is_ref(t : val_type) : bool =
return not (is_num t || is_vec t) || t = Bot

F32 || t = F64 || t = Bot

Similarly, defined types def_type can be represented:

type pack_type = I8 | I16
type field_type = Field(val : val_type | pack_type, mut

type struct_type = Struct(fields : list(field_type))
type array_type = Array(fields : field_type)

type func_type = Func(params : list(val_type), results :

type comp_type = struct_type | array_type | func_type

type sub_type
type rec_type = Rec(types : list(sub_type))

type def_type = Def(rec : rec_type, proj : int32)
func unpack_field(t : field_type) : val_type =
if (it = I8 || t = I16) return I32

return t

func expand_def(t : def_type) : comp_type =
return t.rec.types[t.proj].body

: bool)

Sub(super : list(def_type), body : comp_type, final : bool)

list(val_type))

These representations assume that all types have been closed by substituting all type indices (in concrete heap types
and in sub types) with their respective defined types. This includes recursive references to enclosing defined types,
such that type representations form graphs and may be cyclic for recursive types.

We assume that all types have been canonicalized, such that equality on two type representations holds if and only
if their closures are syntactically equivalent, making it a constant-time check.

Note

For the purpose of type canonicalization, recursive references from a heap type to an enclosing recursive type
(i.e., forward edges in the graph that form a cycle) need to be distinguished from references to previously
defined types. However, this distinction does not otherwise affect validation, so is ignored here. In the graph

representation, all recursive types are effectively infinitely unrolled.

7.6. Validation Algorithm

283

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

We further assume that validation and subtyping checks are defined on value types, as well as a few auxiliary
functions on composite types:

func validate_val_type(t : val_type)
func validate_ref_type(t : ref_type)

func matches_val(tl : val_type, t2 : val_type) : bool
func matches_ref(tl : val_type, t2 : val_type) : bool

func is_func(t : comp_type) : bool
func is_struct(t : comp_type) : bool
func is_array(t : comp_type) : bool

J

Finally, the following function computes the least precise supertype of a given heap type (its corresponding top
type):

func top_heap_type(t : heap_type) : heap_type =
switch (t)
case (Any | Eq | I31 | Struct | Array | None)
return Any
case (Func | Nofunc)
return Func
case (Extern | Noextern)
return Extern
case (Def(dt))
switch (dt.rec.types[dt.proj].body)
case (Struct(.) | Array())
return Any
case (Func(l))
return Func
case (Bot)
raise CannotOccurInSource

Context

Validation requires a context for checking uses of indices. For the purpose of presenting the algorithm, it is main-
tained in a set of global variables:

var return_type : list(val_type)
var types : array(def_type)

var locals : array(val_type)

var locals_init : array(bool)
var globals : array(global_type)
var funcs : array(func_type)

var tables : array(table_type)
var mems : array(mem_type)

This assumes suitable representations for the various types besides val_type, which are omitted here.

For locals, there is an additional array recording the initialization status of each local.

Stacks

The algorithm uses three separate stacks: the value stack, the control stack, and the initialization stack. The value
stack tracks the types of operand values on the stack. The control stack tracks surrounding structured control
instructions and their associated blocks. The initialization stack records all locals that have been initialized since
the beginning of the function.

284 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

type val_stack = stack(val_type)
type init_stack = stack(u32)

type ctrl_stack = stack(ctrl_frame)
type ctrl_frame = {
opcode : opcode
start_types : list(val_type)
end_types : list(val_type)
val_height : nat
init_height : nat
unreachable : bool

}

For each entered block, the control stack records a control frame with the originating opcode, the types on the top
of the operand stack at the start and end of the block (used to check its result as well as branches), the height of the
operand stack at the start of the block (used to check that operands do not underflow the current block), the height
of the initialization stack at the start of the block (used to reset initialization status at the end of the block), and a
flag recording whether the remainder of the block is unreachable (used to handle stack-polymorphic typing after
branches).

For the purpose of presenting the algorithm, these stacks are simply maintained as global variables:

var vals : val_stack
var inits : init_stack
var ctrls : ctrl_stack

However, these variables are not manipulated directly by the main checking function, but through a set of auxiliary
functions:

func push_val(type : val_type) =
vals.push(type)

func pop_val() : val_type =
if (vals.size() = ctrls[0].height & ctrls[0].unreachable) return Bot
error_if(vals.size() = ctrls[0].height)
return vals.pop()

func pop_val(expect : val_type) : val_type =
let actual = pop_val(Q)
error_if(not matches_val(actual, expect))
return actual

func pop_num() : num_type | Bot =
let actual = pop_val(Q)
error_if(not is_num(actual))
return actual

func pop_ref() : ref_type =
let actual = pop_val(Q)
error_if(not is_ref(actual))
if (actual = Bot) return Ref(Bot, false)
return actual

func push_vals(types : list(val_type)) = foreach (t in types) push_val(t)
func pop_vals(types : list(val_type)) : list(val_type) =

var popped := []

foreach (t in reverse(types)) popped.prepend(pop_val(t))

return popped

7.6. Validation Algorithm 285

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Pushing an operand value simply pushes the respective type to the value stack.

Popping an operand value checks that the value stack does not underflow the current block and then removes
one type. But first, a special case is handled where the block contains no known values, but has been marked as
unreachable. That can occur after an unconditional branch, when the stack is typed polymorphically. In that case,
the Bot type is returned, because that is a principal choice trivially satisfying all use constraints.

A second function for popping an operand value takes an expected type, which the actual operand type is checked
against. The types may differ by subtyping, including the case where the actual type is Bot, and thereby matches
unconditionally. The function returns the actual type popped from the stack.

Finally, there are accumulative functions for pushing or popping multiple operand types.

Note

The notation stack[i] is meant to index the stack from the top, so that, e.g., ctrls[0] accesses the element
pushed last.

The initialization stack and the initialization status of locals is manipulated through the following functions:

func get_local(idx : u32) =
error_if(not locals_init[idx])

func set_local(idx : u32) =

if (not locals_init[idx])
inits.push(idx)

locals_init[idx] := true

func reset_locals(height : nat) =
while (inits.size() > height)
locals_init[inits.pop()] := false

J

Getting a local verifies that it is known to be initialized. When a local is set that was not set already, then its
initialization status is updated and the change is recorded in the initialization stack. Thus, the initialization status
of all locals can be reset to a previous state by denoting a specific height in the initialization stack.

The size of the initialization stack is bounded by the number of (non-defaultable) locals in a function, so can be
preallocated by an algorithm.

The control stack is likewise manipulated through auxiliary functions:

func push_ctrl(opcode : opcode, in : list(val_type), out : list(val_type)) =
let frame = ctrl_frame(opcode, in, out, vals.size(), inits.size(), false)
ctrls.push(frame)
push_vals(in)

func pop_ctrl() : ctrl_frame =
error_if(ctrls.is_empty())
let frame = ctrls[0]
pop_vals(frame.end_types)
error_if(vals.size() =/= frame.val_height)
reset_locals(frame.init_height)
ctrls.pop(Q)
return frame

func label_types(frame : ctrl_frame) : list(val_types) =
return (if (frame.opcode = loop) frame.start_types else frame.end_types)

func unreachable() =

(continues on next page)

286 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(continued from previous page)

vals.resize(ctrls[0].height)
ctrls[0] .unreachable := true

Pushing a control frame takes the types of the label and result values. It allocates a new frame record recording
them along with the current height of the operand stack and marks the block as reachable.

Popping a frame first checks that the control stack is not empty. It then verifies that the operand stack contains the
right types of values expected at the end of the exited block and pops them off the operand stack. Afterwards, it
checks that the stack has shrunk back to its initial height. Finally, it undoes all changes to the initialization status
of locals that happend inside the block.

The type of the label associated with a control frame is either that of the stack at the start or the end of the frame,
determined by the opcode that it originates from.

Finally, the current frame can be marked as unreachable. In that case, all existing operand types are purged from the
value stack, in order to allow for the stack-polymorphism logic in pop_val to take effect. Because every function
has an implicit outermost label that corresponds to an implicit block frame, it is an invariant of the validation
algorithm that there always is at least one frame on the control stack when validating an instruction, and hence,
ctrls[0] is always defined.

Note

Even with the unreachable flag set, consecutive operands are still pushed to and popped from the operand stack.
That is necessary to detect invalid examples like (unreachable (i32.const) ie4.add). However, a polymorphic
stack cannot underflow, but instead generates Bot types as needed.

7.6.2 Validation of Opcode Sequences

The following function shows the validation of a number of representative instructions that manipulate the stack.
Other instructions are checked in a similar manner.

func validate(opcode) =
switch (opcode)
case (i32.add)
pop_val (I32)
pop_val(I32)
push_val (I32)

case (drop)
pop_val()

case (select)
pop_val(I32)
let t1 = pop_val(Q)
let t2 = pop_val(Q)
error_if(not (is_num(tl) && is_num(t2) || is_vec(tl) && is_vec(t2)))
error_if(tl =/= t2 && tl1 =/= Bot && t2 =/= Bot)
push_val(if (tl = Bot) t2 else tl)

case (select t)
pop_val(I32)
pop_val(t)
pop_val(t)
push_val (t)

case (ref.is_null)
pop_ref()

(continues on next page)

7.6. Validation Algorithm 287

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(continued from previous page)

push_val(I32)

case (ref.as_non_null)
let rt = pop_ref()
push_val (Ref(rt.heap, false))

case (ref.test rt)
validate_ref_type(rt)
pop_val (Ref(top_heap_type(rt), true))
push_val (I32)

case (local.get x)
get_local (x)
push_val (locals[x])

case (local.set x)
pop_val(locals[x])
set_local (x)

case (unreachable)
unreachable()

case (block tl*->t2%)
pop_vals([tl1*])
push_ctrl(block, [t1*], [t2*])

case (loop tl1*->t2%)
pop_vals([tl1l*])
push_ctrl(loop, [tl*], [t2*])

case (if tl1*->t2%)
pop_val(I32)
pop_vals([tl1l*])
push_ctrl(if, [t1*], [t2*])

case (end)
let frame = pop_ctrl()
push_vals(frame.end_types)

case (else)
let frame = pop_ctrl()
error_if(frame.opcode =/= if)
push_ctrl(else, frame.start_types, frame.end_types)

case (br n)
error_if(ctrls.size() < n)
pop_vals(label_types(ctrls[n]))
unreachable()

case (br_if n)
error_if(ctrls.size() < n)
pop_val(I32)
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))

case (br_table n* m)

(continues on next page)

288 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(continued from previous page)

pop_val(I32)

error_if(ctrls.size() < m)

let arity = label_types(ctrls[m]).size()

foreach (n in n¥*)
error_if(ctrls.size() < n)
error_if(label_types(ctrls[n]).size() =/= arity)
push_vals(pop_vals(label_types(ctrls[n])))

pop_vals(label_types(ctrls[m]))

unreachable()

case (br_on_null n)
error_if(ctrls.size() < n)
let rt = pop_ref()
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))
push_val (Ref(rt.heap, false))

case (br_on_cast n rtl rt2)
validate_ref_type(rtl)
validate_ref_type(rt2)
pop_val(rtl)
push_val (rt2)
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))
pop_val (rt2)
push_val(diff_ref type(rt2, rtl))

case (return)
pop_vals(return_types)
unreachable()

case (call_ref x)
let t = expand_def(types[x])
error_if(not is_func(t))
pop_vals(t.params)
pop_val (Ref(Def(types[x])))
push_vals(t.results)

case (return_call_ref x)
let t = expand_def(types[x])
error_if(not is_func(t))
pop_vals(t.params)
pop_val (Ref(Def(types[x])))
error_if(t.results.len() =/= return_types.len())
push_vals(t.results)
pop_vals(return_types)
unreachable()

case (struct.new Xx)
let t = expand_def(types[x])
error_if(not is_struct(t))
for (ti in reverse(t.fields))
pop_val (unpack_field(ti))
push_val (Ref(Def(types[x]1)))

case (struct.set x n)

(continues on next page)

7.6. Validation Algorithm 289

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(continued from previous page)

let t = expand_def(types[x])

error_if(not is_struct(t) || n >= t.fields.len(Q))
pop_val (Ref(Def(types[x])))

pop_val (unpack_field(st.fields[n]))

case (throw x)
pop_vals(tags[x].type.params)
unreachable()

case (try_table tl1*->t2* handler¥®)
pop_vals([tl1*])
foreach (handler in handler¥*)
error_if(ctrls.size() < handler.label)
push_ctrl(catch, [], label_types(ctrls[handler.label]))
switch (handler.clause)
case (catch x)
push_vals(tags[x].type.params)
case (catch_ref x)
push_vals(tags[x].type.params)
push_val (Exnref)
case (catch_all)
skip
case (catch_all_ref)
push_val (Exnref)
pop_ctrl()
push_ctrl(try_table, [t1*], [t2*])

Note

It is an invariant under the current WebAssembly instruction set that an operand of Bot type is never duplicated
on the stack. This would change if the language were extended with stack instructions like dup. Under such an
extension, the above algorithm would need to be refined by replacing the Bot type with proper type variables
to ensure that all uses are consistent.

7.7 Custom Sections and Annotations

This appendix defines dedicated custom sections for WebAssembly’s binary format and annotations for the text
format. Such sections or annotations do not contribute to, or otherwise affect, the WebAssembly semantics, and
may be ignored by an implementation. However, they provide useful meta data that implementations can make use
of to improve user experience or take compilation hints.

7.7.1 Name Section

The name section is a custom section whose name string is itself ‘name’. The name section should appear only
once in a module, and only after the data section.

The purpose of this section is to attach printable names to definitions in a module, which e.g. can be used by a
debugger or when parts of the module are to be rendered in text form.

Note

56

All names are represented in Unicode”® encoded in UTF-8. Names need not be unique.

36 https://www.unicode.org/versions/latest/

290 Chapter 7. Appendix

https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Subsections

The data of a name section consists of a sequence of subsections. Each subsection consists of a
* aone-byte subsection id,
* the us2 size of the contents, in bytes,
* the actual contents, whose structure is dependent on the subsection id.

namesec = sectiong(namedata)
namedata i= n:name (if n = ‘name’)
modulenamesubsec’
funcnamesubsec’
localnamesubsec’
typenamesubsec?
fieldnamesubsec’
tagnamesubsec?
namesubsectiony(B) = N:byte size:ud2 B (if size = ||B||)

The following subsection ids are used:

Id Subsection

0 module name

1 function names
2 local names

4 type names

10 field names

11 tag names

Each subsection may occur at most once, and in order of increasing id.

Name Maps

A name map assigns names to indices in a given index space. It consists of a list of index/name pairs in order of
increasing index value. Each index must be unique, but the assigned names need not be.

namemap == list(nameassoc)
nameassoc := idx name

An indirect name map assigns names to a two-dimensional index space, where secondary indices are grouped by
primary indices. It consists of a list of primary index/name map pairs in order of increasing index value, where
each name map in turn maps secondary indices to names. Each primary index must be unique, and likewise each
secondary index per individual name map.

indirectnamemap = list(indirectnameassoc)
indirectnameassoc := idx namemap

Module Names
The module name subsection has the id 0. It simply consists of a single name that is assigned to the module itself.

modulenamesubsec ::= namesubsectiong (name)

Function Names
The function name subsection has the id 1. It consists of a name map assigning function names to function indices.

funcnamesubsec := namesubsection;(namemap)

7.7. Custom Sections and Annotations 291

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Local Names

The local name subsection has the id 2. It consists of an indirect name map assigning local names to local indices
grouped by function indices.

localnamesubsec ::= namesubsectiong(indirectnamemap)

Type Names

The type name subsection has the id 4. It consists of a name map assigning type names to type indices.

typenamesubsec ::= namesubsections(namemap)

Field Names

The field name subsection has the id 10. It consists of an indirect name map assigning field names to field indices
grouped by the type indices of their respective structure types.

fieldnamesubsec := namesubsection;0(indirectnamemap)

Tag Names

The tag name subsection has the id 11. It consists of a name map assigning tag names to tag indices.

tagnamesubsec ::= namesubsection;(namemap)

7.7.2 Name Annotations

Name annotations are the textual analogue to the name section and provide a textual representation for it. Conse-
quently, their id is @name.

Analogous to the name section, name annotations are allowed on modules, functions, and locals (including pa-
rameters). They can be placed where the text format allows binding occurrences of respective identifiers. If both
an identifier and a name annotation are given, the annotation is expected after the identifier. In that case, the an-
notation takes precedence over the identifier as a textual representation of the binding’s name. At most one name
annotation may be given per binding.

All name annotations have the following format:

nameannot := ‘(Q@Qname’ string ‘)’

Note

All name annotations can be arbitrary UTF-8 strings. Names need not be unique.

Module Names

A module name annotation must be placed on a module definition, directly after the ‘module’ keyword, or if
present, after the following module identifier.

modulenameannot ::= mnameannot

292 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Function Names

A function name annotation must be placed on a function definition or function import, directly after the ‘func’
keyword, or if present, after the following function identifier or.

funcnameannot ::= nameannot

Parameter Names

A parameter name annotation must be placed on a parameter declaration, directly after the ‘param’ keyword, or
if present, after the following parameter identifier. It may only be placed on a declaration that declares exactly one
parameter.

paramnameannot ::= nameannot

Local Names

A local name annotation must be placed on a local declaration, directly after the ‘local’ keyword, or if present,
after the following local identifier. It may only be placed on a declaration that declares exactly one local.

localnameannot ::= mnameannot

Type Names

A type name annotation must be placed on a type declaration, directly after the ‘type’ keyword, or if present, after
the following type identifier.

typenameannot ::= nameannot

Field Names

A field name annotation must be placed on the field of a structure type, directly after the ‘field’ keyword, or if
present, after the following field identifier. It may only be placed on a declaration that declares exactly one field.

fieldnameannot ::= mnameannot

Tag Names

A tag name annotation must be placed on a tag declaration or tag import, directly after the ‘tag’ keyword, or if
present, after the following tag identifier.

tagnameannot ::= mnameannot

7.7.3 Custom Annotations

Custom annotations are a generic textual representation for any custom section. Their id is @custom. By gener-
ating custom annotations, tools converting between binary format and text format can maintain and round-trip the
content of custom sections even when they do not recognize them.

7.7. Custom Sections and Annotations 293

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Custom annotations must be placed inside a module definition. They must occur anywhere after the ‘module’
keyword, or if present, after the following module identifier. They must not be nested into other constructs.

3

customannot := ‘(@Qcustom’ string customplace’ datastring)’
customplace = ‘(’ ‘before’ ‘first’ ‘)’
‘(" ‘before’ sec ‘)’

(C ‘after’ sec ‘)

‘(‘after’ ‘last’ <)’
“type’

‘import’

‘func’

‘table’

‘memory’

‘global’

‘export’

‘start’

‘elem’

‘code’

‘data’

‘datacount’

s ¢

sec

The first string in a custom annotation denotes the name of the custom section it represents. The remaining strings
collectively represent the section’s payload data, written as a data string, which can be split up into a possibly empty
sequence of individual string literals (similar to data segments).

An arbitrary number of custom annotations (even of the same name) may occur in a module, each defining a separate
custom section when converting to binary format. Placement of the sections in the binary can be customized via
explicit placement directives, that position them either directly before or directly after a known section. That section
must exist and be non-empty in the binary encoding of the annotated module. The placements (before first)
and (after last) denote virtual sections before the first and after the last known section, respectively. When the
placement directive is omitted, it defaults to (after last).

If multiple placement directives appear for the same position, then the sections are all placed there, in order of
their appearance in the text. For this purpose, the position af ter a section is considered different from the position
before the consecutive section, and the former occurs before the latter.

Note

Future versions of WebAssembly may introduce additional sections between others or at the beginning or end
of a module. Using first and last guarantees that placement will still go before or after any future section,
respectively.

If a custom section with a specific section id is given as well as annotations representing the same custom section
(e.g., @name annotations as well as a Qcustom annotation for a name section), then two sections are assumed to
be created. Their relative placement will depend on the placement directive given for the @custom annotation as
well as the implicit placement requirements of the custom section, which are applied to the other annotation.

Note

For example, the following module,

(module
(@custom "A" "aaa")
(type $t (func))
(@custom "B" (after func) "bbb")
(@custom "C" (before func) "ccc")
(@Gcustom "D" (after last) "ddd")
(table 10 funcref)
(func (type $t))

294 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(@custom "E" (after import) "eee™)
(@custom "F" (before type) "fff")
(@custom "G" (after data) "ggg')
(@custom "H" (after code) "hhh")
(@custom "I" (after func) "iii'")
(@custom "J" (before func) "jjji"™)
(@custom "K" (before first) "kkk")
)

will result in the following section ordering:
custom section "K"

custom section "F"

type section

custom section "E"

custom section
custom section "J"
function section
custom section "B"
custom section "I"
table section
code section
custom section "H"
custom section "G"
custom section "A"
custom section "D"

7.8 Change History
Since the original release 1.0 of the WebAssembly specification, a number of proposals for extensions have been
integrated. The following sections provide an overview of what has changed.

All present and future versions of WebAssembly are intended to be backwards-compatible with all previous ver-
sions. Concretely:

1. All syntactically well-formed (in binary or text format) and valid modules remain well-formed and valid with
an equivalent module type (or a subtype).

Note

This allows previously malformed or invalid modules to become legal, e.g., by adding new features
or by relaxing typing rules.

It also allows reclassifying previously malformed modules as well-formed but invalid, or vice versa.

And it allows refining the typing of imports and exports, such that previously unlinkable modules
become linkable.

Historically, minor breaking changes to the fext format have been allowed that turned previously
possible valid modules invalid, as long as they were unlikely to occur in practice.

2. All non-trapping executions of a valid program retain their behaviour with an equivalent set of possible
results (or a non-empty subset).

Note

This allows previously malformed or invalid programs to become executable.

7.8. Change History 295

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

It also allows program executions that previously trapped to execute successfully, although the
intention is to only exercise this where the possibility of such an extension has been previously
noted.

And it allows reducing the set of observable behaviours of a program execution, e.g., by reducing
non-determinism.

In a program linking prior modules with modules using new features, a prior module may encounter
new behaviours, e.g., new forms of control flow or side effects when calling into a latter module.

In addition, future versions of WebAssembly will not allocate the opcode OxFF to represent an instruction or
instruction prefix.

7.8.1 Release 2.0

Sign Extension Instructions
Added new numeric instructions for performing sign extension within integer representations.’’
* New numeric instructions:

— inn.extendN_s

Non-trapping Float-to-Int Conversions
Added new conversion instructions that avoid trapping when converting a floating-point number to an integer.’®
* New numeric instructions:

— inn.trunc_sat_fmm_sx

Multiple Values

Generalized the result type of blocks and functions to allow for multiple values; in addition, introduced the ability
to have block parameters.>”

* Function types allow more than one result

 Block types can be arbitrary function types

Reference Types
Added funcref and externref as new value types and respective instructions.®”
* New reference value types:
— funcref
— externref
* New reference instructions:
— ref.null
— ref.func
— ref.is_null
» Extended parametric instruction:

— select with optional type immediate

* New declarative form of element segment

57 https://github.com/WebAssembly/spec/tree/main/proposals/sign-extension-ops/

38 https://github.com/WebAssembly/spec/tree/main/proposals/nontrapping-float- to-int-conversion/
39 https://github.com/WebAssembly/spec/tree/main/proposals/multi- value/

60 https://github.com/WebAssembly/spec/tree/main/proposals/reference-types/

296 Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/sign-extension-ops/
https://github.com/WebAssembly/spec/tree/main/proposals/nontrapping-float-to-int-conversion/
https://github.com/WebAssembly/spec/tree/main/proposals/multi-value/
https://github.com/WebAssembly/spec/tree/main/proposals/reference-types/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table Instructions
Added instructions to directly access and modify tables." 29660
» Table types allow any reference type as element type

¢ New table instructions:

table.get

table.set

table.size

table.grow

Multiple Tables
Added the ability to use multiple tables per module. "¢ 296 60
* Modules may

— define multiple tables

— import multiple tables

— export multiple tables

e Table instructions take a table index immediate:

table.get

table.set

table.size

table.grow

call_indirect

* Element segments take a table index

Bulk Memory and Table Instructions
Added instructions that modify ranges of memory or table entries."2e¢ 296 6061

* New memory instructions:

memory.fill

memory.init

memory.copy

data.drop
¢ New table instructions:

table.fill

table.init

table.copy

elem.drop

* New passive form of data segment

* New passive form of element segment

* New data count section in binary format

* Active data and element segments boundaries are no longer checked at compile time but may trap instead

61 https://github.com/WebAssembly/spec/tree/main/proposals/bulk-memory-operations/

7.8. Change History 297

https://github.com/WebAssembly/spec/tree/main/proposals/bulk-memory-operations/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Vector Instructions

Added vector type and instructions that manipulate multiple numeric values in parallel (also known as SIMD, single

instruction multiple data)®”
* New value type:
- vi2g
* New memory instructions:
— v128.load
— v128.loadNxM_sxz
— v128.load N_zero
— v128.load N_splat
— v128.load N _lane
— v128.store
— v128.storeN_lane
» New constant vector instruction:
— v128.const
* New unary vector instructions:
— v128.not
— iNxM.abs
— iNxM.neg
— i8x16.popcnt
— fNxM.abs
— fNxM.neg
— fNxM.sqrt
— fNxM ceil
— fNxM. floor
— fNxM.trunc
— fNxM.nearest
* New binary vector instructions:
- v128.and
— v128.andnot
- v128.or
— v128.xor
— iNxM.add
— INM.sub
— IN<M.mul
— INXM.add_sat_sz
— INxM.sub_sat_sx
— INM.min_sx

62 https://github.com/WebAssembly/spec/tree/main/proposals/simd/

298

Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/simd/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

VM. max_sx

iINxM.shl

INM.shr_sz

fNxM.add

fNxM.sub

fNxM.mul

fNxM.div
i116x8.extadd_pairwise_i8x16_sz
i32x4.extadd_pairwise_i16x8_sz
IN<M.extmul_half _iINXM'_sx
i16x8.q1l5mulr_sat_s
i32x4.dot_i16x8_s

i8x16.avgr_u

i16x8.avgr_u

fNxM.min

fNxM.max

fNxM.pmin

fNxM.pmax

* New ternary vector instruction:

v128.bitselect

¢ New test vector instructions:

v128.any_true
iNxM.all_true

¢ New relational vector instructions:

iNxM.eq
iN<M.ne
NIt _sz
INM.gt_sx
iNxM . le_sx
iINM.ge_sx
fNxM.eq
fNxM.ne
fNXM. It
fNxM. gt
fNxM.le
fNxM.ge

¢ New conversion vector instructions:

i32x4.trunc_sat_f32x4_sx

i32x4.trunc_sat_f64x2_sz_zero

7.8. Change History

299

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— f32x4.convert_i32x4_sx

— f32x4.demote_f64x2_zero

— f64x2.convert_low_i32x4_sz

— f64x2.promote_low_f32x4
* New lane access vector instructions:

— iINxM.extract_lane_sz”
iNxM.replace_lane
fNxM.extract_lane
fNxM.replace_lane

» New lane splitting/combining vector instructions:
— INxM.extend_half _iNSM'_sx
— i8x16.narrow_il6x8_sz
— 116x8.narrow_i32x4_sx
» New byte reordering vector instructions:
— i8x16.shuffle
— i8x16.swizzle
» New injection/projection vector instructions:
— iNxM.splat
— fNxM.splat
— iINxM.bitmask

7.8.2 Release 3.0

Extended Constant Expressions
Allowed basic numeric computations in constant expressions.®®
¢ Extended set of constant instructions with:

inn.add

inn.sub

inn.mul

global.get for any previously declared immutable global

Note

The garbage collection extension added further constant instructions.

Tail Calls
Added instructions to perform tail calls.**
* New control instructions:

— return_call

— return_call_indirect

63 https://github.com/WebAssembly/spec/tree/main/proposals/extended-const/
64 https://github.com/WebAssembly/spec/tree/main/proposals/tail-call/

300

Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/extended-const/
https://github.com/WebAssembly/spec/tree/main/proposals/tail-call/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Exception Handling
Added tag definitions, imports, and exports, and instructions to throw and catch exceptions(’5
* Modules may
— define tags
— import tags
— export tags
e New heap types:
— exn
— noexn
* New reference type short-hands:
— exnref
— nullexnref
e New control instructions:
— throw
— throw_ref
— try_table

* New tag section in binary format.

Multiple Memories
Added the ability to use multiple memories per module.®®
* Modules may
— define multiple memories
— import multiple memories
— export multiple memories
* Memory instructions take a memory index immediate:

— memory.size
— memory.grow
— memory.fill
— memory.copy
— memory.init
— t.load
— t.store
— t.loadN_sz
— t.storelV
— v128.loadNxM_sx
— v128.loadN_zero
— v128.loadN_splat

v128.loadN_lane

65 https://github.com/WebAssembly/spec/tree/main/proposals/exception-handling/
96 https://github.com/WebAssembly/spec/tree/main/proposals/multi-memory/

7.8. Change History 301

https://github.com/WebAssembly/spec/tree/main/proposals/exception-handling/
https://github.com/WebAssembly/spec/tree/main/proposals/multi-memory/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

v128.storelN_lane

* Data segments take a memory index

64-bit Address Space

Added the ability to declare an i64 address type for tables and memories.

» Address types denote a subset of the integral number types

* Table types include an address type

* Memory types include an address type

67

* Operand types of table and memory instructions now depend on the subject’s declared address type:

table.get
table.set
table.size
table.grow
table.fill
table.copy
table.init
memory.size
memory.grow
memory.fill
memory.copy
memory.init
t.load

t.store
t.loadN_sz
t.storeN
v128.loadNxM_sxz
v128.loadN_zero
v128.loadV_splat
v128.loadN_lane
v128.storeN_lane

Typeful References

Added more precise types for references.®®

* New generalised form of reference types:

(ref null” heaptype)

* New class of heap types:

func

extern

67 https://github.com/WebAssembly/spec/tree/main/proposals/memory64/
68 https://github.com/WebAssembly/spec/tree/main/proposals/function-references/

302

Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/memory64/
https://github.com/WebAssembly/spec/tree/main/proposals/function-references/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— typeidx
* Basic subtyping on reference and value types

¢ New reference instructions:

ref.as_non_null

br_on_null

— br_on_non_null
* New control instruction:
— call_ref
* Refined typing of reference instruction:
— ref.func with more precise result type

* Refined typing of local instructions and instruction sequences to track the initialization status of locals with
non-defaultable type

* Refined decoding of active element segments with implicit element type and plain function indices (opcode
0) to produce non-null reference type.

» Extended table definitions with optional initializer expression

Garbage Collection
Added managed reference types.®’

* New forms of heap types:
- any
- eq
- i31
— struct
— array
— none
— nofunc
— noextern

* New reference type short-hands:
— anyref
— eqref
— i3tref
— structref
— arrayref
— nullref
— nullfuncref
— nullexternref

» New forms of type definitions:
— structure

— array types

9 https://github.com/WebAssembly/spec/tree/main/proposals/gc/

7.8. Change History 303

https://github.com/WebAssembly/spec/tree/main/proposals/gc/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

* Enriched subtyping based on explicitly declared sub types and the new heap types

sub types

recursive types

* New generic reference instructions:

ref.eq
ref.test
ref.cast
br_on_cast

br_on_cast_fail

¢ New reference instructions for unboxed scalars:

ref.i31

i31.get_sz

* New reference instructions for structure types:

struct.new
struct.new_default
struct.get_sz’

struct.set

* New reference instructions for array types:

* New reference instructions for converting external types:

array.new
array.new_default
array.new_fixed
array.new_data
array.new_elem
array.get_sx?
array.set

array.len

array.fill
array.copy
array.init_data

array.init_elem

any.convert_extern

extern.convert_any

¢ Extended set of constant instructions with:

ref.is1

struct.new
struct.new_default
array.new

array.new_default

304

Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

— array.new_fixed
— any.convert_extern

— extern.convert_any

Relaxed Vector Instructions

Added new relaxed vector instructions, whose behaviour is non-deterministic and implementation-dependent.’’
* New binary vector instruction:

fNxM.relaxed_min

fNxM.relaxed_max

i16x8.relaxed_q15mulr_s
i16x8.relaxed_dot_i8x16_i7x16_s

* New ternary vector instruction:
— fNxM.relaxed_madd
fNxM.relaxed_nmadd

iVxM.relaxed laneselect
i32x4.relaxed_dot_i8x16_i7x16_add_s

* New conversion vector instructions:

— i32x4.relaxed_trunc_f32x4_sz

— i32x4.relaxed_trunc_f64x2_sz_zero
* New byte reordering vector instruction:

— i8x16.relaxed_swizzle

Profiles
Introduced the concept of profile for specifying language subsets.

* A new profile defining a deterministic mode of execution.

Custom Annotations

Added generic syntax for custom annotations in the text format, mirroring the role of custom sections in the binary
format.”!

* Annotations of the form ‘(@id ...)" are allowed anywhere in the text format
* Identifiers can be escaped as ‘@Q” ...”” with arbitrary names
* Defined name annotations ‘(@name ” ...")’ for:

module names

type names

function names

local names

field names

¢ Defined custom annotation ‘(@custom” ...”)’ to represent arbitrary custom sections in the text format

70 https://github.com/WebAssembly/spec/tree/main/proposals/relaxed-simd/
1 https://github.com/WebAssembly/spec/tree/main/proposals/annotations/

7.8. Change History 305

https://github.com/WebAssembly/spec/tree/main/proposals/relaxed-simd/
https://github.com/WebAssembly/spec/tree/main/proposals/annotations/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.9 Index of Types

Category Constructor Binary Opcode
Type index T (positive number as s32 or u32)
Number type i32 0x7F (-1 as s7)
Number type i64 0x7E (-2 as s7)
Number type f32 0x7D (-3 as s7)
Number type fo4 0x7C (-4 as s7)
Vector type V128 0x7B (-5 as s7)
(reserved) 0x7A .. 0x79
Packed type i8 0x78 (-8 as s7)
Packed type i16 0x77 (-9 as s7)
(reserved) 0x78 .. 0x75
Heap type noexn 0x74 (-14 as s7)
Heap type nofunc 0x73 (-13 as s7)
Heap type noextern 0x72 (-14 as s7)
Heap type none 0x71 (-15 as s7)
Heap type func 0x70 (-16 as s7)
Heap type extern 0x6F (-17 as s7)
Heap type any 0x6E (-18 as s7)
Heap type eq 0x6D (-19 as s7)
Heap type i31 0x6C (-20 as s7)
Heap type struct 0x6B (-21 as s7)
Heap type array 0x6A (-22 as s7)
Heap type exn 0x69 (-23 as s7)
(reserved) 0x68 .. 0x65
Reference type ref 0x64 (-28 as s7)
Reference type ref null 0x63 (-29 as s7)

(reserved)

Composite type
Composite type
Composite type

func [valtype*] — [valtype*]
struct fieldtype*
array fieldtype

0x62 .. 0x61

0x60 (-32 as s7)
0x5F (-33 as s7)
0x5E (-34 as s7)

(reserved) 0x5D .. 0x51

Sub type sub typeidz* comptype 0x50 (-48 as s7)

Sub type sub final typeidz* comptype O0x4F (-49 as s7)

Recursive type rec subtype* 0x4E (-50 as s7)

(reserved) 0x4D .. 0x41

Result type €] 0x40 (-64 as s7)

Tag type typeuse (none)

Global type mut valtype (none)

Memory type addrtype limits (none)

Table type addrtype limits reftype (none)

7.10 Index of Instructions
Instruction Binary Opcode Type Validation Executio
unreachable 0x00 [t5] — [t3) validation execution
nop 0x01 =1 validation execution
block bt 0x02 [t7] — [t3] validation execution
loop bt 0x03 [t7] — [t5] validation execution
if bt 0x04 [tF i32] — [t3] validation execution
else 0x05
continues on |
306 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
(reserved) 0x06

(reserved) 0x07

throw 0x08 [tT t5] — [t3] validation execution
(reserved) 0x09

throw_ref 0x0A [t5 exnref] — [t3] validation execution
end 0x0B

br ! 0x0C [t7 t*] — [t5] validation execution
br_if I 0x0D [t* i32] — [t*] validation execution
br_table I* [0xOE [t5 ¢ i32] — [t3] validation ~ execution
return 0xOF [t* t*] — [t3] validation execution
call z 0x10 [t5] — [t3) validation execution
call_indirect z y 0x11 [t i32] — [t3] validation execution
return_call 0x12 [t7] — [t3] validation execution
return_call_indirect z y 0x13 [t] i32] — [t3] validation execution
call_ref 0x14 [t5 (ref null)] — [¢5] validation execution
return_call_ref z 0x15 [t7 (ref null x)] — [¢5] validation execution
(reserved) 0x16

(reserved) 0x17

(reserved) 0x18

(reserved) 0x19

drop 0x1A [t] =] validation execution
select 0x1B [t ¢i32] — [¢] validation execution
select ¢ 0x1C [t ¢i32] — [¢] validation execution
(reserved) 0x1D

(reserved) Ox1E

try_table bt 0x1F [t5] — [t5) validation execution
local.get x 0x20 [= [t] validation execution
local.set = 0x21 [t] — 1] validation execution
local.tee 0x22 [t] — [t] validation execution
global.get 0x23 [— [t] validation execution
global.set x 0x24 [t] —] validation execution
table.get = 0x25 [i32] — [¢] validation execution
table.set z 0x26 [32¢] —] validation execution
(reserved) 0x27

i32.load £ memarg 0x28 [i32] — [i32] validation execution
ie4.load = memarg 0x29 [i32] — [ie4] validation execution
f32.load & memarg 0x2A [i32] — [f32] validation execution
fes.load x memarg 0x2B [i32] — [fe4] validation execution
i32.l0ad8_s & memarg 0x2C [i32] — [i32] validation execution
i32.l0ad8_u x memarg 0x2D [i32] — [i32] validation execution
i32.load16_s = memarg 0x2E [i32] — [i32] validation ~ execution
i32.load16_u & memarg 0x2F [i32] — [i32] validation execution
ic4.l0ad8_s & memarg 0x30 [i32] — [i64] validation execution
ic4.load8_u x memaryg 0x31 [i32] — [i64] validation execution
i64.load16_s memarg 0x32 [i32] — [i64] validation execution
i64.load16_u x memary 0x33 [i32] — [i64] validation execution
is4.load32_s z memarg 0x34 [i32] — [i64] validation execution
ie4.load32_u & memary 0x35 [i32] — [i64] validation execution
i32.store © memarg 0x36 [i32i32] —] validation execution
i64.store £ memarg 0x37 [i32 i64] — [] validation ~ execution
f32.store x memary 0x38 [i32 f32] — |] validation execution
fea.store x memary 0x39 [i32 fea] — |] validation execution
i32.store8 x memarg 0x3A [i32i32] =] validation execution
i32.storel6 x memarg 0x3B [i32i32] = [] validation execution
i64.store8 = memarg 0x3C [i32 i64] — [] validation execution

continues on |

7.10. Index of Instructions 307

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
ic4.storel6 x memarg 0x3D [i32i64] — [] validation execution
i64.store32 x memarg 0x3E [i32 i64] — [] validation execution
memory.size x 0x3F [] — [i32] validation execution
memory.grow 0x40 [i32] — [i32] validation execution
i32.const is2 0x41 [= [i32] validation execution
i64.const 764 0x42 [] — [ie4] validation ~ execution
f32.const f32 0x43 [— [f32] validation execution
fea.const fe4 0x44 [— [fe4] validation ~ execution
i32.6qz 0x45 [i32] — [i32] validation execution
i32.eq 0x46 [i32i32] — [i32] validation execution
i32.ne 0x47 [i32i32] — [i32] validation execution
i32.It_s 0x48 [i32 i32] — [i32] validation execution
i32.1t_u 0x49 [i32 i32] — [i32] validation execution
i32.gt_s 0x4A [i32i32] — [i32] validation execution
i32.gt_u 0x4B [i32i32] — [i32] validation execution
i32.le_s 0x4C [i32i32] — [i32] validation execution
i32.le_u 0x4D [i32i32] — [i32] validation execution
i32.ge_s 0x4E [i32 i32] — [i32] validation execution
i32.ge_u 0x4F [i32 i32] — [i32] validation execution
i64.€qZ 0x50 [iea] — [i32] validation execution
i64.€q 0x51 [i64 i64] — [i32] validation execution
i64.ne 0x52 [i64 i64] — [i32] validation execution
i6a.lt_s 0x53 [i64 i64] — [i32] validation ~ execution
i6a.1t_u 0x54 [i64 i64] — [i32] validation execution
i64.gt_s 0x55 [i64 i64] — [i32] validation ~ execution
i64.gt_u 0x56 [i64 i64] — [i32] validation execution
i64.le_s 0x57 [i64 i64] — [i32] validation execution
i64.le_u 0x58 [i64 i64] — [i32] validation execution
i64.ge_s 0x59 [i64 i64] — [i32] validation execution
i64.ge_U 0x5A [i64 i64] — [i32] validation execution
fa2.eq 0x5B [f32 f32] — [i32] validation ~ execution
f32.ne 0x5C [f32 f32] — [i32] validation execution
f32.1t 0x5D [f32 f32] — [i32] validation execution
f32.gt 0x5E [f32 f32] — [i32] validation execution
fa2.le 0x5F [f32 f32] — [i32] validation execution
fa2.ge 0x60 [f32 f32] — [i32] validation ~ execution
fea.eq 0x61 [fe4 fea] — [i32] validation execution
fea.ne 0x62 [fe4 fea] — [i32] validation execution
fea.lt 0x63 [fe4 foa] — [i32] validation execution
fes.gt 0x64 [fe4 foa] — [i32] validation execution
fea.le 0x65 [fo4 foa] — [i32] validation execution
fea.ge 0x66 [fe4 foa] — [i32] validation execution
i32.clz 0x67 [i32] — [i32] validation ~ execution
i32.ctz 0x68 [i32] — [i32] validation execution
i32.popcnt 0x69 [i32] — [i32] validation ~ execution
i32.add 0x6A [i32i32] — [i32] validation execution
i32.sub 0x6B [i32i32] — [i32] validation execution
i32.mul 0x6C [i32i32] — [i32] validation execution
i32.div_s 0x6D [i32i32] — [i32] validation execution
i32.div_u 0x6E [i32 i32] — [i32] validation execution
i32.rem_s 0x6F [i32i32] — [i32] validation execution
i32.rem_u 0x70 [i32 i32] — [i32] validation ~ execution
i32.and 0x71 [i32i32] — [i32] validation execution
i32.0r 0x72 [i32 i32] — [i32] validation execution
i32.x0r 0x73 [i32 i32] — [i32] validation ~ execution

continues on |

308 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
i32.shl 0x74 [i32 i32] — [i32] validation execution
i32.shr_s 0x75 [i32 i32] — [i32] validation execution
i32.shr_u 0x76 [i32 i32] — [i32] validation execution
i32.rotl 0x77 [i32i32] — [i32] validation execution
i32.rotr 0x78 [i32 i32] — [i32] validation execution
i64.clz 0x79 [i6a] — [i64] validation execution
i64.Ctz 0x7A [i64] — [i64] validation execution
i64.popcnt 0x7B [i64] — [i64] validation execution
i64.add 0x7C [i64 i64] — [i64] validation ~ execution
i64.sub 0x7D [i64 i64] — [i64] validation execution
i64.mul 0x7E [i64 i64] — [i64] validation execution
i64.div_s OxT7F [i64 i64] — [i64] validation execution
i64.div_u 0x80 [i64 i64] — [i64] validation execution
i64.rem_s 0x81 [i64 i64] — [i64] validation execution
i64.rem_u 0x82 [i64 i64] — [i64] validation execution
is4.and 0x83 [i64 i64] — [i64] validation execution
i64.0r 0x84 [i64 i64] — [i64] validation execution
i64.x0r 0x85 [i64 i64] — [i64] validation execution
i64.shl 0x86 [i64 i64] — [i64] validation execution
i64.shr_s 0x87 [i64 i64] — [i64] validation execution
i64.shr_u 0x88 [i64 i64] — [i64] validation execution
is4.rotl 0x89 [i64 i64] — [i64] validation execution
i64.rotr 0x8A [i64 i64] — [i64] validation execution
f32.abs 0x8B [f32] — [f32] validation execution
f32.neg 0x8C [f32] — [f32] validation execution
f32.cell 0x8D [f32] — [f32] validation execution
f32.floor 0x8E [f32] — [f32] validation execution
f32.trunc 0x8F [f32] — [f32] validation execution
f32.nearest 0x90 [f32] — [f32] validation execution
f32.sqrt 0x91 [f32] — [f32] validation execution
f32.add 0x92 [f32 f32] — [f32] validation execution
f32.sub 0x93 [f32 f32] — [f32] validation execution
f32.mul 0x94 [f32 f32] — [f32] validation execution
f32.div 0x95 [f32 f32] — [f32] validation execution
f32.min 0x96 [f32 f32] — [f32] validation execution
f32.max 0x97 [f32 f32] — [f32] validation execution
f32.copysign 0x98 [f32 f32] — [f32] validation execution
fea.abs 0x99 [fe4] — [fe4] validation execution
fe4.neg 0x9A [fe4] — [fo4] validation execution
fes.ceil 0x9B [fe4] — [fo64] validation execution
fea.floor 0x9C [fe4] — [fe4] validation ~ execution
fea.trunc 0x9D [fe4] — [fo4] validation execution
fea.nearest 0x9E [fe4] — [fe4] validation execution
fea.sqrt 0x9F [fe4] — [fo4] validation execution
fe4.add 0xAO [fo4 foa] — [fod] validation execution
fe4.sub 0xA1l [foa fo4] — [fo4] validation execution
fea.mul 0xA2 [fe4 foa] — [fea] validation execution
fea.div 0xA3 [fe4 foa] — [fea] validation execution
fea.min 0xA4 [fe4 foa] — [fea] validation execution
fe4.max 0xA5 [fe4 foa] — [foa] validation ~ execution
fe4.copysign 0xA6 [fe4 foa] — [fo4] validation execution
i32.wrap_i64 0xA7 [i6a] — [i32] validation execution
i32.trunc_f32_s 0xA8 [f32] — [i32] validation execution
i32.trunc_f32_u 0xA9 [f32] — [i32] validation execution
i32.trunc_fe4_s 0xAA [fe4] — [i32] validation execution

continues on |

7.10. Index of Instructions

309

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
i32.trunc_fe4_u 0xAB [fe4] — [i32] validation execution
i64.extend_i32_s 0xAC [i32] — [i64] validation execution
i64.extend_i32_u 0xAD [i32] — [ie4] validation execution
i64.trunc_f32_s OxAE [f32] — [i64] validation execution
i64.trunc_f32_u 0xAF [f32] — [i64] validation execution
i64.trunc_fe4_s 0xBO [fe4] — [i64] validation ~ execution
i6a.trunc_fe4_u 0xB1 [fea] — [ic4] validation execution
f32.convert_i32_s 0xB2 [i32] — [f32] validation ~ execution
f32.convert_i32_u 0xB3 [i32] — [f32] validation execution
f32.convert_i64_s 0xB4 [i6a] — [f32] validation execution
f32.convert_i64_u 0xB5 [i6a] — [f32] validation execution
f32.demote_fe4 0xB6 [fe4] — [f32] validation execution
fea.convert_i32_s 0xB7 [i32] — [fe4] validation execution
fe4.convert_i32_u 0xB8 [i32] — [fe4] validation execution
fea.convert_iea_s 0xB9 [i6a] — [fe4] validation execution
fe4.convert_i6a_u 0xBA [i6a] — [fe4] validation execution
fe4.promote_f32 0xBB [f32] — [fo64] validation execution
i32.reinterpret_f32 0xBC [f32] — [i32] validation execution
i64.reinterpret_fe4 0xBD [fea] — [i64] validation execution
f32.reinterpret_is2 0xBE [i32] — [f32] validation execution
fea.reinterpret_ies OxBF [i64] — [fe4] validation execution
i32.extend8_s 0xCO [i32] — [i32] validation execution
i32.extend16_s 0xC1 [i32] — [i32] validation ~ execution
i64.extend8_s 0xC2 [i64] — [i64] validation execution
i64.extend16_s 0xC3 [i6a] — [i64] validation execution
i64.extend32_s 0xC4 [i64] — [i64] validation execution
(reserved) 0xC5
(reserved) 0xC6
(reserved) 0xC7
(reserved) 0xC8
(reserved) 0xC9
(reserved) 0xCA
(reserved) 0xCB
(reserved) 0xCC
(reserved) 0xCD
(reserved) 0xCE
(reserved) 0xCF
ref.null At 0xDO [] = [(ref null ht)] validation execution
ref.is_null 0xD1 [(ref null ht)] — [i32] validation execution
ref.func 0xD2 [| = [ref ht] validation execution
ref.eq 0xD3 [eqref eqref] — [i32] validation execution
ref.as_non_null 0xD4 [(ref null At)] — [(ref ht)] validation execution
br_on_null] 0xD5 [t* (ref null At)] — [t* (ref ht)] validation execution
br_on_non_null [0xD6 [t* (ref null ht)] — [t*] validation execution
(reserved) 0xD7
(reserved) 0xD8
(reserved) 0xD9
(reserved) 0xDA
(reserved) 0xDB
(reserved) 0xDC
(reserved) 0xDD
(reserved) 0xDE
(reserved) 0xDF
(reserved) 0xEO
(reserved) 0xE1

continues on |

310 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
(reserved) 0xE2
(reserved) 0xE3
(reserved) 0xE4
(reserved) 0xEb
(reserved) 0xE6
(reserved) 0xE7
(reserved) 0xE8
(reserved) 0xE9
(reserved) OxEA
(reserved) 0xEB
(reserved) 0xEC
(reserved) O0xED
(reserved) OxEE
(reserved) OxEF
(reserved) 0xFO
(reserved) 0xF1
(reserved) 0xF2
(reserved) 0xF3
(reserved) 0xF4
(reserved) 0xF5
(reserved) 0xF6
(reserved) 0xF7
(reserved) 0xF8
(reserved) 0xF9
(reserved) OxFA
struct.new x 0xFB 0x00 [t*] — [(ref x)] validation execution
struct.new_default 0xFB 0x01 [| = [(ref 2)] validation execution
struct.get = y OxFB 0x02 [(ref null z)] — [t] validation execution
struct.get_ sz y 0xFB 0x03 [(ref null z)] — [i32] validation execution
struct.get_uz y 0xFB 0x04 [(ref null 2)] — [i32] validation execution
struct.set x y 0xFB 0x05 [(ref null z) t] —] validation execution
array.new & 0xFB 0x06 [t i32] — [(ref z)] validation execution
array.new_default z 0xFB 0x07 [i32] — [(ref)] validation execution
array.new_fixed z n 0xFB 0x08 [t"] — [(ref)] validation execution
array.new_data z y 0xFB 0x09 [i32i32] — [(ref x)] validation execution
array.new_elem z y 0xFB 0x0A [i32i32] — [(ref)] validation execution
array.get x 0xFB 0x0B [(ref null 2) i32] — [t] validation execution
array.get_s 0xFB 0x0C [(ref null) i32] — [i32] validation execution
array.get_u z 0xFB 0x0D [(ref null) i32] — [i32] validation execution
array.set 0xFB 0x0E [(ref null) i32¢] — [] validation execution
array.len 0xFB 0xOF [(ref null array)] — [i32] validation ~ execution
array fill z 0xFB 0x10 [(ref null z) i32 ¢ i32] — |] validation execution
array.copy y 0xFB 0x11 [(ref null z) i32 (ref null y) i32i32] — [] validation execution
array.init_data z y 0xFB 0x12 [(ref null) i32i32 i32] — [] validation execution
array.init_elem z y 0xFB 0x13 [(ref null) i32i32 i32] — [] validation execution
ref.test (ref t) 0xFB 0x14 [(ref t")] — [i32] validation execution
ref.test (ref null ¢) 0xFB 0x15 [(ref null)] — [i32] validation execution
ref.cast (ref t) 0xFB 0x16 [(ref /)] — [(ref t)] validation execution
ref.cast (ref null 7) 0xFB 0x17 [(ref null)] — [(ref null ¢)] validation execution
br_on_cast t1 t2 0xFB 0x18 [t1] = [t1)\ t2] validation execution
br_on_cast_fail ¢; o 0xFB 0x19 [t1] — [t2] validation execution
any.convert_extern 0xFB Ox1A [(ref null extern)] — [(ref null any)] validation execution
extern.convert_any 0xFB 0x1B [(ref null any)] — [(ref null extern)] validation execution
ref.is1 0xFB 0x1C [i32] — [(ref i31) validation execution
i31.get_s 0xFB 0x1D [i31ref] — [i32] validation execution

continues on |

7.10. Index of Instructions 311

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
i31.get_u 0xFB 0x1E [i3iref] — [is2] validation execution
(reserved) OxFB Ox1E...

i32.trunc_sat_f32_s 0xFC 0x00 [f32] — [i32] validation execution
i32.trunc_sat_f32_u 0xFC 0x01 [f32] — [i32] validation execution
i32.trunc_sat_fe4_s 0xFC 0x02 [fe4] — [i32] validation execution
i32.trunc_sat_fe4_u 0xFC 0x03 [fe4] — [i32] validation ~ execution
i64.trunc_sat_f32_s 0xFC 0x04 [f32] — [ie4] validation execution
i64.trunc_sat_f32_u 0xFC 0x05 [f32] — [i64] validation ~ execution
i6a.trunc_sat_fe4_s 0xFC 0x06 [fe4] — [i64] validation execution
i64.trunc_sat_fe4_u 0xFC 0x07 [fe4] — [i64] validation execution
memory.init z y 0xFC 0x08 [i32i32132] — [] validation execution
data.drop z 0xFC 0x09 =1 validation execution
memory.copy & ¥ 0xFC 0x0A [i32i32i32] — |] validation execution
memory.fill y 0xFC 0x0B [i32i32 i32] — |] validation execution
table.init x y 0xFC 0x0C [i321321132] — |] validation execution
elem.drop x 0xFC 0x0D =1 validation execution
table.copy = y 0xFC 0xOE [i32i32i32] — [] validation execution
table.grow z 0xFC 0xOF [t i32] — [i32] validation execution
table.size 0xFC 0x10 [] — [i32] validation execution
table.fill z 0xFC 0x11 [32ti32] —] validation execution
(reserved) 0xFC Ox1E...

vi28.load memarg 0xFD 0x00 [i32] — [vi2g] validation execution
v128.l0ad8x8_s z memarg 0xFD 0x01 [i32] — [v128] validation ~ execution
v128.l0ad8x8_u x memarg O0xFD 0x02 [i32] — [v12g] validation execution
vi28.load16x4_s x memarg 0xFD 0x03 [i32] — [v128] validation ~ execution
vi28.load16x4_u x memarg 0xFD 0x04 [i32] — [v128] validation execution
vi128.l0ad32x2_s & memarg 0xFD 0x05 [i32] — [vi2g] validation execution
v128.l0ad32x2_u x memarg 0xFD 0x06 [i32] — [v12g] validation execution
v128.load8_splat x memary 0xFD 0x07 [i32] — [v12g] validation execution
vi128.load16_splat z memarg 0xFD 0x08 [i32] — [v12g] validation execution
vi28.load32_splat x memarg 0xFD 0x09 [i32] — [v128] validation ~ execution
v12g.load64_splat z memarg O0xFD 0x0A [i32] — [vi2g] validation execution
vi28.store & memarg 0xFD 0x0B [i32 vi2g] — |] validation execution
v128.const 4128 0xFD 0x0C [| = [v12s] validation execution
isx16.shuffle laneidz'® 0xFD 0x0D [vi28 vi28] — [v128] validation execution
isx16.swizzle 0xFD 0xOE [V128 v128] — [v128] validation ~ execution
iex16.splat 0xFD 0xOF [i32] — [v12g] validation execution
i16x8.splat 0xFD 0x10 [i32] — [v12g] validation execution
i32x4.splat 0xFD 0x11 [i32] — [v128] validation execution
i6ax2.splat OxFD 0x12 [i64] — [v128] validation execution
f32xa.splat 0xFD 0x13 [f32] — [v128] validation execution
feax2.splat 0xFD 0x14 [fe4] — [v128] validation execution
isx16.extract_lane_s laneidz 0xFD 0x15 [Vi2g] — [i32] validation execution
isx16.extract_lane_u laneidz 0xFD 0x16 [vi2g] — [i32] validation execution
isx16.replace_lane laneidz 0xFD 0x17 [vi2g i32] — [v12g] validation ~ execution
it6xs.extract_lane_s laneidz 0xFD 0x18 [vi28] — [i32] validation execution
it6xs.extract_lane_u laneidz 0xFD 0x19 [vi2g] — [i32] validation execution
itexs.replace_lane laneidz 0xFD 0x1A [Vi2g i32] — [v12g] validation execution
i32xa.extract_lane laneidz 0xFD 0x1B [Vi2g] — [i32] validation execution
i32xa.replace_lane laneidz OxFD 0x1C [vi2g i32] — [v12g] validation execution
isax2.extract_lane laneidz 0xFD 0x1D [vi28] — [i64] validation execution
isax2.replace_lane laneidz 0xFD 0x1E [Vi2g i64] — [v128] validation ~ execution
f32xa.extract_lane laneidz 0xFD 0x1F [Vi2g] — [f32] validation execution
f32xa.replace_lane laneidz 0xFD 0x20 [Vi2s f32] — [v12s] validation execution
feax2.extract_lane laneidz 0xFD 0x21 [vi28] — [fe4] validation ~ execution

continues on |

312

Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
feaxa.replace_lane laneidz 0xFD 0x22 [vi2g f64] — [vi28] validation execution
i8X16.€q 0xFD 0x23 [v1i28 vi28] — [v12g] validation execution
i8x16.ne 0xFD 0x24 [v128 vi28] — [v128] validation execution
isx16.It_s 0xFD 0x25 [V128 v128] — [v128] validation execution
igx16.It_u 0xFD 0x26 [V128 v128] — [v128] validation execution
i8x16.gt_s 0xFD 0x27 [Vi28 v128] — [v128] validation execution
i8x16.gt_u 0xFD 0x28 [vi28 vi28] — [v12g] validation execution
isx16.le_s 0xFD 0x29 [vi28 vi28] — [v12g] validation execution
isx16.le_u 0xFD 0x2A [Vi28 v128] — [v128] validation ~ execution
i8x16.ge_s 0xFD 0x2B [V128 v128] — [v128] validation execution
i8x16.ge_u 0xFD 0x2C [Vi28 v128] — [v128] validation execution
i16x8.eq 0xFD 0x2D [Vi28 v128] — [v128] validation execution
i16x8.ne O0xFD 0x2E [vi28 vi28] — [v12g] validation execution
it6xs.lt_s 0xFD 0x2F [vi28 vi28] — [v128] validation execution
it6xa.lt_u 0xFD 0x30 [V128 v128] — [v128] validation execution
i16x8.gt_s 0xFD 0x31 [Vi28 v128] — [v128] validation execution
i16x8.gt_u 0xFD 0x32 [Vi28 v128] — [v128] validation execution
i16x8.le_s 0xFD 0x33 [vi28 vi28] — [v12g] validation execution
i16x8.le_u 0xFD 0x34 [V128 v128] — [v128] validation execution
i16x8.ge_s 0xFD 0x35 [V128 v128] — [v128] validation execution
i16x8.ge_u 0xFD 0x36 [V128 v128] — [v128] validation execution
i32x4.€q 0xFD 0x37 [Vi28 v128] — [v128] validation execution
i32x4.ne 0xFD 0x38 [Vi28 v128] — [v128] validation execution
i32x4.It_s 0xFD 0x39 [vi28 vi28] — [v12g] validation execution
i32x4.It_u 0xFD 0x3A [V128 v128] — [v128] validation execution
i32x4.gt_s 0xFD 0x3B [V128 v128] — [v128] validation execution
i32x4.gt_u 0xFD 0x3C [V128 v128] — [v128] validation execution
i32x4.le_s 0xFD 0x3D [Vi28 v128] — [v128] validation execution
i32x4.le_u 0xFD 0x3E [vi28 vi28] — [v12g] validation execution
i32x4.ge_s 0xFD 0x3F [vi28 vi2g] — [v128] validation execution
i32x4.ge_u 0xFD 0x40 [V128 v128] — [v128] validation execution
f32xa.eq 0xFD 0x41 [Vi28 v128] — [v128] validation execution
f32xa.ne OxFD 0x42 [vi28 vi28] — [v12g] validation execution
f3oxa.lt OxFD 0x43 [vi28 vi28] — [v12g] validation execution
f3oxa.gt 0xFD 0x44 [V128 v128] — [v128] validation execution
f32xa.le 0xFD 0x45 [V128 v128] — [v128] validation execution
f32xa.ge 0xFD 0x46 [V128 v128] — [v128] validation execution
feax2.eq 0xFD 0x47 [Vi28 v128] — [v128] validation execution
feax2.ne O0xFD 0x48 [vi28 vi28] — [v12g] validation execution
feaxa.lt OxFD 0x49 [vi28 vi28] — [vi2g] validation execution
feax2.gt 0xFD 0x4A [V128 v128] — [v128] validation ~ execution
feaxa.le 0xFD 0x4B [V128 v128] — [v128] validation execution
feax2.ge 0xFD 0x4C [Vi28 v128] — [v128] validation execution
vi2g.not 0xFD 0x4D [Vi2g] — [v12g] validation execution
vi2g.and O0xFD Ox4E [vi28 vi28] — [v12g] validation execution
vi2g.andnot 0xFD 0x4F [vi28 vi28] — [v128] validation execution
v128.0f 0xFD 0x50 [V128 v128] — [v128] validation execution
V128.X0r 0xFD 0x51 [V128 v128] — [v128] validation execution
v128.bitselect 0xFD 0x52 [V128 vi128 v128] — [v12s] validation execution
vi2g.any_true 0xFD 0x53 [vi2g8] — [i32] validation ~ execution
v128.load8_lane memarg laneidz 0xFD 0x54 [i32 vi28] — [v128] validation execution
vi28.load16_lane memarg laneidz 0xFD 0x55 [i32 vi28] — [v12g] validation execution
vi2g.load32_lane memarg laneidz 0xFD 0x56 [i32 v128] — [v128] validation execution
vi28.load64_lane memarg laneidz 0xFD 0x57 [i32 vi28] — [v128] validation execution
vi28.store8_lane memarg laneidz 0xFD 0x58 [i32 vi28] — |] validation execution

continues on |

7.10. Index of Instructions

313

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
vi28.storel6_lane memarg laneidz 0xFD 0x59 [i32 vi2g] — |] validation execution
vi2g.store32_lane memarg laneidz OxFD 0x5A [i32 vi28] —] validation execution
vi2g.store64_lane memarg laneidz 0xFD 0x5B [i32 vi2s] — |] validation execution
vi28.l0ad32_zero memarg 0xFD 0x5C [i32] — [v128] validation execution
vi2s.load64_zero memarg 0xFD 0x5D [i32] — [vi28 validation ~ execution
f32xa.demote_f64x2_zero 0xFD O0x5E [Vi2g] — [v12g] validation ~ execution
feax2.promote_low_f32x4 OxFD 0x5F [vi28] — [v12g] validation execution
isx16.abs 0xFD 0x60 [vi28] — [v12g] validation ~ execution
i8x16.neg 0xFD 0x61 [vi2g] — [v12g] validation execution
isx16.popcnt 0xFD 0x62 [Vi2g] — [v12g] validation execution
isx16.all_true 0xFD 0x63 [Vi2g] — [i32] validation execution
isx16.bitmask 0xFD 0x64 [vi2g] — [i32] validation execution
isx16.narrow_i16x8_s 0xFD 0x65 [v1i28 vi28] — [v12g] validation execution
isx16.narrow_il6x8_u 0xFD 0x66 [V128 v128] — [v128] validation execution
f32xa.ceil 0xFD 0x67 [Vi2g] — [v12g] validation execution
f32xa.floor 0xFD 0x68 [vi2g] — [v12g] validation execution
f32xa.trunc 0xFD 0x69 [Vi2g] — [v12g] validation execution
f32xa.nearest 0xFD 0x6A [vi28] — [v12g] validation execution
isx16.shl 0xFD 0x6B [vi28 i32] — [vi28] validation execution
isx16.shr_s 0xFD 0x6C [Vi2g i32] — [v12g] validation execution
iex16.shr_u 0xFD 0x6D [Vi2g i32] — [vi28 validation execution
isx16.add 0xFD O0x6E [Vi28 v128] — [v128] validation execution
isx16.add_sat_s OxFD 0x6F [vi28 vi28] — [v12g] validation ~ execution
isx16.add_sat_u 0xFD 0x70 [vi28 vi28] — [v12g] validation execution
isx16.sub 0xFD 0x71 [V128 v128] — [v128] validation ~ execution
isx16.sub_sat_s 0xFD 0x72 [V128 v128] — [v128] validation execution
isx16.sub_sat_u 0xFD 0x73 [Vi28 v128] — [v128] validation execution
feax2.ceil OxFD 0x74 [vi28] — [v12g] validation execution
feax2.floor 0xFD 0x75 [vi28] — [v12g] validation execution
i8x16.min_s 0xFD 0x76 [v128 vi28] — [v128] validation execution
i8x16.min_u 0xFD 0x77 [V128 v128] — [v128] validation ~ execution
i8X16.max_s 0xFD 0x78 [V128 v128] — [v128] validation execution
i8X16.max_u 0xFD 0x79 [Vi28 v128] — [v128] validation execution
feax2.trunc OxFD 0x7A [vi28] — [v12g] validation execution
i8x16.avgr_u 0xFD 0x7B [vi28 vi28] — [v128] validation execution
i16x8.extadd_pairwise_i8x16_s 0xFD 0x7C [vi28] — [v12g] validation execution
i16xs.extadd_pairwise_i8x16_u OxFD 0x7D [Vi2g] — [v12g] validation execution
i32x4.extadd_pairwise_i16x8_s 0xFD O0x7E [Vi2g] — [v12g] validation execution
i32x4.extadd_pairwise_il16x8_u OxFD Ox7F [vi28] — [v12g] validation execution
i16x8.abs O0xFD 0x80 0x01 [vi28] — [v12g] validation execution
i16x8.neg 0xFD 0x81 0x01 [Vi2g] — [v12g] validation execution
it6xg.qismulr_sat_s 0xFD 0x82 0x01 [V128 v128] — [v128] validation execution
itexs.all_true 0xFD 0x83 0x01 [Vi2g] — [i32] validation execution
i16x8.bitmask 0xFD 0x84 0x01 [vi2g] — [i32] validation execution
i16x8.narrow_i32x4_s 0xFD 0x85 0x01 [vi28 vi28] — [v12g] validation ~ execution
i16x8.narrow_i32x4_u 0xFD 0x86 0x01 [v128 v128] — [v128] validation execution
i16x8.extend_low_i8x16_s 0xFD 0x87 0x01 [vi28] — [v12g] validation execution
i16xs.extend_high_i8x16_s 0xFD 0x88 0x01 [Vi2g] — [v12g] validation execution
i16x8.extend_low_i8x16_u 0xFD 0x89 0x01 [Vi2g] — [v12g] validation execution
i16x8.extend_high_i8x16_u O0xFD 0x8A 0x01 [vi28] — [v12g] validation execution
i16x8.shl 0xFD 0x8B 0x01 [v128 i32] — [vi128] validation execution
i16x8.shr_s 0xFD 0x8C 0x01 [Vi2g i32] — [v12g] validation ~ execution
it6x8.shr_u 0xFD 0x8D 0x01 [Vi2g i32] — [vi28 validation execution
i16xg.add 0xFD 0x8E 0x01 [Vi28 v128] — [v128] validation execution
it6xg.add_sat_s 0xFD 0x8F 0x01 [v1i28 vi28] — [v12g] validation ~ execution

continues on |

314

Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
i16xg.add_sat_u 0xFD 0x90 0x01 [Vi28 v128] — [v128] validation execution
i16x8.sub 0xFD 0x91 0x01 [v1i28 vi28] — [v12g] validation execution
i16x8.sub_sat_s 0xFD 0x92 0x01 [V128 v128] — [v128] validation execution
i16x8.sub_sat_u 0xFD 0x93 0x01 [vi28 vi2g] — [v128] validation execution
feax2.nearest 0xFD 0x94 0x01 [vi2g] — [v12g] validation execution
it6xs.mul O0xFD 0x95 0x01 [Vi28 v128] — [v128] validation execution
i16x8.min_s 0xFD 0x96 0x01 [vi28 vi28] — [v12g] validation execution
i16x8.min_u 0xFD 0x97 0x01 [Vi28 v128] — [v128] validation execution
i16x8.max_s 0xFD 0x98 0x01 [Vi28 v128] — [v128] validation ~ execution
i16x8.max_u 0xFD 0x99 0x01 [V128 v128] — [v128] validation execution
(reserved) 0xFD 0x9A 0x01

i16x8.avgr_u 0xFD 0x9B 0x01 [vi28 vi28] — [v12g] validation execution
iz6xg.extmul_low_i8x16_s 0xFD 0x9C 0x01 [vi28 vi28] — [v12g] validation execution
iz6xs.extmul_high_i8x16_s OxFD 0x9D 0x01 [V128 v128] — [v128] validation execution
iz6xg.extmul_low_i8x16_u 0xFD 0x9E 0x01 [V128 vi28] — [v12g] validation execution
i16xg.extmul_high_i8x16_u 0xFD 0x9F 0x01 [Vi28 v128] — [v128] validation execution
i32x4.abs O0xFD 0xAO 0x01 [vi2g] — [v12g] validation execution
i32x4.neg OxFD 0xA1 0x01 [vi28] — [v12g] validation execution
(reserved) OxFD 0xA2 0x01

i32x4.all_true 0xFD 0xA3 0x01 [vi28] — [i32] validation execution
i32x4.bitmask 0xFD 0xA4 0x01 [vi2g] — [i32] validation execution
(reserved) 0xFD 0xA5 0x01

(reserved) OxFD 0xA6 0x01

i32x4.extend_low_i16x8_s OxFD 0xA7 0x01 [vi2g] — [v12g] validation execution
i32x4.extend_high_i16x8_s 0xFD 0xA8 0x01 [vi28] — [v12g] validation execution
i32x4.extend_low_i16x8_u 0xFD 0xA9 0x01 [vi28] — [v12g] validation execution
i32x4.extend_high_i16x8_u 0xFD OxAA 0x01 [Vi2g] — [v12g] validation execution
i32x4.shl OxFD 0xAB 0x01 [Vi2g i32] — [v12g] validation execution
i32xa.shr_s O0xFD 0xAC 0x01 [vi28 i32] — [v12g] validation execution
i32x4.shr_u 0xFD 0xAD 0x01 [v128 i32] — [v128] validation execution
i32x4.add 0xFD OxAE 0x01 [V128 v128] — [v128] validation execution
(reserved) 0xFD OxAF 0x01

(reserved) 0xFD 0xBO0 0x01

i32x4.sub 0xFD 0xB1 0x01 [vi28 vi28] — [v12g] validation execution
(reserved) O0xFD 0xB2 0x01

(reserved) 0xFD 0xB3 0x01

(reserved) 0xFD 0xB4 0x01

i32x4.mul O0xFD 0xB5 0x01 [Vi28 v128] — [v128] validation execution
i32x4.min_s 0xFD 0xB6 0x01 [vi28 vi28] — [v12g] validation execution
i32x4.min_u 0xFD 0xB7 0x01 [V128 v128] — [v128] validation execution
i32x4.max_s 0xFD 0xB8 0x01 [V128 v128] — [v128] validation ~ execution
i32x4.max_u 0xFD 0xB9 0x01 [V128 v128] — [v128] validation execution
i32x4.dot_i16x8_s 0xFD 0xBA 0x01 [Vi28 v128] — [v128] validation execution
i32x4.extmul_low_i16x8_s 0xFD 0xBC 0x01 [Vi28 v128] — [v128] validation execution
i32x4.extmul_high_i16x8_s 0xFD 0xBD 0x01 [vi28 vi28] — [v12g] validation execution
iz2x4.extmul_low_i16x8_u O0xFD OxBE 0x01 [V128 v128] — [v128] validation execution
i32x4.extmul_high_i16x8_u 0xFD OxBF 0x01 [vi28 v1i28] — [v12g] validation execution
i64x2.abs 0xFD 0xCO 0x01 [Vi2g] — [v12g] validation execution
i64x2.neg 0xFD 0xC1 0x01 [Vi2g] — [v12g] validation execution
(reserved) 0xFD 0xC2 0x01

ieax2.all_true 0xFD 0xC3 0x01 [vi2g] — [i32] validation execution
i64x2.bitmask 0xFD 0xC4 0x01 [vi2s] — [i32] validation execution
(reserved) 0xFD 0xC5 0x01

(reserved) 0xFD 0xC6 0x01

isax2.extend_low_i32x4_s 0xFD 0xC7 0x01 [vi28] — [v12g] validation execution

continues on |

7.10. Index of Instructions

315

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
ieax2.extend_high_i32x4_s O0xFD 0xC8 0x01 [Vi2g] — [v12g] validation execution
i6ax2.extend_low_i32x4_u 0xFD 0xC9 0x01 [vi28] — [v12g] validation execution
ieax2.extend_high_i32x4_u O0xFD 0xCA 0x01 [vi2g] — [v12g] validation execution
i6ax2.shl 0xFD 0xCB 0x01 [Vi2g i32] — [v12g] validation execution
i6ax2.shr_s 0xFD 0xCC 0x01 [Vi2g i32] — [v12g] validation execution
i64x2.shr_u 0xFD 0xCD 0x01 [Vi2g i32] — [v128 validation ~ execution
i6ax2.add 0xFD 0xCE 0x01 [v1i28 vi28] — [v12g] validation execution
(reserved) 0xFD 0xCF 0x01

(reserved) 0xFD 0xDO 0x01

i64x2.sub 0xFD 0xD1 0x01 [V128 v128] — [v128] validation execution
(reserved) 0xFD 0xD2 0x01

(reserved) O0xFD 0xD3 0x01

(reserved) 0xFD 0xD4 0x01

i64x2.mul 0xFD 0xD5 0x01 [v128 vi28] — [v128] validation execution
i64x2.€q 0xFD 0xD6 0x01 [V128 v128] — [v128] validation execution
i64x2.Nne 0xFD 0xD7 0x01 [V128 v128] — [v128] validation execution
i6ax2.1t_s OxFD 0xD8 0x01 [Vi28 v128] — [v128] validation execution
i64x2.gt_s 0xFD 0xD9 0x01 [vi28 vi28] — [v12g] validation execution
i6ax2.le_s 0xFD 0xDA 0x01 [vi28 vi28] — [v128] validation execution
i64X2.8€_S 0xFD 0xDB 0x01 [V128 v128] — [v128] validation execution
ieax2.extmul_low_i32x4_s O0xFD 0xDC 0x01 [Vi28 v128] — [v128] validation execution
isax2.extmul_high_i32x4_s 0xFD 0xDD 0x01 [Vi28 v128] — [v128] validation execution
i6ax2.extmul_low_i32x4_u 0xFD OxDE 0x01 [vi28 vi28] — [v12g] validation ~ execution
isax2.extmul_high_i32x4_u OxFD OxDF 0x01 [vi28 vi28] — [v12g] validation execution
f32x4.abs 0xFD 0xEO 0x01 [vi28] — [v12g] validation execution
f32x4.neg 0xFD 0xE1 0x01 [Vi2g] — [v12g] validation execution
(reserved) 0xFD OxE2 0x01

f32xa.sqrt 0xFD OxE3 0x01 [Vi2g] — [v12g] validation execution
f32x4.add O0xFD OxE4 0x01 [V128 v128] — [v128] validation execution
f32x4.sub 0xFD 0xE5 0x01 [v128 vi28] — [v128] validation execution
f32xa.mul 0xFD 0xE6 0x01 [V128 v128] — [v128] validation ~ execution
f32xa.div 0xFD 0xE7 0x01 [V128 v128] — [v128] validation execution
f32x4.min O0xFD OxE8 0x01 [Vi28 v128] — [v128] validation execution
f32xa.max 0xFD OxE9 0x01 [vi28 vi28] — [v12g] validation execution
f32x4.pmin 0xFD OxEA 0x01 [vi28 vi28] — [v128] validation execution
f32x4.pmax 0xFD OxEB 0x01 [V128 v128] — [v128] validation ~ execution
feax2.abs 0xFD 0xEC 0x01 [Vi2g] — [v12g] validation execution
feax2.neg 0xFD OxED 0x01 [Vi2g] — [v12g] validation execution
feaxa.sqrt 0xFD OxEF 0x01 [vi28] — [v12g] validation execution
feax2.add O0xFD 0xFO 0x01 [vi28 vi28] — [v12g] validation execution
feax2.sub 0xFD 0xF1 0x01 [vi28 vi28] — [v128] validation execution
feax2.mul 0xFD 0xF2 0x01 [V128 v128] — [v128] validation execution
feaxa.div 0xFD 0xF3 0x01 [v1i28 vi28] — [v12g] validation execution
feax2.min O0xFD OxF4 0x01 [vi28 vi28] — [v12g] validation execution
feax2.max O0xFD OxF5 0x01 [V128 v128] — [v128] validation execution
feax2.pmin 0xFD 0xF6 0x01 [v128 vi28] — [v128] validation execution
feax2.pmax 0xFD 0xF7 0x01 [V128 v128] — [v128] validation execution
i32x4.trunc_sat_f32x4_s 0xFD O0xF8 0x01 [Vi2g] — [v12g] validation execution
i32xa.trunc_sat_f32x4_u 0xFD 0xF9 0x01 [Vi2g] — [v12g] validation execution
f32xa.convert_i32x4_s O0xFD OxFA 0x01 [vi28] — [v12g] validation execution
f32x4.convert_i32x4_u OxFD OxFB 0x01 [vi2g] — [v12g] validation execution
i32x4.trunc_sat_f64x2_s_zero 0xFD 0xFC 0x01 [Vi2g] — [v12g] validation execution
i32x4.trunc_sat_f64x2_u_zero OxFD OxFD 0x01 [Vi2g] — [v12g] validation execution
feax2.convert_low_i32x4_s 0xFD OxFE 0x01 [vi2g] — [v12g] validation execution
feax2.convert_low_i32x4_u 0xFD OxFF 0x01 [vi28] — [v12g] validation ~ execution

continues on |

316

Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 - continued from previous page

Instruction Binary Opcode Type Validation Executio
isx16.relaxed_swizzle 0xFD 0x80 0x02 [Vi28 v128] — [v128] validation execution
i32x4.relaxed_trunc_f32x4_s 0xFD 0x81 0x02 [vi28] — [v12g] validation execution
i32x4.relaxed_trunc_f32x4_u 0xFD 0x82 0x02 [vi2g] — [v12g] validation execution
i32x4.relaxed_trunc_f64x2_s OxFD 0x83 0x02 [vi2g] — [v12g] validation execution
i32x4.relaxed_trunc_f64x2_u 0xFD 0x84 0x02 [vi2g] — [v12g] validation execution
f32xa.relaxed_madd 0xFD 0x85 0x02 [V128 V128 v128] — [v12s] validation execution
f32xa.relaxed_nmadd 0xFD 0x86 0x02 [V128 v128 v128] — [v128] validation execution
feax2.relaxed_madd 0xFD 0x87 0x02 [V128 v128 vi28] — [v128] validation execution
feax2.relaxed_nmadd 0xFD 0x88 0x02 [V128 V128 v128] — [v128] validation ~ execution
isx16.relaxed_laneselect 0xFD 0x89 0x02 [V128 V128 v128] — [v12s] validation execution
i16xs.relaxed_laneselect 0xFD 0x8A 0x02 [V128 vi128 v128] — [v12s] validation execution
i32x4.relaxed_laneselect 0xFD 0x8B 0x02 [V128 v128 v128] — [v128] validation execution
icax2.relaxed_laneselect 0xFD 0x8C 0x02 [v128 v128 v128] — [v128] validation execution
f32x4.relaxed_min 0xFD 0x8D 0x02 [vi28 vi28] — [v128] validation execution
f32xa.relaxed_max 0xFD 0x8E 0x02 [V128 v128] — [v128] validation execution
feax2.relaxed_min OxFD 0x8F 0x02 [Vi28 vi28] — [v12g] validation execution
feax2.relaxed_max 0xFD 0x90 0x02 [vi28 vi28] — [v12g] validation execution
it6xs.relaxed_ql5mulr_s 0xFD 0x91 0x02 [vi28 vi28] — [v12g] validation execution
i16x8.relaxed_dot_i8x16_i7x16_s 0xFD 0x92 0x02 [v128 vi28] — [v128] validation execution
i32x4.relaxed_dot_i8x16_i7x16_add_s OxFD 0x93 0x02 [V128 v128 v128] — [v128] validation execution
(reserved) O0xFD 0x94 0x02. ..

(reserved) OxFE

(reserved) OxFF

Note

Multi-byte opcodes are given with the shortest possible encoding in the table. However, what is following the
first byte is actually a u32 with variable-length encoding and consequently has multiple possible representations.

7.10. Index of Instructions

317

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.11 Index of Semantic Rules

7.11.1 Well-formedness of Types

Construct

Judgement

Numeric type
Vector type
Heap type
Reference type
Value type
Packed type
Storage type
Field type
Result type
Instruction type
Composite type

C = numtype : ok
C + vectype : ok
C = heaptype : ok
C + reftype : ok

C '+ wvaltype : ok
C + packtype : ok
C + storagetype : ok
C + fieldtype : ok
C = resulttype : ok
C - instrtype : ok
C = comptype : ok

Sub type C F subtype : ok
Recursive type C' = rectype : ok
Defined type C + deftype : ok
Block type C = blocktype : instrtype
Tag type C F tagtype : ok
Global type C k= globaltype : ok
Memory type C = memtype : ok
Table type C = tabletype : ok
External type C I externtype : ok
Type definitions C' I type* : ok
7.11.2 Typing of Static Constructs
Construct Judgement
Instruction S; C & instr : instrtype

Instruction sequence
Catch clause
Expression
Limits

Tag

Global

Memory

Table

Function

Local

Element segment
Element mode
Data segment
Data mode

Start function
Import

Export

Module

S; C F instr* : instrtype
C I catch : ok

C = expr : resulttype

C + limits : k

C F tag : tagtype

C + global : globaltype
C = mem : memtype

C I table : tabletype

C I func : deftype

C = local : localtype

C + elem : reftype

C I elemmode : reftype
C I+ data : ok

C' I datamode : ok

C I start : ok

C = import : externtype
C = export : externtype
F module : externtype® — externtype*

318

Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.11.3 Typing of Runtime Constructs

Construct

Judgement

Value

Result

Packed value
Field value
External address
Tag instance
Global instance
Memory instance
Table instance
Function instance
Data instance
Element instance
Structure instance
Array instance
Export instance
Module instance

S F wal : valtype

S result : resulttype

S = packval : packtype
S+ fieldval : storagetype
Sk externaddr : externtype
S F taginst : tagtype

S F globalinst : globaltype
S F meminst : memtype
S F tableinst : tabletype
St funcinst : deftype

S F datainst : ok

Sk eleminst : t

S F structinst : ok

S arrayinst : ok

S = exportinst : ok

S+ moduleinst : C

Store F store : ok
Configuration E config : [t*]
Thread S: resulttype’ - thread : resulttype
Frame S+ frame : C
7.11.4 Constantness
Construct Judgement

Constant expression
Constant instruction

C + exprconst
C F instrconst

7.11.5 Matching

Construct

Judgement

Number type
Vector type
Heap type
Reference type
Value type
Packed type
Storage type
Field type
Result type
Instruction type
Composite type
Defined type
Limits

Tag type
Global type
Memory type
Table type
External type

C = numtype, < numtypes

C I vectypey < vectypes

C' = heaptype; < heaptypes

C F reftype; < reftypes

C + wvaltype; < wvaltypes

C + packtypey < packtypes

C I storagetype; < storagetypes
C I fieldtypey < fieldtypes

C' = resulttype; < resulttypes
C + instrtypey < instrtypes

C = comptype; < comptypes
C + deftype; < deftypes

C' F limits; < limitss

C I tagtyper < tagtypes

C' = globaltype; < globaltypes
C = memtyper < memtypes

C = tabletypey < tabletypes

C I externtype; < externtypes

7.11. Index of Semantic Rules

319

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.11.6 Store Extension

7.11.7 Execution

Construct

Judgement

Tag instance
Global instance
Memory instance
Table instance
Function instance
Data instance
Element instance
Structure instance
Array instance
Store

F taginsty < taginsts

F globalinst, < globalinsts
F meminst; <X meminsts
F tableinst; < tableinsty
F funcinst; < funcinstg

F datainst; < datainsts

F eleminst; < eleminsts
F structinst, =< structinsts
F arrayinst; = arrayinsts
F store; =< storeg

Construct Judgement
Instruction S F;instr* — S'; F/; instr’™
Expression S; F; expr — S’; F'; expr’

320

Chapter 7. Appendix

Index

Symbols

A

abstract syntax
administrative instruction, 92

abbreviations, 222

abstract syntax, 5, 193, 221, 261, 263

array address, 87
array instance, 90
array type, 12, 36
block type, 11, 15,36
byte, 7

composite type, 12,36
continuation instance, 90
data, 25, 77

data address, 87

data index, 23

data instance, 89
data type, 13

defined type, 30, 44
element, 25, 77
element address, 87
element index, 23
element instance, 89
element mode, 25
element type, 13
exception address, 87
exception instance, 90
export, 26, 78

export instance, 89
expression, 23, 72, 179
external address, 87
external index, 26
external type, 13,39
field index, 23

field type, 12, 36
field value, 90
floating-point number, 7
frame, 91
function, 25, 76
function address, 87
function index, 23
function instance, 88

function type, 12, 36

global, 24,75

global address, 87

global index, 23

global instance, 89

global type, 13, 38

grammar, 5

handler, 91

heap type, 9, 29, 35

host address, 87

import, 26, 78

instruction, 14-21, 48, 57-59, 63, 68, 69, 125,
126, 147, 148, 152, 159, 172, 173

instruction type, 31, 36

integer, 7

label, 91

label index, 23

limits, 12, 38

list, 6

local, 25,76

local index, 23

local type, 32

memory, 24, 75

memory address, 87

memory index, 23

memory instance, 88

memory type, 13, 38

module, 23, 79

module instance, 87

mutability, 13

name, 8

notation, 5

number type, 9, 34

packed type, 12, 36

packed value, 90

prompt, 91

recursive type, 12,37

recursive type index, 29

reference type, 10, 35

result, 86

result type, 11,35

signed integer, 7

start function, 26, 78

storage type, 12, 36

321

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

store, 86

structure address, 87

structure instance, 90

structure type, 12, 36

sub type, 12, 29, 37

table, 25, 76

table address, 87

table index, 23

table instance, 88

table type, 13, 38

tag, 24, 75

tag address, 87

tag index, 23

tag instance, 89

tag type, 13, 38

type, 9, 74

type definition, 24

type index, 23

type use, 9, 35

uninterpreted integer, 7

unsigned integer, 7

value, 7, 85

value type, 11, 29, 35, 36

vector, 8

vector type, 35
abstract type, 9, 29
activation, 91
active, 25, 25
address, 87, 126, 147, 148, 152, 180

array, 87

continuation, 87

data, 87

element, 87

exception, 87

external, 87

function, 87

global, 87

host, 87

memory, 87

structure, 87

table, 87

tag, 87
address type, 229, 302

text format, 229
administrative instruction, 274, 275

abstract syntax, 92

administrative instructions, 92
aggregate reference, 64
aggregate type, 12, 24, 36, 43, 198, 228

binary format, 198

text format, 228

validation, 36
algorithm, 282
allocation, 86, 180, 254, 265
annotation, 224, 290, 305
arithmetic NaN, 7
array, 12, 85, 122

address, 87

instance, 90
type, 12

array address
abstract syntax, 87

array instance, 86, 87, 90, 122, 269, 272, 279

abstract syntax, 90

array type, 12, 36, 40, 43, 90, 122, 198, 228, 269,

282,303
abstract syntax, 12
binary format, 198
text format, 228
validation, 36

ASCII, 223,224, 226

B

binary format, 8, 193, 254, 261, 264, 282, 290

aggregate type, 198
array type, 198
block type, 199
byte, 195

composite type, 198
custom section, 216
data, 219

data count, 219
data index, 214
element, 217
element index, 214
export, 217
expression, 214
external type, 199
field index, 214
field type, 198
floating-point number, 195
function, 216, 218
function index, 214
function type, 198
global, 217

global index, 214
global type, 198
grammar, 193

heap type, 196
import, 216
instruction, 199-203, 207
integer, 195

label index, 214
limits, 198

list, 194

local, 218

local index, 214
memory, 217

memory index, 214
memory type, 198
module, 219
mutability, 198
name, 195
notation, 193
number type, 196
packed type, 198

322

Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

recursive type, 198
reference type, 197
result type, 197
section, 215
signed integer, 195
start function, 217
storage type, 198
structure type, 198
sub type, 198
table, 217
table index, 214
table type, 199
tag, 219
tag index, 214
tag type, 198
type, 196
type index, 214
type section, 216
uninterpreted integer, 195
unsigned integer, 195
value, 194
value type, 197
vector type, 196
bit, 95
bit width, 7,9, 12,94, 152
block, 11, 15, 48, 126, 140, 199, 232, 296
type, 11, 15
block type, 11, 15, 36, 48, 199
abstract syntax, 11, 15
binary format, 199
validation, 36
Boolean, 3, 95, 96
bottom type, 29, 266
branch, 15, 48, 126, 199, 232
byte, 7, 8, 25, 77, 88, 89, 96, 180, 193, 195, 219, 226,
247,249, 258, 270, 272
abstract syntax, 7
binary format, 195
text format, 226

C

call, 91, 92, 146, 300

call frame, 91

canonical NaN, 7

cast, 18

caught, 92

caught exception, 92

changes, 295

character, 2, 8, 223, 223, 224, 226, 263, 265
text format, 223

closed type, 29

closure, 88

code, 14, 264
section, 218

code section, 218

comment, 223, 224

composite type, 12, 12, 36, 37, 198, 228, 229, 282,

303

abstract syntax, 12
binary format, 198
text format, 228
validation, 36
composite types,43
compositionality, 282
concepts, 3
concrete type, 9,29
configuration, 84, 93, 274, 280
constant, 23-25, 72, 7577, 85, 300
context, 32,47, 48, 57-59, 79, 219, 266, 273, 275
continuation
address, 87
instance, 90
continuation instance, 90
abstract syntax, 90
control frame, 91
control instruction, 15
control instructions, 48, 126, 199, 232
custom annotation, 293
custom section, 216, 290, 293, 305
binary format, 216

D

data, 23, 24, 25,77, 92, 181, 219, 247, 249, 263
abstract syntax, 25
address, 87
binary format, 219
index, 23
instance, 89
section, 219
segment, 25, 77, 219, 247, 249
text format, 247, 249
type, 13
validation, 77
data address, 87, 181, 182
abstract syntax, 87
data count, 219
binary format, 219
section, 219
data count section, 219
data index, 23, 25, 214, 246
abstract syntax, 23
binary format, 214
text format, 246
data instance, 87, 89, 181, 182, 269, 272, 278
abstract syntax, 89
data section, 219
data segment, 79, 88, 89, 182, 219, 251, 297, 301
data type, 13
abstract syntax, 13
declarative, 25
decoding, 4
default value, 85
defaultable, 76
defined type, 13, 30, 31, 40, 44, 74, 90, 121, 268,
269,271,272, 282
abstract syntax, 30, 44

Index

323

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

design goals, |
determinism, 94, 104, 149, 156, 172, 263, 305
deterministic profile, 263

dynamic type, 121

E

element, 13, 23, 25, 25, 77, 92, 181, 217, 219, 248,
249, 257, 263
abstract syntax, 25
address, 87
binary format, 217
index, 23
instance, 89
mode, 25
section, 217
segment, 25, 77, 217, 248, 249
text format, 248, 249
type, 13
validation, 77
element address, 87, 148, 181, 182
abstract syntax, 87
element expression, 89
element index, 23, 25, 214, 246
abstract syntax, 23
binary format, 214
text format, 246
element instance, 87, 89, 148, 181, 182, 269, 272,
279
abstract syntax, 89
element mode, 25
abstract syntax, 25
element section, 217
element segment, 79, 88, 89, 182, 251, 296, 297
element type, 13, 46
abstract syntax, 13
embedder, 2, 3, 87-89, 253
embedding, 253
evaluation context, 84
exception, 15, 86, 91, 92, 140, 141, 186, 190, 259,
268, 300
address, 87
instance, 90
exception address, 86, 259
abstract syntax, 87
exception handling, 199
exception instance, 86, 87, 90, 259, 273, 279
abstract syntax, 90
exception tag, 13, 38, 75, 89, 124, 141, 142, 198,
219, 246
exception type, 259
execution, 4,9, 11, 83, 261, 265
expression, 179
instruction, 125, 126, 147, 148, 152, 159, 172,
173
expand, 268
expansion, 31
exponent, 7, 95

export, 23, 26, 78, 79, 89, 182, 190, 217, 219, 246—
251, 255, 256, 263, 297, 301
abstract syntax, 26
binary format, 217
instance, 89
section, 217
text format, 246-250
validation, 78
export instance, 87,89, 182, 256, 273
abstract syntax, 89
export section, 217
expression, 23, 24, 25,72,75-77, 179,214,217, 219,
245, 247-249, 300
abstract syntax, 23
binary format, 214
constant, 23, 72, 214, 245
execution, 179
text format, 245
validation, 72
extern type, 276
extern value, 276
external
address, 87
type, 13
external address, 13, 87, 89, 124, 182, 273
abstract syntax, 87
external index, 26, 250
abstract syntax, 26
external reference, 68, 85
external type, 13, 39, 46, 124, 182, 199, 230, 261,
273
abstract syntax, 13
binary format, 199
text format, 230
validation, 39

F

field, 23, 292, 293
index, 23
field index, 23,214,292
abstract syntax, 23
binary format, 214
field type, 12, 36, 43, 44, 198, 228, 272, 279, 282,
303
abstract syntax, 12
binary format, 198
text format, 228
validation, 36
field value, 90, 272, 279
abstract syntax, 90
file extension, 193,221
final, 12, 37
floating point, 2
floating-point, 3,7, 8, 9, 20, 85, 94, 95, 102, 296
floating-point number, 195, 225
abstract syntax, 7
binary format, 195
text format, 225

324

Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

folded instruction, 245
frame, 91, 92, 93, 126, 146-148, 152, 265, 274-276,
282
abstract syntax, 91
full profile, 263
funciton type, 43
function, 2, 3, 10-12, 15, 23, 25, 26, 32, 76, 79, 87,
88,91, 92, 122, 146, 181, 182, 190, 216, 218,
219, 248, 251, 256, 263-265, 291-293, 296,
300, 302, 305
abstract syntax, 25,76
address, 87
binary format, 216,218
export, 26
import, 26
index, 23
instance, 88
section, 216
text format, 248
type, 12
function address, 87, 88, 92, 124, 181, 182, 190,
256, 257,270, 276
abstract syntax, 87
function index, 15, 23, 25, 26, 48, 76-78, 126, 182,
199, 214, 217, 232, 246, 248-250, 291
abstract syntax, 23
binary format, 214
text format, 246
function instance, 86, 87, 88, 92, 122, 146, 181,
182, 190, 256, 265, 269, 271,277, 278
abstract syntax, 88
function section, 216
function type, 10, 11, 12, 13, 15, 24, 26, 29, 32, 36,
38-40, 46, 75, 76,78, 87, 122, 124, 125, 181,
190, 198, 216, 218, 219, 228, 230, 246, 248,
250, 256, 259, 269, 271, 276, 282, 302
abstract syntax, 12
binary format, 198
text format, 228
validation, 36
function type index, 219

G

global, 13, 16, 23, 24, 26, 32, 75,79, 87, 89, 180, 182,
217,219, 247, 251, 259, 263
abstract syntax, 24
address, 87
binary format, 217
export, 26
import, 26
index, 23
instance, 89
mutability, 13
section, 217
text format, 247
type, 13
validation, 75
global address, 87, 124, 147, 180, 182, 259

abstract syntax, 87
global index, 16, 23, 24, 26, 57, 78, 147, 182, 200,
214,217, 233, 246, 247, 250
abstract syntax, 23
binary format, 214
text format, 246
global instance, 86, 87,89, 147, 180, 182, 259, 265,
269, 270, 277, 278
abstract syntax, 89
global section, 217
global type, 13, 13,24, 26, 29, 32, 38, 39, 45, 46, 75,
78, 124, 180, 198, 216, 217, 230, 247, 250,
259, 269, 270
abstract syntax, 13
binary format, 198
text format, 230
validation, 38
grammar notation, 5, 193, 221
greatest lower bound, 281
grow, 181, 182

H

handler, 91, 92, 141, 276, 300
abstract syntax, 91

heap type, 9, 10, 18, 19, 29, 35, 40, 196, 227, 248,

266, 268, 302, 303

abstract syntax,9, 29
binary format, 196
text format, 227
validation, 35

host, 2, 87, 253
address, 87

host address, 85
abstract syntax, 87

host function, 88, 147, 256, 271

identifier, 221, 222, 246248, 251, 265, 305
identifier context, 222,251
identifiers, 227
text format, 227
IEEE 754,2,3,7,9,95, 102
implementation, 253, 263
implementation limitations, 263
import, 2, 13, 23-25, 26, 76, 78, 79, 124, 182, 216,
219, 246-251, 255, 263, 297, 301
abstract syntax, 26
binary format, 216
section, 216
text format, 246-250
validation, 78
import section, 216
index, 23, 26,78, 87,214,217,222,231, 246-250, 291
data, 23
element, 23
field, 23
function, 23
global, 23

Index

325

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

label, 23
local, 23
memory, 23
table, 23
tag, 23
type, 23

index space, 23, 26, 29, 32, 222, 291
instance, 87, 186

instantiation, 4, 9, 26, 186, 255, 280

array, 90
continuation, 90
data, 89
element, 89
exception, 90
export, 89
function, 88
global, 89
memory, 88
module, 87
structure, 90
table, 88
tag, 89

instantiation. module, 29

instruction, 3, 11, 14, 23, 31, 47, 71, 88, 89, 91-93,
125, 140, 199, 231, 263, 275, 276, 280, 282,

296, 297, 300-302, 305, 306
abstract syntax, 14-21
binary format, 199-203, 207

execution, 125, 126, 147, 148, 152, 159, 172,

173
text format, 232-234, 236, 239
type, 31
validation, 48, 57-59, 63, 68, 69

instruction sequence, 71, 140

instruction type, 31, 36, 43, 47, 87, 280-282, 302

abstract syntax, 31
validation, 36

instructions, 297

integer, 3,7, 8, 9, 20, 85, 94-96, 148, 152, 195, 225,

296
abstract syntax, 7
binary format, 195
signed, 7
text format, 225
uninterpreted, 7
unsigned, 7

invocation, 4, 88, 190, 256, 280

K

keyword, 223

L

label, 15, 48,91, 92, 126, 146, 199, 232, 265, 276, 282

label index, 15,23, 48, 126, 199, 214, 231, 232, 246

abstract syntax, 91
index, 23

abstract syntax, 23
binary format, 214

text format, 231, 246
lane, 8, 95
least upper bound, 281
LEB128, 195, 199
lexical format, 223

limits, 12, 13, 24, 25, 38, 45, 46, 148, 152, 180-182,

198, 199, 230, 270
abstract syntax, 12
binary format, 198
memory, 13
table, 13
text format, 230
validation, 38

linear memory, 3

list, 6, 11, 12, 15, 25, 48, 126, 194, 199, 223, 232

abstract syntax, 6

binary format, 194

text format, 223
little endian, 17, 96, 195

local, 16, 23, 25, 31, 32, 76, 91, 218, 248, 263, 275,

291, 293, 302, 305
abstract syntax, 25
binary format, 218
index, 23
text format, 248
type, 32
validation, 76

local index, 16, 23,25, 31,32, 57,76, 147, 200, 214,

233, 246, 291
abstract syntax, 23
binary format, 214
text format, 246

local type, 32, 32,71, 76, 302
abstract syntax, 32

M

magnitude, 7
mantissa, 225
matching, 39, 182, 302

memory, 3,9, 13, 17, 23, 24, 25, 26, 32, 75,77, 79, 87,
88,92, 96, 180-182, 217, 219, 247, 249, 251,

258,263,297, 301, 302
abstract syntax, 24
address, 87
binary format, 217
data, 25, 77, 219, 247, 249
export, 26
import, 26
index, 23
instance, 88
limits, 12,13
section, 217
text format, 247
type, 13
validation, 75

memory address, 87, 124, 152, 180-182, 258

abstract syntax, 87

326

Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

memory index, 17, 23, 24-26, 59, 77, 78, 152, 182,
201, 214, 217, 219, 234, 246, 247, 249, 250,
301
abstract syntax, 23
binary format, 214
text format, 246
memory instance, 86, 87, 88, 92, 152, 180-182, 258,
265, 269, 270, 277, 278
abstract syntax, 88
memory instruction, 17,59, 152, 201, 234
memory section, 217
memory type, 12, 13, 13, 24, 26, 29, 32, 38, 39, 46,
75,78, 88, 124, 180, 198, 216, 217, 230, 247,
250, 258, 269, 270
abstract syntax, 13
binary format, 198
text format, 230
validation, 38
module, 2, 3, 23, 32, 79, 86, 88, 182, 186, 190, 193,
219, 251, 254, 256, 263, 264, 280, 282, 291,
292, 305
abstract syntax, 23
binary format, 219
instance, 87
text format, 251
validation, 79
module instance, 88, 91, 121, 181, 182, 190, 255,
256, 265, 273, 275
abstract syntax, 87
module instruction, 93
mutability, 13, 13, 24, 36, 38, 44, 45, 89, 124, 180,
198, 228, 230, 270, 278
abstract syntax, 13
binary format, 198
global, 13
text format, 230

N

name, 2, 8, 26, 78, 87, 89, 195, 216, 217, 226, 246-250,
263, 273, 290, 292
abstract syntax, 8
binary format, 195
text format, 226
name annotation, 292
name map, 291
name section, 251, 290
NaN, 7,94, 104, 172
arithmetic, 7
canonical, 7
payload, 7
non-determinism, 94, 104, 149, 156, 172, 263, 305
notation, 5, 193, 221
abstract syntax, 5
binary format, 193
text format, 221
null, 10, 18, 19
null reference, 122
number, 21, 85

type, 9
number type, 9, 11, 34, 35, 39, 42, 85, 196, 197, 227,
228,282,302

abstract syntax,9

binary format, 196

text format, 227

validation, 34
numeric instruction, 20, 68, 172, 203, 236
numeric vector, 8, 21, 95

O

offset, 23
opcode, 199, 282, 287
operand, 14

operand stack, 14, 47

F)

packed type, 12, 36, 44, 95, 198, 228, 272, 282
abstract syntax, 12
binary format, 198
text format, 228
validation, 36
packed value, 90, 272
abstract syntax, 90
page size, 13, 17, 24, 88, 198, 230, 247
parameter, 12, 23, 263, 293
parametric instruction, 14, 125, 199, 232
parametric instructions, 48
passive, 25, 25
payload, 7
phases, 4
polymorphism, 47, 48, 199, 232, 280
portability, |
preservation, 280
principal types, 280
profile, 261
deterministic, 263
full, 263
profiles, 305
progress, 280
prompt
abstract syntax, 91

R

reachability, 270
recursive type, 12, 30, 31, 37, 44, 74,79, 198, 216,
229, 251, 266, 268, 282, 303
abstract syntax, 12,37
binary format, 198
text format, 229
recursive type index, 12,29, 266, 268
abstract syntax, 29
reduction rules, 84
reference, 10, 18, 19, 85, 148, 159, 232, 260, 272,
296, 302, 303
type, 10
reference instruction, 18, 19, 202, 236
reference instructions, 63, 159

Index

327

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

reference type, 10, 11,13, 18,19, 35, 38,42, 63,76,
85, 148, 197, 199, 228, 230, 248, 260, 266,
282,296, 300, 302, 303

abstract syntax, 10
binary format, 197
text format, 228
validation, 35

reftype, 92

result, 12, 86, 256, 263, 268

abstract syntax, 86
type, 11

result type, 11, 12, 29, 31, 32, 35, 43, 48, 72, 126,

197-199, 228, 232, 268, 275, 276, 296
abstract syntax, |1
binary format, 197
validation, 35

rewrite rule, 222

roll, 12

rolling, 29, 31

rounding, 103

runtime, 85, 318

S

S-expression, 221, 245
scalar reference, 67, 122
section, 215, 219, 264, 290
binary format, 215
code, 218
custom, 216
data, 219
data count, 219
element, 217
export, 217
function, 216
global, 217
import, 216
memory, 217
name, 251
start, 217
table, 217
tag, 219
type, 216
security, 2
segment, 92
shape, 95
sign, 96
signed integer, 7, 96, 195, 225
abstract syntax, 7
binary format, 195
text format, 225
significand, 7, 95
SIMD, 8, 9, 21, 297, 305
soundness, 266, 280
source text, 223, 223, 265
stack, 83, 91, 190, 282
stack machine, 14
stack type, 15
start function, 23, 26, 78, 79, 217, 219, 250, 251

abstract syntax, 26
binary format, 217
section, 217
text format, 250
validation, 78
start section, 217
state, 93
storage type, 12, 36, 44, 198, 228, 272, 303
abstract syntax, 12
binary format, 198
text format, 228
validation, 36
store, 9, 83, 86, 87, 91, 93, 122, 124-126, 147, 148,
152, 180, 186, 190, 254, 256-259, 269, 272,
274-2717
abstract syntax, 86
store extension, 276
string, 226
text format, 226
structure, 12, 85, 122
address, 87
instance, 90
type, 12
structure address
abstract syntax, 87
structure field, 305
structure instance, 86, 87,90, 122, 269, 272, 279
abstract syntax, 90
structure type, 12, 36, 40, 43, 90, 122, 198, 228,
269, 282,293, 303
abstract syntax, 12
binary format, 198
text format, 228
validation, 36
structured control, 15,48, 126, 199, 232
structured control instruction, 263
sub type, 12, 29, 31, 37, 198, 229, 266, 282, 303
abstract syntax, 12,29, 37
binary format, 198
text format, 229
substitution, 30
subtyping, 12, 29, 37, 39, 261, 280-282, 302
syntax, 280

T

table, 3, 10, 13, 15, 17, 23, 25, 25, 26, 32, 76, 77, 79,
87, 88,92, 180, 182, 217, 219, 248, 251, 257,
263, 296, 297, 302

abstract syntax, 25
address, 87

binary format, 217
element, 25, 77, 217, 248, 249
export, 26

import, 26

index, 23

instance, 88

limits, 12,13

section, 217

328

Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

text format, 248
type, 13
validation, 76

table address, 87, 124, 126, 148, 180, 182, 257

abstract syntax, 87

table index, 17,23, 25,26, 58,77, 78, 148, 182, 201,

214, 217, 233, 246, 248-250, 297
abstract syntax, 23
binary format, 214
text format, 246

table instance, 86, 87, 88, 92, 126, 148, 180, 182,

257, 265, 269, 270, 277, 278
abstract syntax, 88

table instruction, 17, 58, 148, 201, 233
table section, 217
table type, 12, 13, 13, 25, 26, 29, 32, 38, 39, 46,

tag,

tag

tag

tag

tag
tag

76,78, 88, 124, 180, 199, 216, 217, 230, 248,
250, 257, 269, 270, 296

abstract syntax, 13

binary format, 199

text format, 230

validation, 38

13, 15, 23, 24, 26, 32, 75, 79, 87, 89, 90, 92, 141,
142, 180, 182, 219, 246, 251, 259, 263, 273,
292,293, 300

abstract syntax, 24

address, 87

binary format, 219

export, 26

import, 26

index, 23

instance, 89

section, 219

text format, 246

type, 13

validation, 75

address, 87, 90, 92, 124, 180, 182, 259, 273

abstract syntax, 87

index, 23, 26, 48, 78, 182, 199, 214, 217, 232,
246, 250, 292

abstract syntax, 23

binary format, 214

text format, 246

instance, 86, 87, 89, 92, 180, 182, 259, 269, 270,
278

abstract syntax, 89

section, 219

type, 13, 13, 15, 24, 26, 29, 32, 38, 45, 46, 75, 78,
89, 124, 180, 198, 216, 219, 230, 246, 250,
259, 269, 270, 300

abstract syntax, 13

binary format, 198

text format, 230

validation, 38

terminal configuration, 280
text format, 2, 221, 254, 261, 265, 290, 305

address type, 229
aggregate type, 228

annotation, 224
array type, 228
byte, 226
character, 223
comment, 224
composite type, 228
data, 247, 249

data index, 246
element, 248, 249
element index, 246
export, 246-250
expression, 245
external type, 230
field type, 228
floating-point number, 225
function, 248
function index, 246
function type, 228
global, 247

global index, 246
global type, 230
grammar, 221

heap type, 227
identifiers, 227
import, 246-250
instruction, 232-234, 236, 239
integer, 225

label index, 231, 246
limits, 230

list, 223

local, 248

local index, 246
memory, 247

memory index, 246
memory type, 230
module, 251
mutability, 230
name, 226
notation, 221
number type, 227
packed type, 228
recursive type, 229
reference type, 228
signed integer, 225
start function, 250
storage type, 228
string, 226
structure type, 228
sub type, 229
table, 248

table index, 246
table type, 230
tag, 246

tag index, 246

tag type, 230
token, 223

type, 227

type index, 246

Index

329

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

type use, 230
uninterpreted integer, 225
unsigned integer, 225
value, 225
value type, 228
vector type, 227
white space, 224
thread, 93, 275, 280
throw, 268
throw context, 141,276
token, 223, 265
trap, 3, 15, 17, 86, 92, 140, 172, 186, 190, 268, 275,
296
try block, 15
two's complement, 3, 7, 20, 96, 195
type, 9,74, 121, 182, 196, 227, 263, 292, 293, 305, 318
abstract syntax, 9, 74
array, 12
binary format, 196
block, 11, 15
data, 13
element, 13
external, 13
function, 12
global, 13
index, 23
instruction, 31
local, 32
memory, 13
number, 9
reference, 10
result, 11
section, 216
structure, 12
table, 13
tag, 13
text format, 227
value, 11
type closure, 33
type definition, 23, 24,79, 216, 219, 251
abstract syntax, 24
type equivalence, 31, 44

type index, 9, 11, 15, 23, 24-26, 29, 35, 48, 74, 76,
121, 126, 199, 214, 216, 218, 232, 246, 248,
292

abstract syntax, 23
binary format, 214
text format, 246
type instance, 86, 87
type instantiation, 121
type lattice, 281
type section, 216
binary format, 216
type system, 29, 266, 280
type use, 9,9, 13, 35, 230
abstract syntax, 9
text format, 230
validation, 35

typing rules, 33

U

unboxed scalar, 9, 85
unboxed scalar type, 40
Unicode, 2, 8, 195, 221, 223, 226, 263
unicode, 265
Unicode UTF-8, 290, 292
uninterpreted integer, 7, 96, 195, 225
abstract syntax, 7
binary format, 195
text format, 225
unroll, 12, 44, 268
unrolling, 29, 31
unsigned integer, 7, 96, 195, 225
abstract syntax, 7
binary format, 195
text format, 225
unwinding, 15
UTF-8, 2, 8, 195, 221, 226

Vv

validation, 4, 9, 29, 122, 124, 125, 254, 261, 265,
272,282,318
aggregate type, 36

array type, 36
block type, 36
composite type, 36
data, 77
element, 77
export, 78
expression, 72
external type, 39
field type, 36
function type, 36
global, 75

global type, 38
heap type, 35
import, 78
instruction, 48, 57-59, 63, 68, 69
instruction type, 36
limits, 38
local, 76
memory, 75

memory type, 38
module, 79

number type, 34
packed type, 36
reference type, 35
result type, 35
start function, 78
storage type, 36
structure type, 36
table, 76

table type, 38
tag, 75

tag type, 38

type use, 35

330

Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

value type, 35
vector type, 35
validity, 280
value, 3, 7, 20, 21, 24, 47, 85, 86, 89, 90, 94, 122, 125,
147, 148, 152, 172, 180, 190, 194, 225, 256,
259, 260, 265, 268, 270, 275, 278
abstract syntax, 7, 85
binary format, 194
text format, 225
type, 11
value type, 11, 11, 13-15, 20, 21, 25, 29, 31, 32, 35,
36, 38, 42-45, 48, 76, 85, 95, 122, 124, 152,
172, 180, 197-199, 228, 230, 232, 260, 261,
266, 268, 275, 282, 296, 297, 302
abstract syntax, 11,29
binary format, 197
text format, 228
validation, 35
variable instruction, 16
variable instructions, 57, 147, 200, 233
vector
abstract syntax, 8
vector instruction, 21, 69, 173, 207, 239, 305
vector number, 85
vector type, 9, 11, 35, 39, 85, 196, 227, 228, 282,
297
binary format, 196
text format, 227
validation, 35
version, 219

W

white space, 223, 224

Index 331

	Introduction
	Introduction
	Design Goals
	Scope
	Security Considerations
	Dependencies

	Overview
	Concepts
	Semantic Phases

	Structure
	Conventions
	Grammar Notation
	Auxiliary Notation
	Lists

	Values
	Bytes
	Conventions

	Integers
	Conventions

	Floating-Point
	Conventions

	Vectors
	Names
	Convention

	Types
	Number Types
	Conventions

	Vector Types
	Conventions

	Type Uses
	Heap Types
	Reference Types
	Conventions

	Value Types
	Conventions

	Result Types
	Block Types
	Composite Types
	Conventions

	Recursive Types
	Address Types
	Conventions

	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	Data Types
	Element Types
	External Types
	Conventions

	Instructions
	Parametric Instructions
	Control Instructions
	Variable Instructions
	Table Instructions
	Memory Instructions
	Reference Instructions
	Aggregate Instructions
	Numeric Instructions
	Vector Instructions
	Conventions

	Expressions

	Modules
	Indices
	Conventions

	Types
	Tags
	Globals
	Memories
	Tables
	Functions
	Data Segments
	Element Segments
	Start Function
	Imports
	Exports
	Conventions

	Validation
	Conventions
	Types
	Convention

	Defined Types
	Conventions

	Rolling and Unrolling
	Instruction Types
	Local Types
	Contexts
	Convention

	Prose Notation
	Formal Notation

	Types
	Number Types
	Vector Types
	Type Uses
	Heap Types
	Reference Types
	Value Types
	Result Types
	Block Types
	Instruction Types
	Composite Types
	Recursive Types
	[syntax/types:syntax-rectype]rec [syntax/types:syntax-subtype]subtype
	[syntax/types:syntax-subtype]sub [syntax/types:syntax-subtype]final? y [syntax/types:syntax-comptype]comptype

	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	External Types

	Matching
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Value Types
	Result Types
	Instruction Types
	Composite Types
	Field Types
	Defined Types
	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	External Types

	Instructions
	Parametric Instructions
	[syntax/instructions:syntax-instr-control]nop
	[syntax/instructions:syntax-instr-control]unreachable
	[syntax/instructions:syntax-instr-parametric]drop
	[syntax/instructions:syntax-instr-parametric]select (t)?

	Control Instructions
	[syntax/instructions:syntax-instr-control]block [syntax/types:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]loop [syntax/types:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]if [syntax/types:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr1 [syntax/instructions:syntax-instr-control]else [syntax/instructions:syntax-instr]instr2
	[syntax/instructions:syntax-instr-control]br l
	[syntax/instructions:syntax-instr-control]br_if l
	[syntax/instructions:syntax-instr-control]br_table l lN
	[syntax/instructions:syntax-instr-control]br_on_null l
	[syntax/instructions:syntax-instr-control]br_on_non_null l
	[syntax/instructions:syntax-instr-control]br_on_cast l rt1 rt2
	[syntax/instructions:syntax-instr-control]br_on_cast_fail l rt1 rt2
	[syntax/instructions:syntax-instr-control]call x
	[syntax/instructions:syntax-instr-control]call_ref x
	[syntax/instructions:syntax-instr-control]call_indirect x y
	[syntax/instructions:syntax-instr-control]return
	[syntax/instructions:syntax-instr-control]return_call x
	[syntax/instructions:syntax-instr-control]return_call_ref x
	[syntax/instructions:syntax-instr-control]return_call_indirect x y
	[syntax/instructions:syntax-instr-control]throw x
	[syntax/instructions:syntax-instr-control]throw_ref
	[syntax/instructions:syntax-instr-control]try_table [syntax/types:syntax-blocktype]blocktype [syntax/instructions:syntax-catch]catch [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]catch x l
	[syntax/instructions:syntax-instr-control]catch_ref x l
	[syntax/instructions:syntax-instr-control]catch_all l
	[syntax/instructions:syntax-instr-control]catch_all_ref l
	[syntax/instructions:syntax-instr-control]cont.new x
	[syntax/instructions:syntax-instr-control]cont.bind x x'
	[syntax/instructions:syntax-instr-control]resume x [syntax/instructions:syntax-hdl]hdl
	[syntax/instructions:syntax-instr-control]resume_throw x xe [syntax/instructions:syntax-hdl]hdl
	[syntax/instructions:syntax-hdl]on x l
	[syntax/instructions:syntax-hdl]on x [syntax/instructions:syntax-hdl]switch
	[syntax/instructions:syntax-instr-control]suspend x
	[syntax/instructions:syntax-instr-control]switch x xe

	Variable Instructions
	[syntax/instructions:syntax-instr-variable]local.get x
	[syntax/instructions:syntax-instr-variable]local.set x
	[syntax/instructions:syntax-instr-variable]local.tee x
	[syntax/instructions:syntax-instr-variable]global.get x
	[syntax/instructions:syntax-instr-variable]global.set x

	Table Instructions
	[syntax/instructions:syntax-instr-table]table.get x
	[syntax/instructions:syntax-instr-table]table.set x
	[syntax/instructions:syntax-instr-table]table.size x
	[syntax/instructions:syntax-instr-table]table.grow x
	[syntax/instructions:syntax-instr-table]table.fill x
	[syntax/instructions:syntax-instr-table]table.copy x y
	[syntax/instructions:syntax-instr-table]table.init x y
	[syntax/instructions:syntax-instr-table]elem.drop x

	Memory Instructions
	t.[syntax/instructions:syntax-instr-memory]load x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-sx]sx x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]store x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]storeN x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]load x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadNxM_[syntax/instructions:syntax-sx]sx x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_splat x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_zero x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_lane x [syntax/instructions:syntax-memarg]memarg [syntax/instructions:syntax-laneidx]laneidx
	v128.[syntax/instructions:syntax-instr-memory]store x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]storeN_lane x [syntax/instructions:syntax-memarg]memarg [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-instr-memory]memory.size x
	[syntax/instructions:syntax-instr-memory]memory.grow x
	[syntax/instructions:syntax-instr-memory]memory.fill x
	[syntax/instructions:syntax-instr-memory]memory.copy x y
	[syntax/instructions:syntax-instr-memory]memory.init x y
	[syntax/instructions:syntax-instr-memory]data.drop x

	Reference Instructions
	[syntax/instructions:syntax-instr-ref]ref.null ht
	[syntax/instructions:syntax-instr-ref]ref.func x
	[syntax/instructions:syntax-instr-ref]ref.is_null
	[syntax/instructions:syntax-instr-ref]ref.as_non_null
	[syntax/instructions:syntax-instr-ref]ref.eq
	[syntax/instructions:syntax-instr-ref]ref.test rt
	[syntax/instructions:syntax-instr-ref]ref.cast rt

	Aggregate Reference Instructions
	[syntax/instructions:syntax-instr-struct]struct.new x
	[syntax/instructions:syntax-instr-struct]struct.new_default x
	[syntax/instructions:syntax-instr-struct]struct.get_[syntax/instructions:syntax-sx]sx? x y
	[syntax/instructions:syntax-instr-struct]struct.set x y
	[syntax/instructions:syntax-instr-array]array.new x
	[syntax/instructions:syntax-instr-array]array.new_default x
	[syntax/instructions:syntax-instr-array]array.new_fixed x n
	[syntax/instructions:syntax-instr-array]array.new_elem x y
	[syntax/instructions:syntax-instr-array]array.new_data x y
	[syntax/instructions:syntax-instr-array]array.get_[syntax/instructions:syntax-sx]sx? x
	[syntax/instructions:syntax-instr-array]array.set x
	[syntax/instructions:syntax-instr-array]array.len
	[syntax/instructions:syntax-instr-array]array.fill x
	[syntax/instructions:syntax-instr-array]array.copy x y
	[syntax/instructions:syntax-instr-array]array.init_elem x y
	[syntax/instructions:syntax-instr-array]array.init_data x y

	Scalar Reference Instructions
	[syntax/instructions:syntax-instr-i31]ref.i31
	[syntax/instructions:syntax-instr-i31]i31.get_[syntax/instructions:syntax-sx]sx

	External Reference Instructions
	[syntax/instructions:syntax-instr-extern]any.convert_extern
	[syntax/instructions:syntax-instr-extern]extern.convert_any

	Numeric Instructions
	t.[syntax/instructions:syntax-instr-numeric]const c
	t.[syntax/instructions:syntax-unop]unop
	t.[syntax/instructions:syntax-binop]binop
	t.[syntax/instructions:syntax-testop]testop
	t.[syntax/instructions:syntax-relop]relop
	t1.[syntax/instructions:syntax-cvtop]cvtop_t2_[syntax/instructions:syntax-sx]sx?

	Vector Instructions
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-vec]const c
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-vvunop]vvunop
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-vvbinop]vvbinop
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-vvternop]vvternop
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-vvtestop]vvtestop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vunop]vunop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vbinop]vbinop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vternop]vternop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vrelop]vtestop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vrelop]vrelop
	[syntax/instructions:syntax-shape]ishape.[syntax/instructions:syntax-vshiftop]vishiftop
	[syntax/instructions:syntax-shape]ishape.[syntax/instructions:syntax-instr-vec]bitmask
	i8x16.[syntax/instructions:syntax-vswizzlop]vswizzlop
	i8x16.[syntax/instructions:syntax-instr-vec]shuffle [syntax/instructions:syntax-laneidx]laneidx16
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]splat
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]extract_lane_[syntax/instructions:syntax-sx]sx? [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]replace_lane [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-vextunop]vextunop_[syntax/instructions:syntax-shape]ishape2
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-vextbinop]vextbinop_[syntax/instructions:syntax-shape]ishape2
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-vextternop]vextternop_[syntax/instructions:syntax-shape]ishape2
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-instr-vec]narrow_[syntax/instructions:syntax-shape]ishape2_[syntax/instructions:syntax-sx]sx
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vcvtop]vcvtop_[syntax/instructions:syntax-half]half?_[syntax/instructions:syntax-shape]shape_[syntax/instructions:syntax-sx]sx?_zero?

	Instruction Sequences
	Empty Instruction Sequence:

	Expressions
	Constant Expressions

	Modules
	Types
	Tags
	Globals
	Memories
	Tables
	Functions
	Locals
	Data Segments
	Element Segments
	Start Function
	Imports
	Exports
	[syntax/modules:syntax-externidx]tag x
	[syntax/modules:syntax-externidx]global x
	[syntax/modules:syntax-externidx]memory x
	[syntax/modules:syntax-externidx]table x
	[syntax/modules:syntax-externidx]func x

	Modules

	Execution
	Conventions
	Prose Notation
	Formal Notation

	Runtime Structure
	Values
	Convention

	Results
	Store
	Convention

	Addresses
	Conventions

	External Addresses
	Module Instances
	Function Instances
	Table Instances
	Memory Instances
	Global Instances
	Tag Instances
	Element Instances
	Data Instances
	Export Instances
	Conventions

	Aggregate Instances
	Conventions

	Exception Instances
	Continuation Instances
	Conventions

	Stack
	Values
	Labels
	Call Frames
	Exception Handlers
	Effect Handlers
	Conventions

	Administrative Instructions
	Configurations

	Numerics
	Representations
	Integers
	Floating-Point
	Vectors
	Storage

	Integer Operations
	Sign Interpretation
	Boolean Interpretation
	[exec/numerics:op-iadd]iaddN(i1, i2)
	[exec/numerics:op-isub]isubN(i1, i2)
	[exec/numerics:op-imul]imulN(i1, i2)
	[exec/numerics:op-idiv]idiv_uN(i1, i2)
	[exec/numerics:op-idiv]idiv_sN(i1, i2)
	[exec/numerics:op-irem]irem_uN(i1, i2)
	[exec/numerics:op-irem]irem_sN(i1, i2)
	[exec/numerics:op-inot]inotN(i)
	[exec/numerics:op-irev]irevN(i)
	[exec/numerics:op-iand]iandN(i1, i2)
	[exec/numerics:op-iandnot]iandnotN(i1, i2)
	[exec/numerics:op-ior]iorN(i1, i2)
	[exec/numerics:op-ixor]ixorN(i1, i2)
	[exec/numerics:op-ishl]ishlN(i1, i2)
	[exec/numerics:op-ishr]ishr_uN(i1, i2)
	[exec/numerics:op-ishr]ishr_sN(i1, i2)
	[exec/numerics:op-irotl]irotlN(i1, i2)
	[exec/numerics:op-irotr]irotrN(i1, i2)
	[exec/numerics:op-iclz]iclzN(i)
	[exec/numerics:op-ictz]ictzN(i)
	[exec/numerics:op-ipopcnt]ipopcntN(i)
	[exec/numerics:op-ieqz]ieqzN(i)
	[exec/numerics:op-inez]inezN(i)
	[exec/numerics:op-ieq]ieqN(i1, i2)
	[exec/numerics:op-ine]ineN(i1, i2)
	[exec/numerics:op-ilt]ilt_uN(i1, i2)
	[exec/numerics:op-ilt]ilt_sN(i1, i2)
	[exec/numerics:op-igt]igt_uN(i1, i2)
	[exec/numerics:op-igt]igt_sN(i1, i2)
	[exec/numerics:op-ile]ile_uN(i1, i2)
	[exec/numerics:op-ile]ile_sN(i1, i2)
	[exec/numerics:op-ige]ige_uN(i1, i2)
	[exec/numerics:op-ige]ige_sN(i1, i2)
	[exec/numerics:op-iextendn]iextendM_sN(i)
	[exec/numerics:op-ibitselect]ibitselectN(i1, i2, i3)
	[exec/numerics:op-iabs]iabsN(i)
	[exec/numerics:op-ineg]inegN(i)
	[exec/numerics:op-imin]imin_uN(i1, i2)
	[exec/numerics:op-imin]imin_sN(i1, i2)
	[exec/numerics:op-imax]imax_uN(i1, i2)
	[exec/numerics:op-imax]imax_sN(i1, i2)
	[exec/numerics:op-iadd-sat]iadd_sat_uN(i1, i2)
	[exec/numerics:op-iadd-sat]iadd_sat_sN(i1, i2)
	[exec/numerics:op-isub-sat]isub_sat_uN(i1, i2)
	[exec/numerics:op-isub-sat]isub_sat_sN(i1, i2)
	[exec/numerics:op-iavgr]iavgr_uN(i1, i2)
	[exec/numerics:op-iq15mulrsat]iq15mulrsat_sN(i1, i2)

	Floating-Point Operations
	Rounding
	NaN Propagation
	[exec/numerics:op-fadd]faddN(z1, z2)
	[exec/numerics:op-fsub]fsubN(z1, z2)
	[exec/numerics:op-fmul]fmulN(z1, z2)
	[exec/numerics:op-fdiv]fdivN(z1, z2)
	[exec/numerics:op-fma]fmaN(z1, z2, z3)
	[exec/numerics:op-fmin]fminN(z1, z2)
	[exec/numerics:op-fmax]fmaxN(z1, z2)
	[exec/numerics:op-fcopysign]fcopysignN(z1, z2)
	[exec/numerics:op-fabs]fabsN(z)
	[exec/numerics:op-fneg]fnegN(z)
	[exec/numerics:op-fsqrt]fsqrtN(z)
	[exec/numerics:op-fceil]fceilN(z)
	[exec/numerics:op-ffloor]ffloorN(z)
	[exec/numerics:op-ftrunc]ftruncN(z)
	[exec/numerics:op-fnearest]fnearestN(z)
	[exec/numerics:op-feq]feqN(z1, z2)
	[exec/numerics:op-fne]fneN(z1, z2)
	[exec/numerics:op-flt]fltN(z1, z2)
	[exec/numerics:op-fgt]fgtN(z1, z2)
	[exec/numerics:op-fle]fleN(z1, z2)
	[exec/numerics:op-fge]fgeN(z1, z2)
	[exec/numerics:op-fpmin]fpminN(z1, z2)
	[exec/numerics:op-fpmax]fpmaxN(z1, z2)

	Conversions
	[exec/numerics:op-extend]extenduM,N(i)
	[exec/numerics:op-extend]extendsM,N(i)
	[exec/numerics:op-wrap]wrapM,N(i)
	[exec/numerics:op-trunc]truncuM,N(z)
	[exec/numerics:op-trunc]truncsM,N(z)
	[exec/numerics:op-trunc-sat]trunc_sat_uM,N(z)
	[exec/numerics:op-trunc-sat]trunc_sat_sM,N(z)
	[exec/numerics:op-promote]promoteM,N(z)
	[exec/numerics:op-demote]demoteM,N(z)
	[exec/numerics:op-convert]convertuM,N(i)
	[exec/numerics:op-convert]convertsM,N(i)
	[exec/numerics:op-reinterpret]reinterprett1,t2(c)
	[exec/numerics:op-narrow]narrowsM,N(i)
	[exec/numerics:op-narrow]narrowuM,N(i)

	Vector Operations
	[exec/numerics:op-ivbitmask]ivbitmaskN(im)
	[exec/numerics:op-ivswizzle]ivswizzle(in, jn)
	[exec/numerics:op-ivshuffle]ivshuffle(jn, i1n, i2n)
	[exec/numerics:op-ivadd-pairwise]ivadd_pairwiseN(i2m)
	[exec/numerics:op-ivmul]ivmulN(i1m, i2m)
	[exec/numerics:op-ivdot]ivdotN(i12m, i22m)
	[exec/numerics:op-ivdot-sat]ivdotsatN(i1m, i2m)
	[syntax/instructions:syntax-vextunop]vextunopsh1, sh2(c)
	[syntax/instructions:syntax-vextbinop]vextbinopsh1, sh2(c1, c2)
	[syntax/instructions:syntax-vextternop]vextternopsh1, sh2(c1, c2, c3)
	[syntax/instructions:syntax-instr-vec]narrow_[syntax/instructions:syntax-sx]sxsh1, sh2(c1, c2)
	[syntax/instructions:syntax-vcvtop]vcvtop_[syntax/instructions:syntax-half]half?_[syntax/instructions:syntax-zero]zero?sh1, sh2(i)

	Relaxed Operations
	[exec/numerics:op-frelaxed-madd]frelaxed_maddN(z1, z2, z3)
	[exec/numerics:op-frelaxed-nmadd]frelaxed_nmaddN(z1, z2, z3)
	[exec/numerics:op-frelaxed-min]frelaxed_minN(z1, z2)
	[exec/numerics:op-frelaxed-max]frelaxed_maxN(z1, z2)
	[exec/numerics:op-irelaxed-q15mulr-s]irelaxed_q15mulr_sN(i1, i2)
	[exec/numerics:op-relaxed-trunc]relaxed_truncuM,N(z)
	[exec/numerics:op-relaxed-trunc]relaxed_truncsM,N(z)
	[exec/numerics:op-ivrelaxed-swizzle]ivrelaxed_swizzle(in, jn)
	[syntax/instructions:syntax-instr-vec]relaxed_dot(i1, i2)
	[exec/numerics:op-irelaxed-laneselect]irelaxed_laneselectN(i1, i2, i3)

	Types
	Instantiation

	Values
	Value Typing
	Numeric Values
	Vector Values
	Null References
	Scalar References
	Structure References
	Array References
	Exception References
	Continuation References
	Function References
	Host References
	External References
	Subsumption

	External Typing
	Functions
	Tables
	Memories
	Globals
	Tags
	Subsumption

	Instructions
	Parametric Instructions
	[syntax/instructions:syntax-instr-control]nop
	[syntax/instructions:syntax-instr-control]unreachable
	[syntax/instructions:syntax-instr-parametric]drop
	[syntax/instructions:syntax-instr-parametric]select (t)?

	Control Instructions
	[syntax/instructions:syntax-instr-control]block bt [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]loop bt [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]if bt [syntax/instructions:syntax-instr]instr1 [syntax/instructions:syntax-instr]instr2
	[syntax/instructions:syntax-instr-control]br l
	[syntax/instructions:syntax-instr-control]br_if l
	[syntax/instructions:syntax-instr-control]br_table l l'
	[syntax/instructions:syntax-instr-control]br_on_null l
	[syntax/instructions:syntax-instr-control]br_on_non_null l
	[syntax/instructions:syntax-instr-control]br_on_cast l rt1 rt2
	[syntax/instructions:syntax-instr-control]br_on_cast_fail l rt1 rt2
	[syntax/instructions:syntax-instr-control]return
	[syntax/instructions:syntax-instr-control]call x
	[syntax/instructions:syntax-instr-control]call_ref x
	[syntax/instructions:syntax-instr-control]call_indirect x y
	[syntax/instructions:syntax-instr-control]return_call x
	[syntax/instructions:syntax-instr-control]return_call_ref y
	[syntax/instructions:syntax-instr-control]return_call_indirect x y
	[syntax/instructions:syntax-instr-control]throw x
	[syntax/instructions:syntax-instr-control]throw_ref
	[syntax/instructions:syntax-instr-control]try_table bt [syntax/instructions:syntax-catch]catch [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]cont.new x
	[syntax/instructions:syntax-instr-control]cont.bind x y
	[syntax/instructions:syntax-instr-control]resume kx [syntax/instructions:syntax-hdl]hdl
	[syntax/instructions:syntax-instr-control]resume_throw kx ax [syntax/instructions:syntax-hdl]hdl
	[syntax/instructions:syntax-instr-control]suspend x
	[syntax/instructions:syntax-instr-control]switch x xe

	Blocks
	Entering [syntax/instructions:syntax-instr]instr with label L and values [exec/runtime:syntax-val]val
	Exiting [syntax/instructions:syntax-instr]instr with label L

	Exception Handling
	Entering [syntax/instructions:syntax-instr]instr with label L and exception handler H
	Exiting an exception handler

	Effect Handling
	[exec/runtime:syntax-prompt]prompt
	[exec/runtime:syntax-suspending]suspending [exec/runtime:syntax-tagaddr]tagaddr [exec/runtime:syntax-resumption]resumption cont
	[exec/runtime:syntax-resuming]resuming [exec/runtime:syntax-continst]continst

	Function Calls
	Invocation of function reference ([exec/runtime:syntax-ref]ref.func a)
	Returning from a function
	Host Functions

	Variable Instructions
	[syntax/instructions:syntax-instr-variable]local.get x
	[syntax/instructions:syntax-instr-variable]local.set x
	[syntax/instructions:syntax-instr-variable]local.tee x
	[syntax/instructions:syntax-instr-variable]global.get x
	[syntax/instructions:syntax-instr-variable]global.set x

	Table Instructions
	[syntax/instructions:syntax-instr-table]table.get x
	[syntax/instructions:syntax-instr-table]table.set x
	[syntax/instructions:syntax-instr-table]table.size x
	[syntax/instructions:syntax-instr-table]table.grow x
	[syntax/instructions:syntax-instr-table]table.fill x
	[syntax/instructions:syntax-instr-table]table.copy x1 x2
	[syntax/instructions:syntax-instr-table]table.init x y
	[syntax/instructions:syntax-instr-table]elem.drop x

	Memory Instructions
	nt.[syntax/instructions:syntax-instr-memory]load[syntax/instructions:syntax-loadop]loadop? x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]loadM[syntax/instructions:syntax-shape]xK_[syntax/instructions:syntax-sx]sx x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-instr-memory]splat x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-instr-memory]zero x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-instr-memory]lane x ao j
	nt.[syntax/instructions:syntax-instr-memory]store[syntax/instructions:syntax-storeop]storeop? x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]storeN_[syntax/instructions:syntax-instr-memory]lane x ao j
	[syntax/instructions:syntax-instr-memory]memory.size x
	[syntax/instructions:syntax-instr-memory]memory.grow x
	[syntax/instructions:syntax-instr-memory]memory.fill x
	[syntax/instructions:syntax-instr-memory]memory.copy x1 x2
	[syntax/instructions:syntax-instr-memory]memory.init x y
	[syntax/instructions:syntax-instr-memory]data.drop x

	Reference Instructions
	[syntax/instructions:syntax-instr-ref]ref.null x
	[syntax/instructions:syntax-instr-ref]ref.func x
	[syntax/instructions:syntax-instr-ref]ref.is_null
	[syntax/instructions:syntax-instr-ref]ref.as_non_null
	[syntax/instructions:syntax-instr-ref]ref.eq
	[syntax/instructions:syntax-instr-ref]ref.test rt
	[syntax/instructions:syntax-instr-ref]ref.cast rt
	[syntax/instructions:syntax-instr-i31]ref.i31
	[syntax/instructions:syntax-instr-i31]i31.get_[syntax/instructions:syntax-sx]sx
	[syntax/instructions:syntax-instr-struct]struct.new x
	[syntax/instructions:syntax-instr-struct]struct.new_default x
	[syntax/instructions:syntax-instr-struct]struct.get_[syntax/instructions:syntax-sx]sx? x i
	[syntax/instructions:syntax-instr-struct]struct.set x i
	[syntax/instructions:syntax-instr-array]array.new x
	[syntax/instructions:syntax-instr-array]array.new_default x
	[syntax/instructions:syntax-instr-array]array.new_fixed x n
	[syntax/instructions:syntax-instr-array]array.new_data x y
	[syntax/instructions:syntax-instr-array]array.new_elem x y
	[syntax/instructions:syntax-instr-array]array.get_[syntax/instructions:syntax-sx]sx? x
	[syntax/instructions:syntax-instr-array]array.set x
	[syntax/instructions:syntax-instr-array]array.len
	[syntax/instructions:syntax-instr-array]array.fill x
	[syntax/instructions:syntax-instr-array]array.copy x1 x2
	[syntax/instructions:syntax-instr-array]array.init_data x y
	[syntax/instructions:syntax-instr-array]array.init_elem x y
	[syntax/instructions:syntax-instr-extern]any.convert_extern
	[syntax/instructions:syntax-instr-extern]extern.convert_any

	Numeric Instructions
	nt.[syntax/instructions:syntax-instr-numeric]const c
	nt . [syntax/instructions:syntax-unop]unop
	nt . [syntax/instructions:syntax-binop]binop
	nt . [syntax/instructions:syntax-testop]testop
	nt . [syntax/instructions:syntax-relop]relop
	nt2 . [syntax/instructions:syntax-cvtop]cvtop_nt1

	Vector Instructions
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-vec]const c
	[syntax/types:syntax-vectype]v128 . [syntax/instructions:syntax-vvunop]vvunop
	[syntax/types:syntax-vectype]v128 . [syntax/instructions:syntax-vvbinop]vvbinop
	[syntax/types:syntax-vectype]v128 . [syntax/instructions:syntax-vvternop]vvternop
	[syntax/types:syntax-vectype]v128 . [syntax/instructions:syntax-instr-vec]any_true
	sh . [syntax/instructions:syntax-vunop]vunop
	sh . [syntax/instructions:syntax-vbinop]vbinop
	sh . [syntax/instructions:syntax-vternop]vternop
	sh . [syntax/instructions:syntax-vrelop]vtestop
	sh . [syntax/instructions:syntax-vrelop]vrelop
	sh . [syntax/instructions:syntax-vshiftop]vshiftop
	sh.[syntax/instructions:syntax-instr-vec]bitmask
	sh . swizzlop
	sh.[syntax/instructions:syntax-instr-vec]shuffle i
	[syntax/types:syntax-numtype]i[syntax/types:syntax-numtype]N[syntax/instructions:syntax-shape]xM.[syntax/instructions:syntax-instr-vec]splat
	[syntax/instructions:syntax-lanetype]lanetype[syntax/instructions:syntax-shape]xM.[syntax/instructions:syntax-instr-vec]extract_lane_[syntax/instructions:syntax-sx]sx'? i
	[syntax/types:syntax-numtype]i[syntax/types:syntax-numtype]N[syntax/instructions:syntax-shape]xM.[syntax/instructions:syntax-instr-vec]replace_lane i
	sh2 . [syntax/instructions:syntax-vextunop]vextunop_sh1
	sh2 . [syntax/instructions:syntax-vextbinop]vextbinop_sh1
	sh2 . [syntax/instructions:syntax-vextternop]vextternop_sh1
	sh2.[syntax/instructions:syntax-instr-vec]narrow_sh1_[syntax/instructions:syntax-sx]sx
	sh2 . [syntax/instructions:syntax-vcvtop]vcvtop_sh1

	Expressions
	eval_expr [syntax/instructions:syntax-instr]instr

	Modules
	Allocation
	Tags
	[exec/modules:alloc-tag]alloctag(s, [syntax/types:syntax-tagtype]tagtype)
	Globals
	[exec/modules:alloc-global]allocglobal(s, [syntax/types:syntax-globaltype]globaltype, [exec/runtime:syntax-val]val)
	Memories
	[exec/modules:alloc-mem]allocmem(s, at [i [syntax/types:syntax-limits].. j] [syntax/types:syntax-memtype]page)
	Tables
	[exec/modules:alloc-table]alloctable(s, at [i [syntax/types:syntax-limits].. j] rt, [exec/runtime:syntax-ref]ref)
	Functions
	[exec/modules:alloc-func]allocfunc(s, [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-funcinst]code, [exec/runtime:syntax-moduleinst]moduleinst)
	Data segments
	[exec/modules:alloc-data]allocdata(s, [valid/modules:valid-data]ok, [syntax/values:syntax-byte]byte)
	Element segments
	[exec/modules:alloc-elem]allocelem(s, [syntax/types:syntax-elemtype]elemtype, [exec/runtime:syntax-ref]ref)
	Growing memories
	[exec/modules:grow-mem]growmem([exec/runtime:syntax-meminst]meminst, n)
	Growing tables
	[exec/modules:grow-table]growtable([exec/runtime:syntax-tableinst]tableinst, n, r)
	Modules
	[exec/modules:alloc-module]allocmodule(s, [syntax/modules:syntax-module]module, [exec/runtime:syntax-externaddr]externaddr, [exec/runtime:syntax-val]valg, [exec/runtime:syntax-ref]reft, [exec/runtime:syntax-ref]refe)
	[exec/modules:alloc-type]alloctype([syntax/types:syntax-rectype]type'')
	[exec/modules:alloc-export]allocexport([exec/runtime:syntax-moduleinst]moduleinst, [syntax/modules:syntax-export]export [syntax/values:syntax-name]name [syntax/modules:syntax-externidx]externidx)

	Instantiation
	[exec/modules:exec-instantiation]instantiate(s, [syntax/modules:syntax-module]module, [exec/runtime:syntax-externaddr]externaddr)
	[exec/modules:eval-globals]evalglobal(z, [syntax/types:syntax-globaltype]globaltype, [syntax/instructions:syntax-expr]expr'')
	[exec/modules:aux-rundata]rundatax([syntax/modules:syntax-data]data bn [syntax/modules:syntax-datamode]datamode)
	[exec/modules:aux-runelem]runelemx([syntax/modules:syntax-elem]elem rt en [syntax/modules:syntax-elemmode]elemmode)

	Invocation
	[exec/modules:exec-invocation]invoke(s, [exec/runtime:syntax-funcaddr]funcaddr, [exec/runtime:syntax-val]val)

	Binary Format
	Conventions
	Grammar
	Auxiliary Notation
	Lists

	Values
	Bytes
	Integers
	Floating-Point
	Names

	Types
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Value Types
	Result Types
	Composite Types
	Recursive Types
	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	External Types

	Instructions
	Parametric Instructions
	Control Instructions
	Variable Instructions
	Table Instructions
	Memory Instructions
	Reference Instructions
	Numeric Instructions
	Vector Instructions
	Expressions

	Modules
	Indices
	Sections
	Custom Section
	Type Section
	Import Section
	Function Section
	Table Section
	Memory Section
	Global Section
	Export Section
	Start Section
	Element Section
	Code Section
	Data Section
	Data Count Section
	Tag Section
	Modules

	Text Format
	Conventions
	Grammar
	Abbreviations
	Contexts
	Conventions

	Lists

	Lexical Format
	Characters
	Tokens
	White Space
	Comments
	Annotations

	Values
	Integers
	Floating-Point
	Strings
	Names
	Identifiers
	Conventions

	Types
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Abbreviations

	Value Types
	Composite Types
	Abbreviations

	Recursive Types
	Abbreviations

	Address Types
	Abbreviations

	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	External Types
	Type Uses
	Abbreviations

	Instructions
	Labels
	Parametric Instructions
	Control Instructions
	Abbreviations

	Variable Instructions
	Table Instructions
	Abbreviations

	Memory Instructions
	Abbreviations

	Reference Instructions
	Numeric Instructions
	Vector Instructions
	Folded Instructions
	Expressions

	Modules
	Indices
	Tags
	Abbreviations

	Globals
	Abbreviations

	Memories
	Abbreviations

	Tables
	Abbreviations

	Functions
	Abbreviations

	Data Segments
	Abbreviations

	Element Segments
	Abbreviations

	Start Function
	Imports
	Abbreviations

	Exports
	Abbreviations

	Modules
	Abbreviations

	Appendix
	Embedding
	Types
	Booleans
	Exceptions and Errors
	Pre- and Post-Conditions
	Store
	store_init() : [exec/runtime:syntax-store]store

	Modules
	module_decode([syntax/values:syntax-byte]byte) : [syntax/modules:syntax-module]module | [appendix/embedding:embed-error]error
	module_parse([syntax/values:syntax-name]char) : [syntax/modules:syntax-module]module | [appendix/embedding:embed-error]error
	module_validate([syntax/modules:syntax-module]module) : [appendix/embedding:embed-error]error?
	module_instantiate([exec/runtime:syntax-store]store, [syntax/modules:syntax-module]module, [exec/runtime:syntax-externaddr]externaddr) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-moduleinst]moduleinst | [appendix/embedding:embed-error]exception | [appendix/embedding:embed-error]error)
	module_imports([syntax/modules:syntax-module]module) : ([syntax/values:syntax-name]name, [syntax/values:syntax-name]name, [syntax/types:syntax-externtype]externtype)
	module_exports([syntax/modules:syntax-module]module) : ([syntax/values:syntax-name]name, [syntax/types:syntax-externtype]externtype)

	Module Instances
	instance_export([exec/runtime:syntax-moduleinst]moduleinst, [syntax/values:syntax-name]name) : [exec/runtime:syntax-externaddr]externaddr | [appendix/embedding:embed-error]error

	Functions
	func_alloc([exec/runtime:syntax-store]store, [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-hostfunc]hostfunc) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr)
	func_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr) : [valid/conventions:syntax-deftype]deftype
	func_invoke([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr, [exec/runtime:syntax-val]val) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-val]val | [appendix/embedding:embed-error]exception | [appendix/embedding:embed-error]error)

	Tables
	table_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-tabletype]tabletype, [exec/runtime:syntax-ref]ref) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr)
	table_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr) : [syntax/types:syntax-tabletype]tabletype
	table_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, i:[syntax/values:syntax-int]u64) : [exec/runtime:syntax-ref]ref | [appendix/embedding:embed-error]error
	table_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, i:[syntax/values:syntax-int]u64, [exec/runtime:syntax-ref]ref) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error
	table_size([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr) : [syntax/values:syntax-int]u64
	table_grow([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, n:[syntax/values:syntax-int]u64, [exec/runtime:syntax-ref]ref) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	Memories
	mem_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-memtype]memtype) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr)
	mem_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr) : [syntax/types:syntax-memtype]memtype
	mem_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, i:[syntax/values:syntax-int]u64) : [syntax/values:syntax-byte]byte | [appendix/embedding:embed-error]error
	mem_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, i:[syntax/values:syntax-int]u64, [syntax/values:syntax-byte]byte) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error
	mem_size([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr) : [syntax/values:syntax-int]u64
	mem_grow([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, n:[syntax/values:syntax-int]u64) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	Tags
	tag_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-tagtype]tagtype) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-tagaddr]tagaddr)
	tag_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-tagaddr]tagaddr) : [syntax/types:syntax-tagtype]tagtype

	Exceptions
	exn_alloc([exec/runtime:syntax-store]store, [exec/runtime:syntax-tagaddr]tagaddr, [exec/runtime:syntax-val]val) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-exnaddr]exnaddr)
	exn_tag([exec/runtime:syntax-store]store, [exec/runtime:syntax-exnaddr]exnaddr) : [exec/runtime:syntax-tagaddr]tagaddr
	exn_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-exnaddr]exnaddr) : [exec/runtime:syntax-val]val

	Globals
	global_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-globaltype]globaltype, [exec/runtime:syntax-val]val) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr)
	global_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr) : [syntax/types:syntax-globaltype]globaltype
	global_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr) : [exec/runtime:syntax-val]val
	global_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr, [exec/runtime:syntax-val]val) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	Values
	ref_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-ref]ref) : [syntax/types:syntax-reftype]reftype
	val_default([syntax/types:syntax-valtype]valtype) : [exec/runtime:syntax-val]val

	Matching
	match_valtype([syntax/types:syntax-valtype]valtype1, [syntax/types:syntax-valtype]valtype2) : [appendix/embedding:embed-bool]bool
	match_externtype([syntax/types:syntax-externtype]externtype1, [syntax/types:syntax-externtype]externtype2) : [appendix/embedding:embed-bool]bool

	Profiles
	Conventions
	Syntax Annotations
	Semantics Annotations
	Properties

	Defined Profiles
	Full Profile (FUL)
	Deterministic Profile (DET)

	Implementation Limitations
	Syntactic Limits
	Structure
	Binary Format
	Text Format

	Validation
	Execution

	Type Soundness
	Contexts
	Types
	Heap Type [valid/conventions:syntax-heaptype-ext]bot
	Heap Type [syntax/types:syntax-heaptype]rec i
	Value Type [valid/conventions:syntax-valtype-ext]bot
	Recursive Types [syntax/types:syntax-rectype]rec [syntax/types:syntax-subtype]subtype
	Sub types [syntax/types:syntax-subtype]sub [syntax/types:syntax-subtype]final? ht [syntax/types:syntax-comptype]comptype
	Defined types [syntax/types:syntax-rectype]rectype.i

	Subtyping
	Results
	Results [exec/runtime:syntax-val]val
	Results ([exec/runtime:syntax-ref]ref.exn a) [syntax/instructions:syntax-instr-control]throw_ref
	Results [exec/runtime:syntax-trap]trap

	Store Validity
	Store S
	Tag Instances { [exec/runtime:syntax-taginst]type [syntax/types:syntax-tagtype]tagtype }
	Global Instances { [exec/runtime:syntax-globalinst]type [syntax/types:syntax-mut]mut t, [exec/runtime:syntax-globalinst]value [exec/runtime:syntax-val]val }
	Memory Instances { [exec/runtime:syntax-meminst]type ([syntax/types:syntax-addrtype]addrtype [syntax/types:syntax-limits]limits), [exec/runtime:syntax-meminst]bytes b}
	Table Instances { [exec/runtime:syntax-tableinst]type ([syntax/types:syntax-addrtype]addrtype [syntax/types:syntax-limits]limits t), [exec/runtime:syntax-tableinst]elem [exec/runtime:syntax-ref]ref}
	Function Instances {[exec/runtime:syntax-funcinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-funcinst]module [exec/runtime:syntax-moduleinst]moduleinst, [exec/runtime:syntax-funcinst]code [syntax/modules:syntax-func]func}
	Host Function Instances {[exec/runtime:syntax-funcinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-funcinst]hostfunc hf}
	Data Instances { [exec/runtime:syntax-datainst]bytes b}
	Element Instances { [exec/runtime:syntax-eleminst]type t, [exec/runtime:syntax-eleminst]elem [exec/runtime:syntax-ref]ref}
	Structure Instances { [exec/runtime:syntax-structinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-structinst]fields [exec/runtime:syntax-fieldval]fieldval}
	Array Instances { [exec/runtime:syntax-arrayinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-arrayinst]fields [exec/runtime:syntax-fieldval]fieldval}
	Field Values [exec/runtime:syntax-fieldval]fieldval
	Exception Instances { [exec/runtime:syntax-exninst]tag a, [exec/runtime:syntax-exninst]fields [exec/runtime:syntax-val]val}
	Export Instances { [exec/runtime:syntax-exportinst]name [syntax/values:syntax-name]name, [exec/runtime:syntax-exportinst]addr [exec/runtime:syntax-externaddr]externaddr }
	Module Instances [exec/runtime:syntax-moduleinst]moduleinst

	Configuration Validity
	Configurations S;T
	Threads F;[syntax/instructions:syntax-instr]instr
	Frames {[exec/runtime:syntax-frame]locals [exec/runtime:syntax-val]val, [exec/runtime:syntax-frame]module [exec/runtime:syntax-moduleinst]moduleinst}

	Administrative Instructions
	[exec/runtime:syntax-trap]trap
	[exec/runtime:syntax-val]val
	[exec/instructions:exec-invoke]invoke [exec/runtime:syntax-funcaddr]funcaddr
	[exec/runtime:syntax-label]labeln{[syntax/instructions:syntax-instr]instr0} [syntax/instructions:syntax-instr]instr
	[exec/runtime:syntax-frame]framen{F} [syntax/instructions:syntax-instr]instr
	[exec/runtime:syntax-handler]handlern{[syntax/instructions:syntax-catch]catch} [syntax/instructions:syntax-instr]instr

	Store Extension
	Store S
	Tag Instance [exec/runtime:syntax-taginst]taginst
	Global Instance [exec/runtime:syntax-globalinst]globalinst
	Memory Instance [exec/runtime:syntax-meminst]meminst
	Table Instance [exec/runtime:syntax-tableinst]tableinst
	Function Instance [exec/runtime:syntax-funcinst]funcinst
	Data Instance [exec/runtime:syntax-datainst]datainst
	Element Instance [exec/runtime:syntax-eleminst]eleminst
	Structure Instance [exec/runtime:syntax-structinst]structinst
	Array Instance [exec/runtime:syntax-arrayinst]arrayinst
	Exception Instance [exec/runtime:syntax-exninst]exninst

	Theorems

	Type System Properties
	Principal Types
	Type Lattice
	Compositionality

	Validation Algorithm
	Data Structures
	Types
	Context
	Stacks

	Validation of Opcode Sequences

	Custom Sections and Annotations
	Name Section
	Subsections
	Name Maps
	Module Names
	Function Names
	Local Names
	Type Names
	Field Names
	Tag Names

	Name Annotations
	Module Names
	Function Names
	Parameter Names
	Local Names
	Type Names
	Field Names
	Tag Names

	Custom Annotations

	Change History
	Release 2.0
	Sign Extension Instructions
	Non-trapping Float-to-Int Conversions
	Multiple Values
	Reference Types
	Table Instructions
	Multiple Tables
	Bulk Memory and Table Instructions
	Vector Instructions

	Release 3.0
	Extended Constant Expressions
	Tail Calls
	Exception Handling
	Multiple Memories
	64-bit Address Space
	Typeful References
	Garbage Collection
	Relaxed Vector Instructions
	Profiles
	Custom Annotations

	Index of Types
	Index of Instructions
	Index of Semantic Rules
	Well-formedness of Types
	Typing of Static Constructs
	Typing of Runtime Constructs
	Constantness
	Matching
	Store Extension
	Execution

	Index

