
WebAssembly Specification
Release 3.0 + stack-switching (Draft 2025-08-11)

WebAssembly Community Group
Andreas Rossberg (editor)

Aug 11, 2025

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Overview . 3

2 Structure 5
2.1 Conventions . 5
2.2 Values . 7
2.3 Types . 9
2.4 Instructions . 14
2.5 Modules . 23

3 Validation 29
3.1 Conventions . 29
3.2 Types . 34
3.3 Matching . 39
3.4 Instructions . 47
3.5 Modules . 74

4 Execution 83
4.1 Conventions . 83
4.2 Runtime Structure . 85
4.3 Numerics . 94
4.4 Types . 121
4.5 Values . 122
4.6 Instructions . 125
4.7 Modules . 180

5 Binary Format 193
5.1 Conventions . 193
5.2 Values . 195
5.3 Types . 196
5.4 Instructions . 199
5.5 Modules . 214

6 Text Format 221
6.1 Conventions . 221
6.2 Lexical Format . 223
6.3 Values . 225
6.4 Types . 227
6.5 Instructions . 231
6.6 Modules . 246

i

7 Appendix 253
7.1 Embedding . 253
7.2 Profiles . 261
7.3 Implementation Limitations . 263
7.4 Type Soundness . 266
7.5 Type System Properties . 280
7.6 Validation Algorithm . 282
7.7 Custom Sections and Annotations . 290
7.8 Change History . 295
7.9 Index of Types . 306
7.10 Index of Instructions . 306
7.11 Index of Semantic Rules . 318

Index 321

ii

CHAPTER 1

Introduction

1.1 Introduction
WebAssembly (abbreviated Wasm2) is a safe, portable, low-level code format designed for efficient execution and
compact representation. Its main goal is to enable high performance applications on the Web, but it does not make
any Web-specific assumptions or provide Web-specific features, so it can be employed in other environments as
well.

WebAssembly is an open standard developed by a W3C Community Group1.

This document describes version 3.0 + stack-switching (Draft 2025-08-11) of the core WebAssembly standard. It
is intended that it will be superseded by new incremental releases with additional features in the future.

1.1.1 Design Goals
The design goals of WebAssembly are the following:

• Fast, safe, and portable semantics:

– Fast: executes with near native code performance, taking advantage of capabilities common to all
contemporary hardware.

– Safe: code is validated and executes in a memory-safe3, sandboxed environment preventing data cor-
ruption or security breaches.

– Well-defined: fully and precisely defines valid programs and their behavior in a way that is easy to
reason about informally and formally.

– Hardware-independent: can be compiled on all modern architectures, desktop or mobile devices and
embedded systems alike.

– Language-independent: does not privilege any particular language, programming model, or object
model.

– Platform-independent: can be embedded in browsers, run as a stand-alone VM, or integrated in other
environments.

– Open: programs can interoperate with their environment in a simple and universal manner.
2 A contraction of “WebAssembly”, not an acronym, hence not using all-caps.
1 https://www.w3.org/community/webassembly/
3 No program can break WebAssembly’s memory model. Of course, it cannot guarantee that an unsafe language compiling to WebAssembly

does not corrupt its own memory layout, e.g. inside WebAssembly’s linear memory.

1

https://www.w3.org/community/webassembly/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• Efficient and portable representation:

– Compact: has a binary format that is fast to transmit by being smaller than typical text or native code
formats.

– Modular: programs can be split up in smaller parts that can be transmitted, cached, and consumed
separately.

– Efficient: can be decoded, validated, and compiled in a fast single pass, equally with either just-in-time
(JIT) or ahead-of-time (AOT) compilation.

– Streamable: allows decoding, validation, and compilation to begin as soon as possible, before all data
has been seen.

– Parallelizable: allows decoding, validation, and compilation to be split into many independent parallel
tasks.

– Portable: makes no architectural assumptions that are not broadly supported across modern hardware.

WebAssembly code is also intended to be easy to inspect and debug, especially in environments like web browsers,
but such features are beyond the scope of this specification.

1.1.2 Scope
At its core, WebAssembly is a virtual instruction set architecture (virtual ISA). As such, it has many use cases
and can be embedded in many different environments. To encompass their variety and enable maximum reuse, the
WebAssembly specification is split and layered into several documents.

This document is concerned with the core ISA layer of WebAssembly. It defines the instruction set, binary en-
coding, validation, and execution semantics, as well as a textual representation. It does not, however, define how
WebAssembly programs can interact with a specific environment they execute in, nor how they are invoked from
such an environment.

Instead, this specification is complemented by additional documents defining interfaces to specific embedding
environments such as the Web. These will each define a WebAssembly application programming interface (API)
suitable for a given environment.

1.1.3 Security Considerations
WebAssembly provides no ambient access to the computing environment in which code is executed. Any inter-
action with the environment, such as I/O, access to resources, or operating system calls, can only be performed
by invoking functions provided by the embedder and imported into a WebAssembly module. An embedder can
establish security policies suitable for a respective environment by controlling or limiting which functional capa-
bilities it makes available for import. Such considerations are an embedder’s responsibility and the subject of API
definitions for a specific environment.

Because WebAssembly is designed to be translated into machine code running directly on the host’s hardware, it
is potentially vulnerable to side channel attacks on the hardware level. In environments where this is a concern, an
embedder may have to put suitable mitigations into place to isolate WebAssembly computations.

1.1.4 Dependencies
WebAssembly depends on two existing standards:

• IEEE 7544, for the representation of floating-point data and the semantics of respective numeric operations.

• Unicode5, for the representation of import/export names and the text format.

However, to make this specification self-contained, relevant aspects of the aforementioned standards are defined
and formalized as part of this specification, such as the binary representation and rounding of floating-point values,
and the value range and UTF-8 encoding of Unicode characters.

4 https://ieeexplore.ieee.org/document/8766229
5 https://www.unicode.org/versions/latest/

2 Chapter 1. Introduction

https://ieeexplore.ieee.org/document/8766229
https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The aforementioned standards are the authoritative source of all respective definitions. Formalizations given in
this specification are intended to match these definitions. Any discrepancy in the syntax or semantics described
is to be considered an error.

1.2 Overview

1.2.1 Concepts
WebAssembly encodes a low-level, assembly-like programming language. This language is structured around the
following concepts.

Values
WebAssembly provides only four basic number types. These are integers and IEEE 7546 numbers, each in
32 and 64 bit width. 32-bit integers also serve as Booleans and as memory addresses. The usual operations
on these types are available, including the full matrix of conversions between them. There is no distinction
between signed and unsigned integer types. Instead, integers are interpreted by respective operations as
either unsigned or signed in two’s complement representation.

In addition to these basic number types, there is a single 128 bit wide vector type representing different types
of packed data. The supported representations are four 32-bit, or two 64-bit IEEE 7547 numbers, or different
widths of packed integer values, specifically two 64-bit integers, four 32-bit integers, eight 16-bit integers,
or sixteen 8-bit integers.

Finally, values can consist of opaque references that represent pointers towards different sorts of entities.
Unlike with other types, their size or representation is not observable.

Instructions
The computational model of WebAssembly is based on a stack machine. Code consists of sequences of
instructions that are executed in order. Instructions manipulate values on an implicit operand stack8 and
fall into two main categories. Simple instructions perform basic operations on data. They pop arguments
from the operand stack and push results back to it. Control instructions alter control flow. Control flow
is structured, meaning it is expressed with well-nested constructs such as blocks, loops, and conditionals.
Branches can only target such constructs.

Traps
Under some conditions, certain instructions may produce a trap, which immediately aborts execution. Traps
cannot be handled by WebAssembly code, but are reported to the outside environment, where they typically
can be caught.

Functions
Code is organized into separate functions. Each function takes a sequence of values as parameters and returns
a sequence of values as results. Functions can call each other, including recursively, resulting in an implicit
call stack that cannot be accessed directly. Functions may also declare mutable local variables that are usable
as virtual registers.

Tables
A table is an array of opaque values of a particular reference type. It allows programs to select such values
indirectly through a dynamic index operand. Thereby, for example, a program can call functions indirectly
through a dynamic index into a table. This allows emulating function pointers by way of table indices.

Linear Memory
A linear memory is a contiguous, mutable array of raw bytes. Such a memory is created with an initial size
but can be grown dynamically. A program can load and store values from/to a linear memory at any byte
address (including unaligned). Integer loads and stores can specify a storage size which is smaller than the

6 https://ieeexplore.ieee.org/document/8766229
7 https://ieeexplore.ieee.org/document/8766229
8 In practice, implementations need not maintain an actual operand stack. Instead, the stack can be viewed as a set of anonymous registers

that are implicitly referenced by instructions. The type system ensures that the stack height, and thus any referenced register, is always known
statically.

1.2. Overview 3

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

size of the respective value type. A trap occurs if an access is not within the bounds of the current memory
size.

Modules
A WebAssembly binary takes the form of a module that contains definitions for functions, tables, and linear
memories, as well as mutable or immutable global variables. Definitions can also be imported, specifying a
module/name pair and a suitable type. Each definition can optionally be exported under one or more names.
In addition to definitions, modules can define initialization data for their memories or tables that takes the
form of segments copied to given offsets. They can also define a start function that is automatically executed.

Embedder
A WebAssembly implementation will typically be embedded into a host environment. This environment
defines how loading of modules is initiated, how imports are provided (including host-side definitions), and
how exports can be accessed. However, the details of any particular embedding are beyond the scope of this
specification, and will instead be provided by complementary, environment-specific API definitions.

1.2.2 Semantic Phases
Conceptually, the semantics of WebAssembly is divided into three phases. For each part of the language, the
specification specifies each of them.

Decoding
WebAssembly modules are distributed in a binary format. Decoding processes that format and converts it
into an internal representation of a module. In this specification, this representation is modelled by abstract
syntax, but a real implementation could compile directly to machine code instead.

Validation
A decoded module has to be valid. Validation checks a number of well-formedness conditions to guaran-
tee that the module is meaningful and safe. In particular, it performs type checking of functions and the
instruction sequences in their bodies, ensuring for example that the operand stack is used consistently.

Execution
Finally, a valid module can be executed. Execution can be further divided into two phases:

Instantiation. A module instance is the dynamic representation of a module, complete with its own state
and execution stack. Instantiation executes the module body itself, given definitions for all its imports. It
initializes globals, memories and tables and invokes the module’s start function if defined. It returns the
instances of the module’s exports.

Invocation. Once instantiated, further WebAssembly computations can be initiated by invoking an exported
function on a module instance. Given the required arguments, that executes the respective function and
returns its results.

Instantiation and invocation are operations within the embedding environment.

4 Chapter 1. Introduction

CHAPTER 2

Structure

2.1 Conventions
WebAssembly is a programming language that has multiple concrete representations (its binary format and the text
format). Both map to a common structure. For conciseness, this structure is described in the form of an abstract
syntax. All parts of this specification are defined in terms of this abstract syntax.

2.1.1 Grammar Notation
The following conventions are adopted in defining grammar rules for abstract syntax.

• Terminal symbols (atoms) are written in sans-serif font or in symbolic form: i32, nop, →, [,].

• Nonterminal symbols are written in italic font: valtype, instr .

• 𝐴𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝐴.

• 𝐴* is a possibly empty sequence of iterations of 𝐴. (This is a shorthand for 𝐴𝑛 used where 𝑛 is not relevant.)

• 𝐴+ is a non-empty sequence of iterations of 𝐴. (This is a shorthand for 𝐴𝑛 where 𝑛 ≥ 1.)

• 𝐴? is an optional occurrence of 𝐴. (This is a shorthand for 𝐴𝑛 where 𝑛 ≤ 1.)

• Productions are written sym ::= 𝐴1 | . . . | 𝐴𝑛.

• Large productions may be split into multiple definitions, indicated by ending the first one with explicit el-
lipses, sym ::= 𝐴1 | . . ., and starting continuations with ellipses, sym ::= . . . | 𝐴2.

• Some productions are augmented with side conditions, “if condition”, that provide a shorthand for a com-
binatorial expansion of the production into many separate cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production, then all those
occurrences must have the same instantiation. (This is a shorthand for a side condition requiring multiple
different variables to be equal.)

2.1.2 Auxiliary Notation
When dealing with syntactic constructs the following notation is also used:

• 𝜖 denotes the empty sequence.

• |𝑠| denotes the length of a sequence 𝑠.

• 𝑠[𝑖] denotes the 𝑖-th element of a sequence 𝑠, starting from 0.

5

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• 𝑠[𝑖 : 𝑛] denotes the sub-sequence 𝑠[𝑖] . . . 𝑠[𝑖+ 𝑛− 1] of a sequence 𝑠.

• 𝑠[[𝑖] = 𝐴] denotes the same sequence as 𝑠, except that the 𝑖-th element is replaced with 𝐴.

• 𝑠[[𝑖 : 𝑛] = 𝐴𝑛] denotes the same sequence as 𝑠, except that the sub-sequence 𝑠[𝑖 : 𝑛] is replaced with 𝐴𝑛.

• 𝑠1 ⊕ 𝑠2 denotes the sequence 𝑠1 concatenated with 𝑠2; this is equivalent to 𝑠1 𝑠2, but used for clarity.

•
⨁︀

𝑠* denotes the flattened sequence, formed by concatenating all sequences 𝑠𝑖 in 𝑠*.

• 𝐴 ∈ 𝑠 denotes that 𝐴 is a member of the sequence 𝑠, that is, 𝑠 is of the form 𝑠1 𝐴 𝑠2 for some sequences 𝑠1,
𝑠2.

Moreover, the following conventions are employed:

• The notation 𝑥𝑛, where 𝑥 is a non-terminal symbol, is treated as a meta variable ranging over respective
sequences of 𝑥 (similarly for 𝑥*, 𝑥+, 𝑥?).

• When given a sequence 𝑥𝑛, then the occurrences of 𝑥 in an iterated sequence (. . . 𝑥 . . .)𝑛 are assumed to
denote the individual elements of 𝑥𝑛, respectively (similarly for 𝑥*, 𝑥+, 𝑥?). This implicitly expresses a
form of mapping syntactic constructions over a sequence.

• 𝑒𝑖<𝑛 denotes the same sequence as 𝑒𝑛, but implicitly also defines 𝑖𝑛 to be the sequence of values 0 to (𝑛−1).

Note

For example, if 𝑥𝑛 is the sequence 𝑎 𝑏 𝑐, then (f(𝑥) + 1)𝑛 denotes the sequence (f(𝑎)+1) (f(𝑏)+1) (f(𝑐)+1).

The form 𝑒𝑖<𝑛 additionally gives access to an index variable inside the iteration. For example, (f(𝑥) + 𝑖)𝑖<𝑛

denotes the sequence (f(𝑎) + 0) (f(𝑏) + 1) (f(𝑐) + 2).

Productions of the following form are interpreted as records that map a fixed set of fields field𝑖 to “values” 𝐴𝑖,
respectively:

𝑟 ::= {field1 𝐴1, field2 𝐴2, . . . }

The following notation is adopted for manipulating such records:

• Where the type of a record is clear from context, empty fields with value 𝜖 are often omitted.

• 𝑟.field denotes the contents of the field component of 𝑟.

• 𝑟[.field = 𝐴] denotes the same record as 𝑟, except that the value of the field component is replaced with 𝐴.

• 𝑟[.field =⊕ 𝐴*] denotes the same record as 𝑟, except that 𝐴* is appended to the sequence value of the field
component, that is, it is short for 𝑟[.field = 𝑟.field⊕𝐴*].

• 𝑟1 ⊕ 𝑟2 denotes the composition of two identically shaped records by concatenating each field of sequences
point-wise:

{field1 𝐴*
1, field2 𝐴

*
2, . . .} ⊕ {field1 𝐵*

1 , field2 𝐵
*
2 , . . .} = {field1 (𝐴*

1 ⊕𝐵*
1), field2 (𝐴

*
2 ⊕𝐵*

2), . . .}

•
⨁︀

𝑟* denotes the composition of a sequence of records, respectively; if the sequence is empty, then all fields
of the resulting record are empty.

The update notation for sequences and records generalizes recursively to nested components accessed by “paths”
pth ::= ([𝑖] | .field)+:

• 𝑠[[𝑖]pth = 𝐴] is short for 𝑠[[𝑖] = 𝑠[𝑖][pth = 𝐴]],

• 𝑟[.field pth = 𝐴] is short for 𝑟[.field = 𝑟.field[pth = 𝐴]].

6 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.1.3 Lists
Lists are bounded sequences of the form 𝐴𝑛 (or 𝐴*), where the 𝐴 can either be values or complex constructions.
A list can have at most 232 − 1 elements.

list(𝑋) ::= 𝑋* if |𝑋*| < 232

2.2 Values
WebAssembly programs operate on primitive numeric values. Moreover, in the definition of programs, immutable
sequences of values occur to represent more complex data, such as text strings or other vectors.

2.2.1 Bytes
The simplest form of value are raw uninterpreted bytes. In the abstract syntax they are represented as hexadecimal
literals.

byte ::= 0x00 | . . . | 0xFF

Conventions

• The meta variable 𝑏 ranges over bytes.

• Bytes are sometimes interpreted as natural numbers 𝑛 < 256.

2.2.2 Integers
Different classes of integers with different value ranges are distinguished by their bit width 𝑁 and by whether they
are unsigned or signed.

u𝑁 ::= 0 | . . . | 2𝑁 − 1
s𝑁 ::= −2𝑁−1 | . . . | −1 | 0 | +1 | . . . | +2𝑁−1 − 1
i𝑁 ::= u𝑁

The class i defines uninterpreted integers, whose signedness interpretation can vary depending on context. In the
abstract syntax, they are represented as unsigned values. However, some operations convert them to signed based
on a two’s complement interpretation.

Note

The main integer types occurring in this specification are u8 , u32 , u64 , and u128 . However, other sizes occur
as auxiliary constructions, e.g., in the definition of floating-point numbers.

Conventions

• The meta variables 𝑚, 𝑛, 𝑖, 𝑗 range over integers.

• Numbers may be denoted by simple arithmetics, as in the grammar above. In order to distinguish arithmetics
like 2𝑁 from sequences like (1)𝑁 , the latter is distinguished with parentheses.

2.2.3 Floating-Point
Floating-point data represents 32 or 64 bit values that correspond to the respective binary formats of the IEEE
7549 standard (Section 3.3).

Every value has a sign and a magnitude. Magnitudes can either be expressed as normal numbers of the form
𝑚0 . 𝑚1 𝑚2 . . . 𝑚m ·2𝑒, where 𝑒 is the exponent and 𝑚 is the significand whose most significant bit 𝑚0 is 1, or as
a subnormal number where the exponent is fixed to the smallest possible value and 𝑚0 is 0; among the subnormals

9 https://ieeexplore.ieee.org/document/8766229

2.2. Values 7

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

are positive and negative zero values. Since the significands are binary values, normals are represented in the form
(1 +𝑚 · 2−𝑀) · 2𝑒 in the abstract syntax, where 𝑀 is the bit width of 𝑚; similarly for subnormals.

Possible magnitudes also include the special values ∞ (infinity) and nan (NaN, not a number). NaN values have a
payload that describes the mantissa bits in the underlying binary representation. No distinction is made between
signalling and quiet NaNs.

f𝑁 ::= +fmag𝑁 | −fmag𝑁
fmag𝑁 ::= (1 +𝑚 · 2−𝑀) · 2𝑒 if 𝑚 < 2𝑀 ∧ 2− 2𝐸−1 ≤ 𝑒 ≤ 2𝐸−1 − 1

| (0 +𝑚 · 2−𝑀) · 2𝑒 if 𝑚 < 2𝑀 ∧ 2− 2𝐸−1 = 𝑒
| ∞
| nan(𝑚) if 1 ≤ 𝑚 < 2𝑀

where 𝑀 = signif(𝑁) and 𝐸 = expon(𝑁) with

signif(32) = 23
signif(64) = 52

expon(32) = 8
expon(64) = 11

A canonical NaN is a floating-point value ±nan(canon𝑁) where canon𝑁 is a payload whose most significant bit
is 1 while all others are 0:

canon𝑁 = 2signif(𝑁)−1

An arithmetic NaN is a floating-point value ±nan(𝑚) with 𝑚 ≥ canon𝑁 , such that the most significant bit is 1
while all others are arbitrary.

Note

In the abstract syntax, subnormals are distinguished by the leading 0 of the significand. The exponent of
subnormals has the same value as the smallest possible exponent of a normal number. Only in the binary
representation the exponent of a subnormal is encoded differently than the exponent of any normal number.

The notion of canonical NaN defined here is unrelated to the notion of canonical NaN that the IEEE 75410

standard (Section 3.5.2) defines for decimal interchange formats.

Conventions

• The meta variable 𝑧 ranges over floating-point values where clear from context.

• Where clear from context, shorthands like +1 denote floating point values like +(1 + 1 · 2−𝑀) · 20.

2.2.4 Vectors
Numeric vectors are 128-bit values that are processed by vector instructions (also known as SIMD instructions,
single instruction multiple data). They are represented in the abstract syntax using u128 . The interpretation of
lane types (integer or floating-point numbers) and lane sizes are determined by the specific instruction operating
on them.

2.2.5 Names
Names are sequences of characters, which are scalar values as defined by Unicode11 (Section 2.4).

name ::= char* if |utf8(char*)| < 232

char ::= U+00 | . . . | U+D7FF | U+E000 | . . . | U+10FFFF

Due to the limitations of the binary format, the length of a name is bounded by the length of its UTF-8 encoding.
10 https://ieeexplore.ieee.org/document/8766229
11 https://www.unicode.org/versions/latest/

8 Chapter 2. Structure

https://ieeexplore.ieee.org/document/8766229
https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Convention

• Characters (Unicode scalar values) are sometimes used interchangeably with natural numbers 𝑛 < 1114112.

2.3 Types
Various entities in WebAssembly are classified by types. Types are checked during validation, instantiation, and
possibly execution.

2.3.1 Number Types
Number types classify numeric values.

numtype ::= i32 | i64 | f32 | f64

The types i32 and i64 classify 32 and 64 bit integers, respectively. Integers are not inherently signed or unsigned,
their interpretation is determined by individual operations.

The types f32 and f64 classify 32 and 64 bit floating-point data, respectively. They correspond to the respective
binary floating-point representations, also known as single and double precision, as defined by the IEEE 75412

standard (Section 3.3).

Number types are transparent, meaning that their bit patterns can be observed. Values of number type can be stored
in memories.

Conventions

• The notation |𝑡| denotes the bit width of a number type 𝑡. That is, |i32| = |f32| = 32 and |i64| = |f64| = 64.

2.3.2 Vector Types
Vector types classify vectors of numeric values processed by vector instructions (also known as SIMD instructions,
single instruction multiple data).

vectype ::= v128

The type v128 corresponds to a 128 bit vector of packed integer or floating-point data. The packed data can be
interpreted as signed or unsigned integers, single or double precision floating-point values, or a single 128 bit type.
The interpretation is determined by individual operations.

Vector types, like number types are transparent, meaning that their bit patterns can be observed. Values of vector
type can be stored in memories.

Conventions

• The notation |𝑡| for bit width extends to vector types as well, that is, |v128| = 128.

2.3.3 Type Uses
A type use is the use site of a type index referencing a composite type defined in a module. It classifies objects of
the respective type.

typeuse ::= typeidx | . . .

The syntax of type uses is extended with additional forms for the purpose of specifying validation and execution.
12 https://ieeexplore.ieee.org/document/8766229

2.3. Types 9

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.4 Heap Types
Heap types classify objects in the runtime store. There are three disjoint hierarchies of heap types:

• function types classify functions,

• aggregate types classify dynamically allocated managed data, such as structures, arrays, or unboxed scalars,

• external types classify external references possibly owned by the embedder.

The values from the latter two hierarchies are interconvertible by ways of the extern.convert_any and
any.convert_extern instructions. That is, both type hierarchies are inhabited by an isomorphic set of values, but
may have different, incompatible representations in practice.

absheaptype ::= any | eq | i31 | struct | array | none
| func | nofunc
| exn | noexn
| extern | noextern
| cont | nocont
| . . .

heaptype ::= absheaptype | typeuse

A heap type is either abstract or concrete. A concrete heap type consists of a type use that classifies an object of
the respective type defined in a module. Abstract types are denoted by individual keywords.

The type func denotes the common supertype of all function types, regardless of their concrete definition. Dually,
the type nofunc denotes the common subtype of all function types, regardless of their concrete definition. This
type has no values.

The type exn denotes the common supertype of all exception references. This type has no concrete subtypes.
Dually, the type noexn denotes the common subtype of all forms of exception references. This type has no values.

The type cont denotes the common supertype of all continuation references, regardless of their concrete definition.
Dually, the type nocont denotes the common subtype of all continuation references. This type has no values.

The type extern denotes the common supertype of all external references received through the embedder. This
type has no concrete subtypes. Dually, the type noextern denotes the common subtype of all forms of external
references. This type has no values.

The type any denotes the common supertype of all aggregate types, as well as possibly abstract values produced by
internalizing an external reference of type extern. Dually, the type none denotes the common subtype of all forms
of aggregate types. This type has no values.

The type eq is a subtype of any that includes all types for which references can be compared, i.e., aggregate values
and i31.

The types struct and array denote the common supertypes of all structure and array aggregates, respectively.

The type i31 denotes unboxed scalars, that is, integers injected into references. Their observable value range is
limited to 31 bits.

Note

Values of type i31 are not actually allocated in the store, but represented in a way that allows them to be mixed
with actual references into the store without ambiguity. Engines need to perform some form of pointer tagging
to achieve this, which is why one bit is reserved. Since this type is to be reliably unboxed on all hardware
platforms supported by WebAssembly, it cannot be wider than 32 bits minus the tag bit.

Although the types none, nofunc, noexn, and noextern are not inhabited by any values, they can be used to
form the types of all null references in their respective hierarchy. For example, (ref null nofunc) is the generic
type of a null reference compatible with all function reference types.

The syntax of abstract heap types is extended with additional forms for the purpose of specifying validation and
execution.

10 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.5 Reference Types
Reference types classify values that are first-class references to objects in the runtime store.

reftype ::= ref null? heaptype

A reference type is characterised by the heap type it points to.

In addition, a reference type of the form ref null ht is nullable, meaning that it can either be a proper reference to
ht or null. Other references are non-null.

Reference types are opaque, meaning that neither their size nor their bit pattern can be observed. Values of reference
type can be stored in tables but not in memories.

Conventions

• The reference type anyref is an abbreviation for (ref null any).

• The reference type eqref is an abbreviation for (ref null eq).

• The reference type i31ref is an abbreviation for (ref null i31).

• The reference type structref is an abbreviation for (ref null struct).

• The reference type arrayref is an abbreviation for (ref null array).

• The reference type funcref is an abbreviation for (ref null func).

• The reference type exnref is an abbreviation for (ref null exn).

• The reference type contref is an abbreviation for (ref null cont).

• The reference type externref is an abbreviation for (ref null extern).

• The reference type nullref is an abbreviation for (ref null none).

• The reference type nullfuncref is an abbreviation for (ref null nofunc).

• The reference type nullexnref is an abbreviation for (ref null noexn).

• The reference type nullcontref is an abbreviation for (ref null nocont).

• The reference type nullexternref is an abbreviation for (ref null noextern).

2.3.6 Value Types
Value types classify the individual values that WebAssembly code can compute with and the values that a variable
accepts. They are either number types, vector types, or reference types.

consttype ::= numtype | vectype
valtype ::= numtype | vectype | reftype | . . .

The syntax of value types is extended with additional forms for the purpose of specifying validation.

Conventions

• The meta variable 𝑡 ranges over value types or subclasses thereof where clear from context.

2.3.7 Result Types
Result types classify the result of executing instructions or functions, which is a sequence of values, written with
brackets.

resulttype ::= list(valtype)

2.3. Types 11

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.8 Block Types
Block types classify the input and output of structured control instructions delimiting blocks of instructions.

blocktype ::= valtype?

| funcidx

They are given either as a type index that refers to a suitable function type reinterpreted as an instruction type, or
as an optional value type inline, which is a shorthand for the instruction type 𝜖 → valtype?.

2.3.9 Composite Types
Composite types are all types composed from simpler types, including function types, structure types and array
types.

comptype ::= struct list(fieldtype)
| array fieldtype
| func resulttype → resulttype
| cont typeuse

fieldtype ::= mut? storagetype
storagetype ::= valtype | packtype

packtype ::= i8 | i16

Function types classify the signature of functions, mapping a list of parameters to a list of results. They are also
used to classify the inputs and outputs of instructions.

Aggregate types like structure or array types consist of a list of possibly mutable, possibly packed field types de-
scribing their components. Structures are heterogeneous, but require static indexing, while arrays need to be ho-
mogeneous, but allow dynamic indexing.

Conventions

• The notation |𝑡| for the bit width of a value type 𝑡 extends to packed types as well, that is, |i8| = 8 and
|i16| = 16.

• The auxiliary function unpack maps a storage type to the value type obtained when accessing a field:

2.3.10 Recursive Types
Recursive types denote a group of mutually recursive composite types, each of which can optionally declare a list
of type uses of supertypes that it matches. Each type can also be declared final, preventing further subtyping.

rectype ::= rec list(subtype)
subtype ::= sub final? typeuse* comptype

In a module, each member of a recursive type is assigned a separate type index.

2.3.11 Address Types
Address types are a subset of number types that classify the values that can be used as offsets into memories and
tables.

addrtype ::= i32 | i64

Conventions

The minimum of two address types is defined as the address type whose bit width is the minimum of the two.

min(at1, at2) = at1 if |at1| ≤ |at2|
min(at1, at2) = at2 otherwise

12 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.12 Limits
Limits classify the size range of resizeable storage associated with memory types and table types.

limits ::= [u64 .. u64]

2.3.13 Tag Types
Tag types classify the signature tags with a type use referring to the definition of a function type that declares the
types of parameter and result values associated with the tag. The result type is empty for exception tags.

tagtype ::= typeuse

2.3.14 Global Types
Global types classify global variables, which hold a value and can either be mutable or immutable.

globaltype ::= mut? valtype

2.3.15 Memory Types
Memory types classify linear memories and their size range.

memtype ::= addrtype limits page

The limits constrain the minimum and optionally the maximum size of a memory. The limits are given in units of
page size.

2.3.16 Table Types
Table types classify tables over elements of reference type within a size range.

tabletype ::= addrtype limits reftype

Like memories, tables are constrained by limits for their minimum and optionally maximum size. The limits are
given in numbers of entries.

2.3.17 Data Types
Data types classify data segments. Since the contents of a data segment requires no further classification, they
merely consist of a universal marker ok indicating well-formedness.

datatype ::= ok

2.3.18 Element Types
Element types classify element segments by the reference type of its elements.

elemtype ::= reftype

2.3. Types 13

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.3.19 External Types
External types classify imports and external addresses with their respective types.

externtype ::= tag tagtype | global globaltype | mem memtype | table tabletype | func typeuse

For functions, the type use has to refer to the definition of a function type.

Note

Future versions of WebAssembly may have additional uses for tags, and may allow non-empty result types in
the function types of tags.

Conventions

The following auxiliary notation is defined for sequences of external types. It filters out entries of a specific kind
in an order-preserving fashion:

funcs(𝜖) = 𝜖
funcs((func dt) xt*) = dt funcs(xt*)
funcs(externtype xt*) = funcs(xt*) otherwise
tables(𝜖) = 𝜖
tables((table tt) xt*) = tt tables(xt*)
tables(externtype xt*) = tables(xt*) otherwise
mems(𝜖) = 𝜖
mems((mem mt) xt*) = mt mems(xt*)
mems(externtype xt*) = mems(xt*) otherwise
globals(𝜖) = 𝜖
globals((global gt) xt*) = gt globals(xt*)
globals(externtype xt*) = globals(xt*) otherwise
tags(𝜖) = 𝜖
tags((tag jt) xt*) = jt tags(xt*)
tags(externtype xt*) = tags(xt*) otherwise

2.4 Instructions
WebAssembly code consists of sequences of instructions. Its computational model is based on a stack machine
in that instructions manipulate values on an implicit operand stack, consuming (popping) argument values and
producing or returning (pushing) result values.

In addition to dynamic operands from the stack, some instructions also have static immediate arguments, typically
indices or type annotations, which are part of the instruction itself.

Some instructions are structured in that they contain nested sequences of instructions.

The following sections group instructions into a number of different categories.

The syntax of instruction is further extended with additional forms for the purpose of specifying execution.

2.4.1 Parametric Instructions
Instructions in this group can operate on operands of any value type.

instr ::= nop
| unreachable
| drop
| select (valtype*)?

| . . .

14 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The nop instruction does nothing.

The unreachable instruction causes an unconditional trap.

The drop instruction simply throws away a single operand.

The select instruction selects one of its first two operands based on whether its third operand is zero or not. It may
include a value type determining the type of these operands. If missing, the operands must be of numeric or vector
type.

Note

In future versions of WebAssembly, the type annotation on select may allow for more than a single value being
selected at the same time.

2.4.2 Control Instructions
Instructions in this group affect the flow of control.

instr ::= . . .
| block blocktype instr*

| loop blocktype instr*

| if blocktype instr* else instr*

| br labelidx
| br_if labelidx
| br_table labelidx* labelidx
| br_on_null labelidx
| br_on_non_null labelidx
| br_on_cast labelidx reftype reftype
| br_on_cast_fail labelidx reftype reftype
| call funcidx
| call_ref typeuse
| call_indirect tableidx typeuse
| return
| return_call funcidx
| return_call_ref typeuse
| return_call_indirect tableidx typeuse
| throw tagidx
| throw_ref
| try_table blocktype list(catch) instr*

| cont.new typeidx
| cont.bind typeidx typeidx
| resume typeidx hdl*

| resume_throw typeidx tagidx hdl*

| suspend tagidx
| switch typeidx tagidx
| . . .

catch ::= catch tagidx labelidx
| catch_ref tagidx labelidx
| catch_all labelidx
| catch_all_ref labelidx

hdl ::= on tagidx labelidx
| on tagidx switch

The block, loop, if and try_table instructions are structured instructions. They bracket nested sequences of in-
structions, called blocks. As the grammar prescribes, they must be well-nested.

A structured instruction can consume input and produce output on the operand stack according to its annotated
block type.

2.4. Instructions 15

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Each structured control instruction introduces an implicit label. Labels are targets for branch instructions that
reference them with label indices. Unlike with other index spaces, indexing of labels is relative by nesting depth,
that is, label 0 refers to the innermost structured control instruction enclosing the referring branch instruction, while
increasing indices refer to those farther out. Consequently, labels can only be referenced from within the associated
structured control instruction. This also implies that branches can only be directed outwards, “breaking” from the
block of the control construct they target. The exact effect depends on that control construct. In case of block or
if it is a forward jump, resuming execution after the end of the block. In case of loop it is a backward jump to the
beginning of the loop.

Note

This enforces structured control flow. Intuitively, a branch targeting a block or if behaves like a break statement
in most C-like languages, while a branch targeting a loop behaves like a continue statement.

Branch instructions come in several flavors: br performs an unconditional branch, br_if performs a conditional
branch, and br_table performs an indirect branch through an operand indexing into the label list that is an immediate
to the instruction, or to a default target if the operand is out of bounds. The br_on_null and br_on_non_null
instructions check whether a reference operand is null and branch if that is the case or not the case, respectively.
Similarly, br_on_cast and br_on_cast_fail attempt a downcast on a reference operand and branch if that succeeds,
or fails, respectively.

The return instruction is a shortcut for an unconditional branch to the outermost block, which implicitly is the body
of the current function. Taking a branch unwinds the operand stack up to the height where the targeted structured
control instruction was entered. However, branches may additionally consume operands themselves, which they
push back on the operand stack after unwinding. Forward branches require operands according to the output of
the targeted block’s type, i.e., represent the values produced by the terminated block. Backward branches require
operands according to the input of the targeted block’s type, i.e., represent the values consumed by the restarted
block.

The call instruction invokes another function, consuming the necessary arguments from the stack and returning
the result values of the call. The call_ref instruction invokes a function indirectly through a function reference
operand. The call_indirect instruction calls a function indirectly through an operand indexing into a table that is
denoted by a table index and must contain function references. Since it may contain functions of heterogeneous
type, the callee is dynamically checked against the function type indexed by the instruction’s second immediate,
and the call is aborted with a trap if it does not match.

The return_call, return_call_ref, and return_call_indirect instructions are tail-call variants of the previous ones.
That is, they first return from the current function before actually performing the respective call. It is guaranteed
that no sequence of nested calls using only these instructions can cause resource exhaustion due to hitting an
implementation’s limit on the number of active calls.

The instructions throw, throw_ref, and try_table are concerned with exceptions. The throw and throw_ref instruc-
tions raise and reraise an exception, respectively, and transfers control to the innermost enclosing exception handler
that has a matching catch clause. The try_table instruction installs an exception handler that handles exceptions
as specified by its catch clauses.

The instructions cont.new, cont.bind, resume, resume_throw, suspend and switch are stack-switching instructions.
TODO(lyl): description

2.4.3 Variable Instructions
Variable instructions are concerned with access to local or global variables.

instr ::= . . .
| local.get localidx
| local.set localidx
| local.tee localidx
| global.get globalidx
| global.set globalidx
| . . .

16 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

These instructions get or set the values of respective variables. The local.tee instruction is like local.set but also
returns its argument.

2.4.4 Table Instructions
Instructions in this group are concerned with tables table.

instr ::= . . .
| table.get tableidx
| table.set tableidx
| table.size tableidx
| table.grow tableidx
| table.fill tableidx
| table.copy tableidx tableidx
| table.init tableidx elemidx
| elem.drop elemidx
| . . .

The table.get and table.set instructions load or store an element in a table, respectively.

The table.size instruction returns the current size of a table. The table.grow instruction grows table by a given
delta and returns the previous size, or −1 if enough space cannot be allocated. It also takes an initialization value
for the newly allocated entries.

The table.fill instruction sets all entries in a range to a given value. The table.copy instruction copies elements
from a source table region to a possibly overlapping destination region; the first index denotes the destination. The
table.init instruction copies elements from a passive element segment into a table.

The elem.drop instruction prevents further use of a passive element segment. This instruction is intended to be
used as an optimization hint. After an element segment is dropped its elements can no longer be retrieved, so the
memory used by this segment may be freed.

Note

An additional instruction that accesses a table is the control instruction call_indirect.

2.4. Instructions 17

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.4.5 Memory Instructions
Instructions in this group are concerned with linear memory.

memarg ::= {align u32 , offset u32}
loadop i𝑁 ::= sz_sx if sz < 𝑁

storeop i𝑁 ::= sz if sz < 𝑁

vloadopvectype ::= szx𝑀_sx if sz ·𝑀 = |vectype|/2
| sz_splat
| sz_zero if sz ≥ 32

instr ::= . . .

| numtype.loadloadop?
numtype memidx memarg

| numtype.storestoreop?
numtype memidx memarg

| vectype.loadvloadop?
vectype memidx memarg

| vectype.loadsz_lane memidx memarg laneidx
| vectype.store memidx memarg
| vectype.storesz_lane memidx memarg laneidx
| memory.size memidx
| memory.grow memidx
| memory.fill memidx
| memory.copy memidx memidx
| memory.init memidx dataidx
| data.drop dataidx
| . . .

Memory is accessed with load and store instructions for the different number types and vector types <syntax-
vectype>. They all take a memory index and a memory argument memarg that contains an address offset and the
expected alignment (expressed as the exponent of a power of 2).

Integer loads and stores can optionally specify a storage size sz that is smaller than the bit width of the respective
value type. In the case of loads, a sign extension mode sx is then required to select appropriate behavior.

Vector loads can specify a shape that is half the bit width of v128. Each lane is half its usual size, and the sign
extension mode sx then specifies how the smaller lane is extended to the larger lane. Alternatively, vector loads
can perform a splat, such that only a single lane of the specified storage size is loaded, and the result is duplicated
to all lanes.

The static address offset is added to the dynamic address operand, yielding a 33-bit or 65-bit effective address that
is the zero-based index at which the memory is accessed. All values are read and written in little endian13 byte
order. A trap results if any of the accessed memory bytes lies outside the address range implied by the memory’s
current size.

The memory.size instruction returns the current size of a memory. The memory.grow instruction grows a memory
by a given delta and returns the previous size, or −1 if enough memory cannot be allocated. Both instructions
operate in units of page size.

The memory.fill instruction sets all values in a regionof a memory to a given byte. The memory.copy instruction
copies data from a source memory region to a possibly overlapping destination region in another or the same
memory; the first index denotes the destination Thememory.init instruction copies data from a passive data segment
into a memory.

The data.drop instruction prevents further use of a passive data segment. This instruction is intended to be used
as an optimization hint. After a data segment is dropped its data can no longer be retrieved, so the memory used
by this segment may be freed.

13 https://en.wikipedia.org/wiki/Endianness#Little-endian

18 Chapter 2. Structure

https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2.4.6 Reference Instructions
Instructions in this group are concerned with accessing references.

instr ::= . . .
| ref.func funcidx
| ref.null heaptype
| ref.is_null
| ref.as_non_null
| ref.eq
| ref.test reftype
| ref.cast reftype
| . . .

The ref.null and ref.func instructions produce a null reference or a reference to a given function, respectively.

The instruction ref.is_null checks for null, while ref.as_non_null converts a nullable to a non-null one, and traps
if it encounters null.

The ref.eq compares two references.

The instructions ref.test and ref.cast test the dynamic type of a reference operand. The former merely returns the
result of the test, while the latter performs a downcast and traps if the operand’s type does not match.

Note

The br_on_null and br_on_non_null instructions provide versions of ref.as_null that branch depending on the
success of failure of a null test instead of trapping. Similarly, the br_on_cast and br_on_cast_fail instructions
provides versions of ref.cast that branch depending on the success of the downcast instead of trapping.

An additional instruction operating on function references is the control instruction call_ref.

2.4.7 Aggregate Instructions
Instructions in this group are concerned with creating and accessing references to aggregate types.

instr ::= . . .
| struct.new typeidx
| struct.new_default typeidx
| struct.get_sx ? typeidx u32
| struct.set typeidx u32
| array.new typeidx
| array.new_default typeidx
| array.new_fixed typeidx u32
| array.new_data typeidx dataidx
| array.new_elem typeidx elemidx
| array.get_sx ? typeidx
| array.set typeidx
| array.len
| array.fill typeidx
| array.copy typeidx typeidx
| array.init_data typeidx dataidx
| array.init_elem typeidx elemidx
| ref.i31
| i31.get_sx
| extern.convert_any
| any.convert_extern
| . . .

The instructions struct.new and struct.new_default allocate a new structure, initializing them either with operands
or with default values. The remaining instructions on structs access individual fields, allowing for different sign
extension modes in the case of packed storage types.

2.4. Instructions 19

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Similarly, arrays can be allocated either with an explicit initialization operand or a default value. Furthermore,
array.new_fixed allocates an array with statically fixed size, and array.new_data and array.new_elem allocate an
array and initialize it from a data or element segment, respectively. The instructions array.get, array.get sx , and
array.set access individual slots, again allowing for different sign extension modes in the case of a packed storage
type; array.len produces the length of an array; array.fill fills a specified slice of an array with a given value and
array.copy, array.init_data, and array.init_elem copy elements to a specified slice of an array from a given array,
data segment, or element segment, respectively.

The instructions ref.i31 and i31.get sx convert between type i32 and an unboxed scalar.

The instructions any.convert_extern and extern.convert_any allow lossless conversion between references repre-
sented as type (ref null extern) and as (ref null any).

2.4.8 Numeric Instructions
Numeric instructions provide basic operations over numeric values of specific type. These operations closely match
respective operations available in hardware.

sz ::= 8 | 16 | 32 | 64

sx ::= u | s

num i𝑁 ::= i𝑁
num f𝑁 ::= f𝑁

instr ::= . . .
| numtype.const numnumtype

| numtype.unopnumtype

| numtype.binopnumtype

| numtype.testopnumtype

| numtype.relopnumtype

| numtype1.cvtopnumtype2,numtype1
_numtype2

| . . .

unop i𝑁 ::= clz | ctz | popcnt | extendsz_s if sz < 𝑁
unopf𝑁 ::= abs | neg | sqrt | ceil | floor | trunc | nearest

binop i𝑁 ::= add | sub | mul | div_sx | rem_sx
| and | or | xor | shl | shr_sx | rotl | rotr

binopf𝑁 ::= add | sub | mul | div | min | max | copysign

testop i𝑁 ::= eqz

relop i𝑁 ::= eq | ne | lt_sx | gt_sx | le_sx | ge_sx
relopf𝑁 ::= eq | ne | lt | gt | le | ge

cvtop i𝑁1,i𝑁2
::= extend_sx if 𝑁1 < 𝑁2

| wrap if 𝑁1 > 𝑁2

cvtop i𝑁1,f𝑁2
::= convert_sx

| reinterpret if 𝑁1 = 𝑁2

cvtopf𝑁1,i𝑁2
::= trunc_sx

| trunc_sat_sx
| reinterpret if 𝑁1 = 𝑁2

cvtopf𝑁1,f𝑁2
::= promote if 𝑁1 < 𝑁2

| demote if 𝑁1 > 𝑁2

Numeric instructions are divided by number type. For each type, several subcategories can be distinguished:

• Constants: return a static constant.

• Unary Operations: consume one operand and produce one result of the respective type.

• Binary Operations: consume two operands and produce one result of the respective type.

• Tests: consume one operand of the respective type and produce a Boolean integer result.

• Comparisons: consume two operands of the respective type and produce a Boolean integer result.

20 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• Conversions: consume a value of one type and produce a result of another (the source type of the conversion
is the one after the “_”).

Some integer instructions come in two flavors, where a signedness annotation sx distinguishes whether the operands
are to be interpreted as unsigned or signed integers. For the other integer instructions, the use of two’s complement
for the signed interpretation means that they behave the same regardless of signedness.

2.4.9 Vector Instructions
Vector instructions (also known as SIMD instructions, single instruction multiple data) provide basic operations
over values of vector type.

lanetype ::= numtype | packtype
dim ::= 1 | 2 | 4 | 8 | 16

shape ::= lanetypexdim if |lanetype| · dim = 128
ishape ::= shape if lanetype(shape) = i𝑁
bshape ::= shape if lanetype(shape) = i8

half ::= low | high

zero ::= zero

laneidx ::= u8

instr ::= . . .
| vectype.const vecvectype
| vectype.vvunop
| vectype.vvbinop
| vectype.vvternop
| vectype.vvtestop
| shape.vunopshape

| shape.vbinopshape

| shape.vternopshape

| shape.vtestopshape

| shape.vrelopshape

| ishape.vshiftopishape

| ishape.bitmask
| bshape.vswizzlopbshape

| bshape.shuffle laneidx* if |laneidx*| = dim(bshape)
| ishape1.vextunopishape2,ishape1

_ishape2
| ishape1.vextbinopishape2,ishape1

_ishape2
| ishape1.vextternopishape2,ishape1

_ishape2
| ishape1.narrow_ishape2_sx if |lanetype(ishape2)| = 2 · |lanetype(ishape1)| ≤ 32

| shape1.vcvtopshape2,shape1
_shape2

| shape.splat
| shape.extract_lane_sx ? laneidx if sx ? = 𝜖 ⇔ lanetype(shape) ∈ i32 i64 f32 f64
| shape.replace_lane laneidx
| . . .

Vector instructions have a naming convention involving a shape prefix that determines how their operands will be
interpreted, written 𝑡x𝑁 , and consisting of a lane type 𝑡, a possibly packed numeric type, and its dimension 𝑁 ,
which denotes the number of lanes of that type. Operations are performed point-wise on the values of each lane.

Instructions prefixed with v128 do not involve a specific interpretation, and treat the v128 as either an i128 value or
a vector of 128 individual bits.

Note

For example, the shape i32x4 interprets the operand as four i32 values, packed into an i128 . The bit width of the
lane type 𝑡 times 𝑁 always is 128.

2.4. Instructions 21

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

vvunop ::= not

vvbinop ::= and | andnot | or | xor

vvternop ::= bitselect

vvtestop ::= any_true
vunop i𝑁x𝑀 ::= abs | neg

| popcnt if 𝑁 = 8

vunopf𝑁x𝑀 ::= abs | neg | sqrt | ceil | floor | trunc | nearest

vbinop i𝑁x𝑀 ::= add
| sub
| add_sat_sx if 𝑁 ≤ 16

| sub_sat_sx if 𝑁 ≤ 16

| mul if 𝑁 ≥ 16

| avgr_u if 𝑁 ≤ 16

| q15mulr_sat_s if 𝑁 = 16

| relaxed_q15mulr_s if 𝑁 = 16

| min_sx if 𝑁 ≤ 32

| max_sx if 𝑁 ≤ 32

vbinopf𝑁x𝑀 ::= add | sub | mul | div | min | max | pmin | pmax
| relaxed_min | relaxed_max

vternop i𝑁x𝑀 ::= relaxed_laneselect
vternopf𝑁x𝑀 ::= relaxed_madd | relaxed_nmadd

vtestop i𝑁x𝑀 ::= all_true
vrelop i𝑁x𝑀 ::= eq | ne

| lt_sx if 𝑁 ̸= 64 ∨ sx = s
| gt_sx if 𝑁 ̸= 64 ∨ sx = s
| le_sx if 𝑁 ̸= 64 ∨ sx = s
| ge_sx if 𝑁 ̸= 64 ∨ sx = s

vrelopf𝑁x𝑀 ::= eq | ne | lt | gt | le | ge

vswizzlop i8x𝑀 ::= swizzle | relaxed_swizzle
vshiftop i𝑁x𝑀 ::= shl | shr_sx

vextunop i𝑁1x𝑀1,i𝑁2x𝑀2
::= extadd_pairwise_sx if 16 ≤ 2 ·𝑁1 = 𝑁2 ≤ 32

vextbinop i𝑁1x𝑀1,i𝑁2x𝑀2
::= extmul_half _sx if 2 ·𝑁1 = 𝑁2 ≥ 16

| dot_s if 2 ·𝑁1 = 𝑁2 = 32

| relaxed_dot_s if 2 ·𝑁1 = 𝑁2 = 16

vextternop i𝑁1x𝑀1,i𝑁2x𝑀2
::= relaxed_dot_add_s if 4 ·𝑁1 = 𝑁2 = 32

vcvtop i𝑁1x𝑀1,i𝑁2x𝑀2
::= extend_half _sx if 𝑁2 = 2 ·𝑁1

vcvtop i𝑁1x𝑀1,f𝑁2x𝑀2
::= convert_half ? if 𝑁2 = 𝑁1 = 32 ∧ half ? = 𝜖 ∨𝑁2 = 2 ·𝑁1 ∧ half ? = low

vcvtopf𝑁1x𝑀1,i𝑁2x𝑀2
::= trunc_sat_sx if 𝑁1 = 𝑁2 = 32 ∧ zero? = 𝜖 ∨𝑁1 = 2 ·𝑁2 ∧ zero? = zero

| relaxed_trunc_sx if 𝑁1 = 𝑁2 = 32 ∧ zero? = 𝜖 ∨𝑁1 = 2 ·𝑁2 ∧ zero? = zero
vcvtopf𝑁1x𝑀1,f𝑁2x𝑀2

::= demote_zero zero if 𝑁1 = 2 ·𝑁2

| promote_low low if 2 ·𝑁1 = 𝑁2

Vector instructions can be grouped into several subcategories:

• Constants: return a static constant.

• Unary Operations: consume one v128 operand and produce one v128 result.

• Binary Operations: consume two v128 operands and produce one v128 result.

• Ternary Operations: consume three v128 operands and produce one v128 result.

• Tests: consume one v128 operand and produce a Boolean integer result.

• Shifts: consume a v128 operand and an i32 operand, producing one v128 result.

22 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• Splats: consume a value of numeric type and produce a v128 result of a specified shape.

• Extract lanes: consume a v128 operand and return the numeric value in a given lane.

• Replace lanes: consume a v128 operand and a numeric value for a given lane, and produce a v128 result.

Some vector instructions have a signedness annotation sx which distinguishes whether the elements in the operands
are to be interpreted as unsigned or signed integers. For the other vector instructions, the use of two’s complement
for the signed interpretation means that they behave the same regardless of signedness.

Conventions

• The function lanetype(shape) extracts the lane type of a shape.

• The function dim(shape) extracts the dimension of a shape.

• The function zeroop(vcvtop) extracts the zero flag from a vector conversion operator, or returns 𝜖 if it does
not contain any.

• The function halfop(vcvtop) extracts the half flag from a vector conversion operator, or returns 𝜖 if it does
not contain any.

2.4.10 Expressions
Function bodies, initialization values for globals, elements and offsets of element segments, and offsets of data
segments are given as expressions, which are sequences of instructions.

expr ::= instr*

In some places, validation restricts expressions to be constant, which limits the set of allowable instructions.

2.5 Modules
WebAssembly programs are organized into modules, which are the unit of deployment, loading, and compilation.
A module collects definitions for types, tags, and globals, memories, tables, functions. In addition, it can declare
imports and exports and provide initialization in the form of data and element segments, or a start function.

module ::= module type* import* tag* global* mem* table* func* data* elem* start? export*

Each of the lists — and thus the entire module — may be empty.

2.5.1 Indices
Definitions are referenced with zero-based indices. Each class of definition has its own index space, as distinguished
by the following classes.

typeidx ::= idx
funcidx ::= idx

globalidx ::= idx
tableidx ::= idx
memidx ::= idx
tagidx ::= idx

elemidx ::= idx
dataidx ::= idx
labelidx ::= idx
localidx ::= idx
fieldidx ::= idx

The index space for tags, globals, memories, tables, and functions includes respective imports declared in the same
module. The indices of these imports precede the indices of other definitions in the same index space.

Data indices reference data segments and element indices reference element segments.

2.5. Modules 23

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The index space for locals is only accessible inside a function and includes the parameters of that function, which
precede the local variables.

Label indices reference structured control instructions inside an instruction sequence.

Each aggregate type provides an index space for its fields.

Conventions

• The meta variable 𝑙 ranges over label indices.

• The meta variables 𝑥, 𝑦 range over indices in any of the other index spaces.

• For every index space abcidx , the notation abcidx(𝐴) denotes the set of indices from that index space
occurring free in 𝐴. Sometimes this set is reinterpreted as the list of its elements.

Note

For example, if instr* is (data.drop 1) (memory.init 2 3), then dataidxinstrs(instr
*) = 1 3, or equivalently,

the set {1, 3}.

2.5.2 Types
The type section of a module defines a list of recursive types, each consisting of a list of sub types referenced by
individual type indices. All function, structure, or array types used in a module must be defined in this section.

type ::= type rectype

2.5.3 Tags
The tag section of a module defines a list of tags:

tag ::= tag tagtype

The type index of a tag must refer to a function type that declares its tag type.

Tags are referenced through tag indices, starting with the smallest index not referencing a tag import.

2.5.4 Globals
The global section of a module defines a list of global variables (or globals for short):

global ::= global globaltype expr

Each global stores a single value of the type specified in the global type. It also specifies whether a global is
immutable or mutable. Moreover, each global is initialized with a value given by a constant initializer expression.

Globals are referenced through global indices, starting with the smallest index not referencing a global import.

2.5.5 Memories
The mem section of a module defines a list of linear memories (or memories for short) as described by their
memory type:

mem ::= memory memtype

A memory is a list of raw uninterpreted bytes. The minimum size in the limits of its memory type specifies the
initial size of that memory, while its maximum, if present, restricts the size to which it can grow later. Both are in
units of page size.

24 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Memories can be initialized through data segments.

Memories are referenced through memory indices, starting with the smallest index not referencing a memory
import. Most constructs implicitly reference memory index 0.

2.5.6 Tables
The table section of a module defines a list of tables described by their table type:

table ::= table tabletype expr

A table is an array of opaque values of a particular reference type that is specified by the table type. Each table
slot is initialized with a value given by a constant initializer expression. Tables can further be initialized through
element segments.

The minimum size in the limits of the table type specifies the initial size of that table, while its maximum restricts
the size to which it can grow later.

Tables are referenced through table indices, starting with the smallest index not referencing a table import. Most
constructs implicitly reference table index 0.

2.5.7 Functions
The func section of a module defines a list of functions with the following structure:

func ::= func typeidx local* expr
local ::= local valtype

The type index of a function declares its signature by reference to a function type defined in the module. The
parameters of the function are referenced through 0-based local indices in the function’s body; they are mutable.

The locals declare a list of mutable local variables and their types. These variables are referenced through local
indices in the function’s body. The index of the first local is the smallest index not referencing a parameter.

A function’s expression is an instruction sequence that represents the body of the function. Upon termination it
must produce a stack matching the function type’s result type.

Functions are referenced through function indices, starting with the smallest index not referencing a function im-
port.

2.5.8 Data Segments
The data section of a module defines a list of data segments, which can be used to initialize a range of memory
from a static list of bytes.

data ::= data byte* datamode
datamode ::= active memidx expr | passive

Similar to element segments, data segments have a mode that identifies them as either active or passive. A passive
data segment’s contents can be copied into a memory using the memory.init instruction. An active data segment
copies its contents into a memory during instantiation, as specified by a memory index and a constant expression
defining an offset into that memory.

Data segments are referenced through data indices.

2.5.9 Element Segments
The elem section of a module defines a list of element segments, which can be used to initialize a subrange of a
table from a static list of elements.

elem ::= elem reftype expr* elemmode
elemmode ::= active tableidx expr | passive | declare

Each element segment defines a reference type and a corresponding list of constant element expressions.

2.5. Modules 25

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Element segments have a mode that identifies them as either active, passive, or declarative. A passive element
segment’s elements can be copied to a table using the table.init instruction. An active element segment copies
its elements into a table during instantiation, as specified by a table index and a constant expression defining an
offset into that table. A declarative element segment is not available at runtime but merely serves to forward-
declare references that are formed in code with instructions like ref.func. The offset is given by another constant
expression.

Element segments are referenced through element indices.

2.5.10 Start Function
The start section of a module declares the function index of a start function that is automatically invoked when
the module is instantiated, after tables and memories have been initialized.

start ::= start funcidx

Note

The start function is intended for initializing the state of a module. The module and its exports are not accessible
externally before this initialization has completed.

2.5.11 Imports
The import section of a module defines a set of imports that are required for instantiation.

import ::= import name name externtype

Each import is labeled by a two-level name space, consisting of a module name and an item name for an entity
within that module. Importable definitions are tags, globals, memories, tables, and functions. Each import is
specified by a respective external type that a definition provided during instantiation is required to match.

Every import defines an index in the respective index space. In each index space, the indices of imports go before
the first index of any definition contained in the module itself.

Note

Unlike export names, import names are not necessarily unique. It is possible to import the same module/item
name pair multiple times; such imports may even have different type descriptions, including different kinds of
entities. A module with such imports can still be instantiated depending on the specifics of how an embedder
allows resolving and supplying imports. However, embedders are not required to support such overloading, and
a WebAssembly module itself cannot implement an overloaded name.

2.5.12 Exports
The export section of a module defines a set of exports that become accessible to the host environment once the
module has been instantiated.

export ::= export name externidx

externidx ::= func funcidx | global globalidx | table tableidx | memory memidx | tag tagidx

Each export is labeled by a unique name. Exportable definitions are tags, globals, memories, tables, and functions,
which are referenced through a respective index.

26 Chapter 2. Structure

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Conventions

The following auxiliary notation is defined for sequences of exports, filtering out indices of a specific kind in an
order-preserving fashion:

funcs(𝜖) = 𝜖
funcs((func 𝑥) xx*) = 𝑥 funcs(xx*)
funcs(externidx xx*) = funcs(xx*) otherwise
tables(𝜖) = 𝜖
tables((table 𝑥) xx*) = 𝑥 tables(xx*)
tables(externidx xx*) = tables(xx*) otherwise
mems(𝜖) = 𝜖
mems((memory 𝑥) xx*) = 𝑥 mems(xx*)
mems(externidx xx*) = mems(xx*) otherwise
globals(𝜖) = 𝜖
globals((global 𝑥) xx*) = 𝑥 globals(xx*)
globals(externidx xx*) = globals(xx*) otherwise
tags(𝜖) = 𝜖
tags((tag 𝑥) xx*) = 𝑥 tags(xx*)
tags(externidx xx*) = tags(xx*) otherwise

2.5. Modules 27

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

28 Chapter 2. Structure

CHAPTER 3

Validation

3.1 Conventions
Validation checks that a WebAssembly module is well-formed. Only valid modules can be instantiated.

Validity is defined by a type system over the abstract syntax of a module and its contents. For each piece of abstract
syntax, there is a typing rule that specifies the constraints that apply to it. All rules are given in two equivalent
forms:

1. In prose, describing the meaning in intuitive form.

2. In formal notation, describing the rule in mathematical form.14

Note

The prose and formal rules are equivalent, so that understanding of the formal notation is not required to read this
specification. The formalism offers a more concise description in notation that is used widely in programming
languages semantics and is readily amenable to mathematical proof.

In both cases, the rules are formulated in a declarative manner. That is, they only formulate the constraints, they do
not define an algorithm. The skeleton of a sound and complete algorithm for type-checking instruction sequences
according to this specification is provided in the appendix.

3.1.1 Types
To define the semantics, the definition of some sorts of types is extended to include additional forms. By virtue
of not being representable in either the binary format or the text format, these forms cannot be used in a program;
they only occur during validation or execution.

valtype ::= . . . | bot
absheaptype ::= . . . | bot

typeuse ::= . . . | deftype | rec.N

The unique value type bot is a bottom type that matches all value types. Similarly, bot is also used as a bottom
type of all heap types.

14 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan Gohman, Luke
Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly15. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

15 https://dl.acm.org/citation.cfm?doid=3062341.3062363

29

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

No validation rule uses bottom types explicitly, but various rules can pick any value or heap type, including
bottom. This ensures the existence of principal types, and thus a validation algorithm without back tracking.

A type use can consist directly of a defined type. This occurs as the result of substituting a type index with its
definition.

A type use may also be a recursive type index. Such an index refers to the 𝑖-th component of a surrounding recursive
type. It occurs as the result of rolling up the definition of a recursive type.

Both extensions affect occurrences of type uses in concrete heap types, in sub types and in instructions.

A type of any form is closed when it does not contain a heap type that is a type index or a recursive type index
without a surrounding recursive type, i.e., all type indices have been substituted with their defined type and all free
recursive type indices have been unrolled.

Note

It is an invariant of the semantics that sub types occur only in one of two forms: either as “syntactic” types
as in a source module, where all supertypes are type indices, or as “semantic” types, where all supertypes are
resolved to either defined types or recursive type indices.

Recursive type indices are local to a recursive type. They are distinguished from regular type indices and rep-
resented such that two closed types are syntactically equal if and only if they have the same recursive structure.

Convention

• The difference rt1 ∖ rt2 between two reference types is defined as follows:

(ref null?1 ht1) ∖ (ref null ht2) = (ref ht1)

(ref null?1 ht1) ∖ (ref ht2) = (ref null?1 ht1)

Note

This definition computes an approximation of the reference type that is inhabited by all values from rt1 except
those from rt2. Since the type system does not have general union types, the defnition only affects the presence
of null and cannot express the absence of other values.

3.1.2 Defined Types
Defined types denote the individual types defined in a module. Each such type is represented as a projection from
the recursive type group it originates from, indexed by its position in that group.

deftype ::= rectype.𝑛

Defined types do not occur in the binary or text format, but are formed by rolling up the recursive types defined in
a module.

Note

It is an invariant of the semantics that all recursive types occurring in defined types are rolled up.

30 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Conventions

• 𝑡[𝑥* := dt*] denotes the parallel substitution of type indices 𝑥* with corresponding defined types dt* in type
𝑡, provided |𝑥*| = |dt*|.

• 𝑡[(rec 𝑖)* := dt*] denotes the parallel substitution of recursive type indices (rec 𝑖)* with defined types dt*
in type 𝑡, provided |(rec 𝑖)*| = |dt*|. This substitution does not proceed under recursive types, since they
are considered local binders for all recursive type indices.

• 𝑡[:= dt*] is shorthand for the substitution 𝑡[𝑥* := dt*], where 𝑥* = 0 . . . (|dt*| − 1).

Note

All recursive types formed by the semantics are closed with respect to recursive type indices that occur inside
them. Hence, substitution of recursive type indices never needs to modify the bodies of recursive types. In
addition, all types used for substitution are closed with respect to recursive type indices, such that name capture
of recursive type indices cannot occur.

3.1.3 Rolling and Unrolling
In order to allow comparing recursive types for equivalence, their representation is changed such that all type
indices internal to the same recursive type are replaced by recursive type indices.

Note

This representation is independent of the type index space, so that it is meaningful across module boundaries.
Moreover, this representation ensures that types with equivalent recursive structure are also syntactically equal,
hence allowing a simple equality check on (closed) types. It gives rise to an iso-recursive interpretation of
types.

The representation change is performed by two auxiliary operations on the syntax of recursive types:

• Rolling up a recursive type substitutes its internal type indices with corresponding recursive type indices.

• Unrolling a recursive type substitutes its recursive type indices with the corresponding defined types.

These operations are extended to defined types and defined as follows:

roll𝑥(rectype) = rec (subtype[(𝑥+ 𝑖)𝑖<𝑛 := (rec.𝑖)𝑖<𝑛])𝑛 if rectype = rec subtype𝑛

unroll(rectype) = rec (subtype[(rec.𝑖)𝑖<𝑛 := (rectype.𝑖)𝑖<𝑛])𝑛 if rectype = rec subtype𝑛

roll*𝑥(rectype) = ((rec subtype𝑛).𝑖)𝑖<𝑛 if roll𝑥(rectype) = rec subtype𝑛

unroll(rectype.𝑖) = subtype*[𝑖] if unroll(rectype) = rec subtype*

In addition, the following auxiliary relation denotes the expansion of a defined type or type use:

deftype ≈ comptype if expand(deftype) = comptype

deftype ≈𝐶 comptype if deftype ≈ comptype
typeidx ≈𝐶 comptype if 𝐶.types[typeidx] ≈ comptype

3.1.4 Instruction Types
Instruction types classify the behaviour of instructions or instruction sequences, by describing how they manipulate
the operand stack and the initialization status of locals:

instrtype ::= resulttype →localidx* resulttype

An instruction type 𝑡*1 →𝑥* 𝑡*2 describes the required input stack with argument values of types 𝑡*1 that an instruction
pops off and the provided output stack with result values of types 𝑡*2 that it pushes back. Moreover, it enumerates
the indices 𝑥* of locals that have been set by the instruction or sequence.

3.1. Conventions 31

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

Instruction types are only used for validation, they do not occur in programs.

3.1.5 Local Types
Local types classify locals, by describing their value type as well as their initialization status:

localtype ::= init valtype
init ::= set | unset

Note

Local types are only used for validation, they do not occur in programs.

3.1.6 Contexts
Validity of an individual definition is specified relative to a context, which collects relevant information about the
surrounding module and the definitions in scope:

• Types: the list of types defined in the current module.

• Recursive Types: the list of sub types in the current group of recursive types.

• Functions: the list of functions declared in the current module, represented by a defined type that expands
to their function type.

• Tables: the list of tables declared in the current module, represented by their table type.

• Memories: the list of memories declared in the current module, represented by their memory type.

• Globals: the list of globals declared in the current module, represented by their global type.

• Tags: the list of tags declared in the current module, represented by their tag type.

• Element Segments: the list of element segments declared in the current module, represented by the elements’
reference type.

• Data Segments: the list of data segments declared in the current module, each represented by an ok entry.

• Locals: the list of locals declared in the current function (including parameters), represented by their local
type.

• Labels: the stack of labels accessible from the current position, represented by their result type.

• Return: the return type of the current function, represented as an optional result type that is absent when no
return is allowed, as in free-standing expressions.

• References: the list of function indices that occur in the module outside functions and can hence be used to
form references inside them.

In other words, a context contains a sequence of suitable types for each index space, describing each defined entry
in that space. Locals, labels and return type are only used for validating instructions in function bodies, and are
left empty elsewhere. The label stack is the only part of the context that changes as validation of an instruction
sequence proceeds.

32 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

More concretely, contexts are defined as records 𝐶 with abstract syntax:

context ::= {types deftype*
recs subtype*

tags tagtype*

globals globaltype*

mems memtype*

tables tabletype*

funcs deftype*

datas datatype*

elems elemtype*

locals localtype*

labels resulttype*

return resulttype?

refs funcidx*}

Convention

A type of any shape can be closed to bring it into closed form relative to a context it is valid in, by substituting
each type index 𝑥 occurring in it with its own corresponding defined type 𝐶.types[𝑥], after first closing the types
in 𝐶.types themselves.

clos𝐶(𝑡) = 𝑡[:= dt*] if dt* = clos*(𝐶.types)

clos*(𝜖) = 𝜖

clos*(dt* dt𝑛) = dt ′
*
dt𝑛[:= dt ′

*
] if dt ′* = clos*(dt*)

Note

Free type indices referring to types within the same recursive type are handled separately by rolling up recursive
types before closing them.

3.1.7 Prose Notation
Validation is specified by stylised rules for each relevant part of the abstract syntax. The rules not only state
constraints defining when a phrase is valid, they also classify it with a type. The following conventions are adopted
in stating these rules.

• A phrase 𝐴 is said to be “valid with type 𝑇 ” if and only if all constraints expressed by the respective rules
are met. The form of 𝑇 depends on the syntactic class of 𝐴.

Note

For example, if 𝐴 is a function, then 𝑇 is a defined function type; for an 𝐴 that is a global, 𝑇 is a global
type; and so on.

• The rules implicitly assume a given context 𝐶.

• In some places, this context is locally extended to a context 𝐶 ′ with additional entries. The formulation
“Under context 𝐶 ′, . . . statement . . . ” is adopted to express that the following statement must apply under
the assumptions embodied in the extended context.

3.1.8 Formal Notation

3.1. Conventions 33

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

This section gives a brief explanation of the notation for specifying typing rules formally. For the interested
reader, a more thorough introduction can be found in respective text books.16

The proposition that a phrase 𝐴 has a respective type 𝑇 is written 𝐴 : 𝑇 . In general, however, typing is dependent
on a context 𝐶. To express this explicitly, the complete form is a judgement 𝐶 ⊢ 𝐴 : 𝑇 , which says that 𝐴 : 𝑇
holds under the assumptions encoded in 𝐶.

The formal typing rules use a standard approach for specifying type systems, rendering them into deduction rules.
Every rule has the following general form:

premise1 premise2 . . . premise𝑛
conclusion

Such a rule is read as a big implication: if all premises hold, then the conclusion holds. Some rules have
no premises; they are axioms whose conclusion holds unconditionally. The conclusion always is a judgment
𝐶 ⊢ 𝐴 : 𝑇 , and there usually is one respective rule for each relevant construct 𝐴 of the abstract syntax.

Note

For example, the typing rule for the i32.add instruction can be given as an axiom:

𝐶 ⊢ i32.add : i32 i32 → i32

The instruction is always valid with type i32 i32 → i32 (saying that it consumes two i32 values and produces one),
independent of any side conditions.

An instruction like global.get can be typed as follows:

𝐶.globals[𝑥] = mut 𝑡

𝐶 ⊢ global.get 𝑥 : 𝜖 → 𝑡

Here, the premise enforces that the immediate global index 𝑥 exists in the context. The instruction produces a
value of its respective type 𝑡 (and does not consume any values). If 𝐶.globals[𝑥] does not exist then the premise
does not hold, and the instruction is ill-typed.

Finally, a structured instruction requires a recursive rule, where the premise is itself a typing judgement:

𝐶 ⊢ blocktype : 𝑡*1 → 𝑡*2 {labels (𝑡*2)} ⊕ 𝐶 ⊢ instr* : 𝑡*1 → 𝑡*2
𝐶 ⊢ block blocktype instr* : 𝑡*1 → 𝑡*2

A block instruction is only valid when the instruction sequence in its body is. Moreover, the result type must
match the block’s annotation blocktype. If so, then the block instruction has the same type as the body. Inside
the body an additional label of the corresponding result type is available, which is expressed by extending the
context 𝐶 with the additional label information for the premise.

3.2 Types
Simple types, such as number types are universally valid. However, restrictions apply to most other types, such
as reference types, function types, as well as the limits of table types and memory types, which must be checked
during validation.

Moreover, block types are converted to instruction types for ease of processing.
16 For example: Benjamin Pierce. Types and Programming Languages17. The MIT Press 2002
17 https://www.cis.upenn.edu/~bcpierce/tapl/

34 Chapter 3. Validation

https://www.cis.upenn.edu/~bcpierce/tapl/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.2.1 Number Types
The number type numtype is always valid.

𝐶 ⊢ numtype : ok

3.2.2 Vector Types
The vector type vectype is always valid.

𝐶 ⊢ vectype : ok

3.2.3 Type Uses
The type use typeidx is valid if:

• The type 𝐶.types[typeidx] exists.

𝐶.types[typeidx] = dt

𝐶 ⊢ typeidx : ok

3.2.4 Heap Types
The heap type absheaptype is always valid.

𝐶 ⊢ absheaptype : ok

3.2.5 Reference Types
The reference type (ref null? heaptype) is valid if:

• The heap type heaptype is valid.
𝐶 ⊢ heaptype : ok

𝐶 ⊢ ref null? heaptype : ok

3.2.6 Value Types
The value type valtype is valid if:

• Either:

– The value type valtype is of the form numtype.

– The number type numtype is valid.

• Or:

– The value type valtype is of the form vectype.

– The vector type vectype is valid.

• Or:

– The value type valtype is of the form reftype.

– The reference type reftype is valid.

• Or:

– The value type valtype is of the form bot.

3.2. Types 35

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.2.7 Result Types
The result type 𝑡* is valid if:

• For all 𝑡 in 𝑡*:

– The value type 𝑡 is valid.
(𝐶 ⊢ 𝑡 : ok)*

𝐶 ⊢ 𝑡* : ok

3.2.8 Block Types
Block types may be expressed in one of two forms, both of which are converted to instruction types by the following
rules.

The block type typeidx is valid as the instruction type 𝑡*1 → 𝑡*2 if:

• The type 𝐶.types[typeidx] exists.

• The expansion of 𝐶.types[typeidx] is (func 𝑡*1 → 𝑡*2).

𝐶.types[typeidx] ≈ func 𝑡*1 → 𝑡*2
𝐶 ⊢ typeidx : 𝑡*1 → 𝑡*2

The block type valtype? is valid as the instruction type 𝜖 → valtype? if:

• If valtype is defined, then:

– The value type valtype is valid.

(𝐶 ⊢ valtype : ok)?

𝐶 ⊢ valtype? : 𝜖 → valtype?

3.2.9 Instruction Types
The instruction type 𝑡*1 →𝑥* 𝑡*2 is valid if:

• The result type 𝑡*1 is valid.

• The result type 𝑡*2 is valid.

• For all 𝑥 in 𝑥*:

– The local 𝐶.locals[𝑥] exists.

𝐶 ⊢ 𝑡*1 : ok 𝐶 ⊢ 𝑡*2 : ok (𝐶.locals[𝑥] = lt)*

𝐶 ⊢ 𝑡*1 →𝑥* 𝑡*2 : ok

3.2.10 Composite Types
The composite type (struct fieldtype*) is valid if:

• For all fieldtype in fieldtype*:

– The field type fieldtype is valid.
(𝐶 ⊢ fieldtype : ok)*

𝐶 ⊢ struct fieldtype* : ok

The composite type (array fieldtype) is valid if:

• The field type fieldtype is valid.
𝐶 ⊢ fieldtype : ok

𝐶 ⊢ array fieldtype : ok

The composite type (func 𝑡*1 → 𝑡*2) is valid if:

36 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• The result type 𝑡*1 is valid.

• The result type 𝑡*2 is valid.
𝐶 ⊢ 𝑡*1 : ok 𝐶 ⊢ 𝑡*2 : ok

𝐶 ⊢ func 𝑡*1 → 𝑡*2 : ok

The composite type (cont typeuse) is valid if:

• The heap type typeuse is valid.

• The expansion of typeuse is (func 𝑡*1 → 𝑡*2).
𝐶 ⊢ typeuse : ok typeuse ≈𝐶 func 𝑡*1 → 𝑡*2

𝐶 ⊢ cont typeuse : ok

The field type (mut? storagetype) is valid if:

• The storage type storagetype is valid.
𝐶 ⊢ storagetype : ok

𝐶 ⊢ mut? storagetype : ok

The packed type packtype is always valid.

𝐶 ⊢ packtype : ok

3.2.11 Recursive Types
Recursive types are validated with respect to the first type index defined by the recursive group.

rec subtype*

The recursive type (rec subtype*) is valid for the type index 𝑥 if:

• Either:

– The sub type sequence subtype* is empty.

• Or:

– The sub type sequence subtype* is of the form subtype1 subtype
′*.

– The sub type subtype1 is valid for the type index 𝑥.

– The recursive type (rec subtype ′*) is valid for the type index 𝑥+ 1.

𝐶 ⊢ rec 𝜖 : ok(𝑥)

𝐶 ⊢ subtype1 : ok(𝑥) 𝐶 ⊢ rec subtype* : ok(𝑥+ 1)

𝐶 ⊢ rec (subtype1 subtype
*) : ok(𝑥)

sub final? 𝑦* comptype

The sub type (sub final? 𝑥* comptype) is valid for the type index 𝑥0 if:

• The length of 𝑥* is less than or equal to 1.

• For all 𝑥 in 𝑥*:

– The index 𝑥 is less than 𝑥0.

– The type 𝐶.types[𝑥] exists.

– The sub type unroll(𝐶.types[𝑥]) is of the form (sub 𝑥′* comptype ′).

• comptype ′
* is the concatenation of all such comptype ′.

• The composite type comptype is valid.

• For all comptype ′ in comptype ′
*:

3.2. Types 37

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– The composite type comptype matches the composite type comptype ′.

|𝑥*| ≤ 1 (𝑥 < 𝑥0)
* (unroll(𝐶.types[𝑥]) = sub 𝑥′* comptype ′)*

𝐶 ⊢ comptype : ok (𝐶 ⊢ comptype ≤ comptype ′)*

𝐶 ⊢ sub final? 𝑥* comptype : ok(𝑥0)

Note

The side condition on the index ensures that a declared supertype is a previously defined types, preventing
cyclic subtype hierarchies.

Future versions of WebAssembly may allow more than one supertype.

3.2.12 Limits
Limits must have meaningful bounds that are within a given range.

The limits range [𝑛 ..𝑚] is valid within 𝑘 if:

• 𝑛 is less than or equal to 𝑚.

• 𝑚 is less than or equal to 𝑘.
𝑛 ≤ 𝑚 ≤ 𝑘

𝐶 ⊢ [𝑛 ..𝑚] : 𝑘

3.2.13 Tag Types
The tag type typeuse is valid if:

• The type use typeuse is valid.

• The expansion of typeuse is (func 𝑡*1 → 𝑡*2).
𝐶 ⊢ typeuse : ok typeuse ≈𝐶 func 𝑡*1 → 𝑡*2

𝐶 ⊢ typeuse : ok

3.2.14 Global Types
The global type (mut? 𝑡) is valid if:

• The value type 𝑡 is valid.
𝐶 ⊢ 𝑡 : ok

𝐶 ⊢ mut? 𝑡 : ok

3.2.15 Memory Types
The memory type (addrtype limits page) is valid if:

• The limits range limits is valid within 216.

𝐶 ⊢ limits : 216

𝐶 ⊢ addrtype limits page : ok

38 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.2.16 Table Types
The table type (addrtype limits reftype) is valid if:

• The limits range limits is valid within 232 − 1.

• The reference type reftype is valid.

𝐶 ⊢ limits : 232 − 1 𝐶 ⊢ reftype : ok

𝐶 ⊢ addrtype limits reftype : ok

3.2.17 External Types
The external type (tag tagtype) is valid if:

• The tag type tagtype is valid.
𝐶 ⊢ tagtype : ok

𝐶 ⊢ tag tagtype : ok

The external type (global globaltype) is valid if:

• The global type globaltype is valid.
𝐶 ⊢ globaltype : ok

𝐶 ⊢ global globaltype : ok

The external type (mem memtype) is valid if:

• The memory type memtype is valid.
𝐶 ⊢ memtype : ok

𝐶 ⊢ mem memtype : ok

The external type (table tabletype) is valid if:

• The table type tabletype is valid.
𝐶 ⊢ tabletype : ok

𝐶 ⊢ table tabletype : ok

The external type (func typeuse) is valid if:

• The type use typeuse is valid.

• The expansion of typeuse is (func 𝑡*1 → 𝑡*2).
𝐶 ⊢ typeuse : ok typeuse ≈𝐶 func 𝑡*1 → 𝑡*2

𝐶 ⊢ func typeuse : ok

3.3 Matching
On most types, a notion of subtyping is defined that is applicable in validation rules, during module instantiation
when checking the types of imports, or during execution, when performing casts.

3.3.1 Number Types
The number type numtype matches only itself.

𝐶 ⊢ numtype ≤ numtype

3.3. Matching 39

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.3.2 Vector Types
The vector type vectype matches only itself.

𝐶 ⊢ vectype ≤ vectype

3.3.3 Heap Types
The heap type heaptype1 matches the heap type heaptype2 if:

• Either:

– The heap type heaptype2 is of the form heaptype1.

• Or:

– The heap type heaptype ′ is valid.

– The heap type heaptype1 matches the heap type heaptype ′.

– The heap type heaptype ′ matches the heap type heaptype2.

• Or:

– The heap type heaptype1 is of the form eq.

– The heap type heaptype2 is of the form any.

• Or:

– The heap type heaptype1 is of the form i31.

– The heap type heaptype2 is of the form eq.

• Or:

– The heap type heaptype1 is of the form struct.

– The heap type heaptype2 is of the form eq.

• Or:

– The heap type heaptype1 is of the form array.

– The heap type heaptype2 is of the form eq.

• Or:

– The heap type heaptype1 is of the form deftype.

– The heap type heaptype2 is of the form struct.

– The expansion of deftype is (struct fieldtype*).

• Or:

– The heap type heaptype1 is of the form deftype.

– The heap type heaptype2 is of the form array.

– The expansion of deftype is (array fieldtype).

• Or:

– The heap type heaptype1 is of the form deftype.

– The heap type heaptype2 is of the form func.

– The expansion of deftype is (func 𝑡*1 → 𝑡*2).

• Or:

– The heap type heaptype1 is of the form deftype.

40 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– The heap type heaptype2 is of the form cont.

– The expansion of deftype is (cont typeuse).

• Or:

– The heap type heaptype1 is of the form deftype1.

– The heap type heaptype2 is of the form deftype2.

– The defined type deftype1 matches the defined type deftype2.

• Or:

– The heap type heaptype1 is of the form typeidx .

– The type 𝐶.types[typeidx] exists.

– The type 𝐶.types[typeidx] matches the heap type heaptype2.

• Or:

– The heap type heaptype2 is of the form typeidx .

– The type 𝐶.types[typeidx] exists.

– The heap type heaptype1 matches the type 𝐶.types[typeidx].

• Or:

– The heap type heaptype1 is of the form (rec.𝑖).

– The length of typeuse* is greater than 𝑗.

– The heap type heaptype2 is of the form typeuse*[𝑗].

– The recursive type 𝐶.recs[𝑖] exists.

– The recursive type 𝐶.recs[𝑖] is of the form (sub final? typeuse* ct).

• Or:

– The heap type heaptype1 is of the form none.

– The heap type heaptype2 matches the heap type any.

• Or:

– The heap type heaptype1 is of the form nofunc.

– The heap type heaptype2 matches the heap type func.

• Or:

– The heap type heaptype1 is of the form noexn.

– The heap type heaptype2 matches the heap type exn.

• Or:

– The heap type heaptype1 is of the form noextern.

– The heap type heaptype2 matches the heap type extern.

• Or:

– The heap type heaptype1 is of the form nocont.

– The heap type heaptype2 matches the heap type cont.

• Or:

– The heap type heaptype1 is of the form bot.

3.3. Matching 41

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝐶 ⊢ heaptype ≤ heaptype

𝐶 ⊢ heaptype ′ : ok 𝐶 ⊢ heaptype1 ≤ heaptype ′ 𝐶 ⊢ heaptype ′ ≤ heaptype2
𝐶 ⊢ heaptype1 ≤ heaptype2

𝐶 ⊢ eq ≤ any 𝐶 ⊢ i31 ≤ eq 𝐶 ⊢ struct ≤ eq 𝐶 ⊢ array ≤ eq

deftype ≈ struct fieldtype*

𝐶 ⊢ deftype ≤ struct

deftype ≈ array fieldtype

𝐶 ⊢ deftype ≤ array

deftype ≈ func 𝑡*1 → 𝑡*2
𝐶 ⊢ deftype ≤ func

deftype ≈ cont typeuse

𝐶 ⊢ deftype ≤ cont

𝐶 ⊢ 𝐶.types[typeidx] ≤ heaptype

𝐶 ⊢ typeidx ≤ heaptype

𝐶 ⊢ heaptype ≤ 𝐶.types[typeidx]

𝐶 ⊢ heaptype ≤ typeidx

𝐶.recs[𝑖] = sub final? typeuse* ct

𝐶 ⊢ rec.𝑖 ≤ typeuse*[𝑗]

𝐶 ⊢ heaptype ≤ any

𝐶 ⊢ none ≤ heaptype

𝐶 ⊢ heaptype ≤ func

𝐶 ⊢ nofunc ≤ heaptype

𝐶 ⊢ heaptype ≤ exn

𝐶 ⊢ noexn ≤ heaptype

𝐶 ⊢ heaptype ≤ extern

𝐶 ⊢ noextern ≤ heaptype

𝐶 ⊢ heaptype ≤ cont

𝐶 ⊢ nocont ≤ heaptype

𝐶 ⊢ bot ≤ heaptype

3.3.4 Reference Types
The reference type (ref null?1 ht1) matches the reference type (ref null?2 ht2) if:

• The heap type ht1 matches the heap type ht2.

• Either:

– null?1 is absent.

– null?2 is absent.

• Or:

– null?1 is of the form null?.

– null?2 is of the form null.
𝐶 ⊢ ht1 ≤ ht2

𝐶 ⊢ ref ht1 ≤ ref ht2

𝐶 ⊢ ht1 ≤ ht2
𝐶 ⊢ ref null? ht1 ≤ ref null ht2

3.3.5 Value Types
The value type valtype1 matches the value type valtype2 if:

• Either:

– The value type valtype1 is of the form numtype1.

– The value type valtype2 is of the form numtype2.

– The number type numtype1 matches the number type numtype2.

• Or:

– The value type valtype1 is of the form vectype1.

– The value type valtype2 is of the form vectype2.

– The vector type vectype1 matches the vector type vectype2.

• Or:

– The value type valtype1 is of the form reftype1.

– The value type valtype2 is of the form reftype2.

– The reference type reftype1 matches the reference type reftype2.

• Or:

42 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– The value type valtype1 is of the form bot.

𝐶 ⊢ bot ≤ valtype

3.3.6 Result Types
Subtyping is lifted to result types in a pointwise manner.

The result type 𝑡*1 matches the result type 𝑡*2 if:

• For all 𝑡1 in 𝑡*1, and corresponding 𝑡2 in 𝑡*2:

– The value type 𝑡1 matches the value type 𝑡2.
(𝐶 ⊢ 𝑡1 ≤ 𝑡2)

*

𝐶 ⊢ 𝑡*1 ≤ 𝑡*2

3.3.7 Instruction Types
Subtyping is further lifted to instruction types.

The instruction type 𝑡*11 →𝑥*
1
𝑡*12 matches the instruction type 𝑡*21 →𝑥*

2
𝑡*22 if:

• The result type 𝑡*21 matches the result type 𝑡*11.

• The result type 𝑡*12 matches the result type 𝑡*22.

• The local index sequence 𝑥* is of the form 𝑥*
2 ∖ 𝑥*

1.

• For all 𝑥 in 𝑥*:

– The local 𝐶.locals[𝑥] exists.

– The local 𝐶.locals[𝑥] is of the form (set 𝑡).

𝐶 ⊢ 𝑡*21 ≤ 𝑡*11 𝐶 ⊢ 𝑡*12 ≤ 𝑡*22 𝑥* = 𝑥*
2 ∖ 𝑥*

1 (𝐶.locals[𝑥] = set 𝑡)*

𝐶 ⊢ 𝑡*11 →𝑥*
1
𝑡*12 ≤ 𝑡*21 →𝑥*

2
𝑡*22

Note

Instruction types are contravariant in their input and covariant in their output. Moreover, the supertype may
ignore variables from the init set 𝑥*

1. It may also add variables to the init set, provided these are already set in
the context, i.e., are vacuously initialized.

3.3.8 Composite Types
The composite type comptype1 matches the composite type comptype2 if:

• Either:

– The composite type comptype1 is of the form (struct ft*1 ft
′*
1).

– The composite type comptype2 is of the form (struct ft*2).

– For all ft1 in ft*1, and corresponding ft2 in ft*2:

∗ The field type ft1 matches the field type ft2.

• Or:

– The composite type comptype1 is of the form (array ft1).

– The composite type comptype2 is of the form (array ft2).

– The field type ft1 matches the field type ft2.

3.3. Matching 43

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• Or:

– The composite type comptype1 is of the form (func 𝑡*11 → 𝑡*12).

– The composite type comptype2 is of the form (func 𝑡*21 → 𝑡*22).

– The result type 𝑡*21 matches the result type 𝑡*11.

– The result type 𝑡*12 matches the result type 𝑡*22.

• Or:

– The composite type comptype1 is of the form (cont tu1).

– The composite type comptype2 is of the form (cont tu2).

– The heap type tu1 matches the heap type tu2.
(𝐶 ⊢ ft1 ≤ ft2)

*

𝐶 ⊢ struct (ft*1 ft
′*
1) ≤ struct ft*2

𝐶 ⊢ ft1 ≤ ft2
𝐶 ⊢ array ft1 ≤ array ft2

𝐶 ⊢ 𝑡*21 ≤ 𝑡*11 𝐶 ⊢ 𝑡*12 ≤ 𝑡*22
𝐶 ⊢ func 𝑡*11 → 𝑡*12 ≤ func 𝑡*21 → 𝑡*22

𝐶 ⊢ tu1 ≤ tu2

𝐶 ⊢ cont tu1 ≤ cont tu2

3.3.9 Field Types
The field type (mut?1 zt1) matches the field type (mut?2 zt2) if:

• The storage type zt1 matches the storage type zt2.

• Either:

– mut?1 is absent.

– mut?2 is absent.

• Or:

– mut?1 is of the form mut.

– mut?2 is of the form mut.

– The storage type zt2 matches the storage type zt1.
𝐶 ⊢ zt1 ≤ zt2
𝐶 ⊢ zt1 ≤ zt2

𝐶 ⊢ zt1 ≤ zt2 𝐶 ⊢ zt2 ≤ zt1
𝐶 ⊢ mut zt1 ≤ mut zt2

The storage type storagetype1 matches the storage type storagetype2 if:

• Either:

– The storage type storagetype1 is of the form valtype1.

– The storage type storagetype2 is of the form valtype2.

– The value type valtype1 matches the value type valtype2.

• Or:

– The storage type storagetype1 is of the form packtype1.

– The storage type storagetype2 is of the form packtype2.

– The packed type packtype1 matches the packed type packtype2.

The packed type packtype matches only itself.

𝐶 ⊢ packtype ≤ packtype

44 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.3.10 Defined Types
The defined type deftype1 matches the defined type deftype2 if:

• Either:

– The defined type clos𝐶(deftype1) is of the form clos𝐶(deftype2).

• Or:

– The sub type unroll(deftype1) is of the form (sub final? typeuse* ct).

– The length of typeuse* is greater than 𝑖.

– The type use typeuse*[𝑖] matches the heap type deftype2.

clos𝐶(deftype1) = clos𝐶(deftype2)

𝐶 ⊢ deftype1 ≤ deftype2

unroll(deftype1) = sub final? typeuse* ct 𝐶 ⊢ typeuse*[𝑖] ≤ deftype2
𝐶 ⊢ deftype1 ≤ deftype2

Note

Note that there is no explicit definition of type equivalence, since it coincides with syntactic equality, as used
in the premise of the former rule above.

3.3.11 Limits
The limits range [𝑛1 ..𝑚1] matches the limits range [𝑛2 ..𝑚2] if:

• 𝑛1 is greater than or equal to 𝑛2.

• 𝑚1 is less than or equal to 𝑚2.
𝑛1 ≥ 𝑛2 𝑚1 ≤ 𝑚2

𝐶 ⊢ [𝑛1 ..𝑚1] ≤ [𝑛2 ..𝑚2]

3.3.12 Tag Types
The tag type deftype1 matches the tag type deftype2 if:

• The defined type deftype1 matches the defined type deftype2.

• The defined type deftype2 matches the defined type deftype1.
𝐶 ⊢ deftype1 ≤ deftype2 𝐶 ⊢ deftype2 ≤ deftype1

𝐶 ⊢ deftype1 ≤ deftype2

Note

Although the conclusion of this rule looks identical to its premise, they in fact describe different relations: the
premise invokes subtyping on defined types, while the conclusion defines it on tag types that happen to be
expressed as defined types.

3.3.13 Global Types
The global type (mut?1 valtype1) matches the global type (mut?2 valtype2) if:

• The value type valtype1 matches the value type valtype2.

• Either:

3.3. Matching 45

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– mut?1 is absent.

– mut?2 is absent.

• Or:

– mut?1 is of the form mut.

– mut?2 is of the form mut.

– The value type valtype2 matches the value type valtype1.
𝐶 ⊢ valtype1 ≤ valtype2
𝐶 ⊢ valtype1 ≤ valtype2

𝐶 ⊢ valtype1 ≤ valtype2 𝐶 ⊢ valtype2 ≤ valtype1
𝐶 ⊢ mut valtype1 ≤ mut valtype2

3.3.14 Memory Types
The memory type (addrtype limits1 page) matches the memory type (addrtype limits2 page) if:

• The limits range limits1 matches the limits range limits2.
𝐶 ⊢ limits1 ≤ limits2

𝐶 ⊢ addrtype limits1 page ≤ addrtype limits2 page

3.3.15 Table Types
The table type (addrtype limits1 reftype1) matches the table type (addrtype limits2 reftype2) if:

• The limits range limits1 matches the limits range limits2.

• The reference type reftype1 matches the reference type reftype2.

• The reference type reftype2 matches the reference type reftype1.
𝐶 ⊢ limits1 ≤ limits2 𝐶 ⊢ reftype1 ≤ reftype2 𝐶 ⊢ reftype2 ≤ reftype1

𝐶 ⊢ addrtype limits1 reftype1 ≤ addrtype limits2 reftype2

3.3.16 External Types
The external type (tag tagtype1) matches the external type (tag tagtype2) if:

• The tag type tagtype1 matches the tag type tagtype2.
𝐶 ⊢ tagtype1 ≤ tagtype2

𝐶 ⊢ tag tagtype1 ≤ tag tagtype2

The external type (global globaltype1) matches the external type (global globaltype2) if:

• The global type globaltype1 matches the global type globaltype2.
𝐶 ⊢ globaltype1 ≤ globaltype2

𝐶 ⊢ global globaltype1 ≤ global globaltype2

The external type (mem memtype1) matches the external type (mem memtype2) if:

• The memory type memtype1 matches the memory type memtype2.
𝐶 ⊢ memtype1 ≤ memtype2

𝐶 ⊢ mem memtype1 ≤ mem memtype2

The external type (table tabletype1) matches the external type (table tabletype2) if:

• The table type tabletype1 matches the table type tabletype2.
𝐶 ⊢ tabletype1 ≤ tabletype2

𝐶 ⊢ table tabletype1 ≤ table tabletype2

The external type (func deftype1) matches the external type (func deftype2) if:

46 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• The defined type deftype1 matches the defined type deftype2.
𝐶 ⊢ deftype1 ≤ deftype2

𝐶 ⊢ func deftype1 ≤ func deftype2

3.4 Instructions
Instructions are classified by instruction types that describe how they manipulate the operand stack and initialize
locals: A type 𝑡*1 →𝑥* 𝑡*2 describes the required input stack with argument values of types 𝑡*1 that an instruction
pops off and the provided output stack with result values of types 𝑡*2 that it pushes back. Moreover, it enumerates
the indices 𝑥* of locals that have been set by the instruction. In most cases, this is empty.

Note

For example, the instruction i32.add has type i32 i32 → i32, consuming two i32 values and producing one. The
instruction (local.set 𝑥) has type 𝑡 →𝑥 𝜖, provided 𝑡 is the type declared for the local 𝑥.

Typing extends to instruction sequences instr*. Such a sequence has an instruction type 𝑡*1 →𝑥* 𝑡*2 if the accumu-
lative effect of executing the instructions is consuming values of types 𝑡*1 off the operand stack, pushing new values
of types 𝑡*2, and setting all locals 𝑥*.

For some instructions, the typing rules do not fully constrain the type, and therefore allow for multiple types. Such
instructions are called polymorphic. Two degrees of polymorphism can be distinguished:

• value-polymorphic: the value type 𝑡 of one or several individual operands is unconstrained. That is the case
for all parametric instructions like drop and select.

• stack-polymorphic: the entire (or most of the) instruction type 𝑡*1 → 𝑡*2 of the instruction is uncon-
strained. That is the case for all control instructions that perform an unconditional control transfer, such
as unreachable, br, or return.

In both cases, the unconstrained types or type sequences can be chosen arbitrarily, as long as they meet the con-
straints imposed for the surrounding parts of the program.

Note

For example, the select instruction is valid with type 𝑡 𝑡 i32 → 𝑡, for any possible number type 𝑡. Consequently,
both instruction sequences

(i32.const 1) (i32.const 2) (i32.const 3) (select)

and

(f64.const +64) (f64.const +64) (f64.const +64) (select)

are valid, with 𝑡 in the typing of select being instantiated to i32 or f64, respectively.

The unreachable instruction is stack-polymorphic, and hence valid with type 𝑡*1 → 𝑡*2 for any possible sequences
of value types 𝑡*1 and 𝑡*2. Consequently,

(unreachable) (i32.add)

is valid by assuming type 𝜖 → i32 for the unreachable instruction. In contrast,

(unreachable) (i64.const 0) (i32.add)

is invalid, because there is no possible type to pick for the unreachable instruction that would make the sequence
well-typed.

3.4. Instructions 47

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The Appendix describes a type checking algorithm that efficiently implements validation of instruction sequences
as prescribed by the rules given here.

3.4.1 Parametric Instructions
nop

The instruction nop is valid with the instruction type 𝜖 → 𝜖.

𝐶 ⊢ nop : 𝜖 → 𝜖

unreachable

The instruction unreachable is valid with the instruction type 𝑡*1 → 𝑡*2 if:

• The instruction type 𝑡*1 → 𝑡*2 is valid.
𝐶 ⊢ 𝑡*1 → 𝑡*2 : ok

𝐶 ⊢ unreachable : 𝑡*1 → 𝑡*2

Note

The unreachable instruction is stack-polymorphic.

drop

The instruction drop is valid with the instruction type 𝑡 → 𝜖 if:

• The value type 𝑡 is valid.
𝐶 ⊢ 𝑡 : ok

𝐶 ⊢ drop : 𝑡 → 𝜖

Note

Both drop and select without annotation are value-polymorphic instructions.

select (𝑡*)?

The instruction (select valtype?) is valid with the instruction type 𝑡 𝑡 i32 → 𝑡 if:

• The value type 𝑡 is valid.

• Either:

– The value type sequence valtype? is of the form 𝑡.

• Or:

– The value type sequence valtype? is absent.

– The value type 𝑡 matches the value type 𝑡′.

– The value type 𝑡′ is of the form numtype or 𝑡′ is of the form vectype.
𝐶 ⊢ 𝑡 : ok

𝐶 ⊢ select 𝑡 : 𝑡 𝑡 i32 → 𝑡

𝐶 ⊢ 𝑡 : ok 𝐶 ⊢ 𝑡 ≤ 𝑡′ 𝑡′ = numtype ∨ 𝑡′ = vectype

𝐶 ⊢ select : 𝑡 𝑡 i32 → 𝑡

Note

In future versions of WebAssembly, select may allow more than one value per choice.

48 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.4.2 Control Instructions
block blocktype instr*

The instruction (block bt instr*) is valid with the instruction type 𝑡*1 → 𝑡*2 if:

• The block type bt is valid as the instruction type 𝑡*1 → 𝑡*2.

• Let 𝐶 ′ be the same context as 𝐶, but with the result type sequence 𝑡*2 prepended to the field labels.

• Under the context 𝐶 ′, the instruction sequence instr* is valid with the instruction type 𝑡*1 →𝑥* 𝑡*2.

𝐶 ⊢ bt : 𝑡*1 → 𝑡*2 {labels (𝑡*2)} ⊕ 𝐶 ⊢ instr* : 𝑡*1 →𝑥* 𝑡*2
𝐶 ⊢ block bt instr* : 𝑡*1 → 𝑡*2

Note

The notation {labels (𝑡*)}⊕𝐶 inserts the new label type at index 0, shifting all others. The same applies to all
other block instructions.

loop blocktype instr*

The instruction (loop bt instr*) is valid with the instruction type 𝑡*1 → 𝑡*2 if:

• The block type bt is valid as the instruction type 𝑡*1 → 𝑡*2.

• Let 𝐶 ′ be the same context as 𝐶, but with the result type sequence 𝑡*1 prepended to the field labels.

• Under the context 𝐶 ′, the instruction sequence instr* is valid with the instruction type 𝑡*1 →𝑥* 𝑡*2.

𝐶 ⊢ bt : 𝑡*1 → 𝑡*2 {labels (𝑡*1)} ⊕ 𝐶 ⊢ instr* : 𝑡*1 →𝑥* 𝑡*2
𝐶 ⊢ loop bt instr* : 𝑡*1 → 𝑡*2

if blocktype instr*1 else instr*2

The instruction (if bt instr*1 else instr
*
2) is valid with the instruction type 𝑡*1 i32 → 𝑡*2 if:

• The block type bt is valid as the instruction type 𝑡*1 → 𝑡*2.

• Let 𝐶 ′ be the same context as 𝐶, but with the result type sequence 𝑡*2 prepended to the field labels.

• Under the context 𝐶 ′, the instruction sequence instr*1 is valid with the instruction type 𝑡*1 →𝑥*
1
𝑡*2.

• Under the context 𝐶 ′, the instruction sequence instr*2 is valid with the instruction type 𝑡*1 →𝑥*
2
𝑡*2.

𝐶 ⊢ bt : 𝑡*1 → 𝑡*2 {labels (𝑡*2)} ⊕ 𝐶 ⊢ instr*1 : 𝑡*1 →𝑥*
1
𝑡*2 {labels (𝑡*2)} ⊕ 𝐶 ⊢ instr*2 : 𝑡*1 →𝑥*

2
𝑡*2

𝐶 ⊢ if bt instr*1 else instr
*
2 : 𝑡*1 i32 → 𝑡*2

br 𝑙

The instruction (br 𝑙) is valid with the instruction type 𝑡*1 𝑡* → 𝑡*2 if:

• The label 𝐶.labels[𝑙] exists.

• The label 𝐶.labels[𝑙] is of the form 𝑡*.

• The instruction type 𝑡*1 → 𝑡*2 is valid.

𝐶.labels[𝑙] = 𝑡* 𝐶 ⊢ 𝑡*1 → 𝑡*2 : ok

𝐶 ⊢ br 𝑙 : 𝑡*1 𝑡
* → 𝑡*2

3.4. Instructions 49

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The label index space in the context 𝐶 contains the most recent label first, so that 𝐶.labels[𝑙] performs a relative
lookup as expected. This applies to other branch instructions as well.

The br instruction is stack-polymorphic.

br_if 𝑙

The instruction (br_if 𝑙) is valid with the instruction type 𝑡* i32 → 𝑡* if:

• The label 𝐶.labels[𝑙] exists.

• The label 𝐶.labels[𝑙] is of the form 𝑡*.

𝐶.labels[𝑙] = 𝑡*

𝐶 ⊢ br_if 𝑙 : 𝑡* i32 → 𝑡*

br_table 𝑙* 𝑙𝑁

The instruction (br_table 𝑙* 𝑙′) is valid with the instruction type 𝑡*1 𝑡* i32 → 𝑡*2 if:

• For all 𝑙 in 𝑙*:

– The label 𝐶.labels[𝑙] exists.

– The result type 𝑡* matches the label 𝐶.labels[𝑙].

• The label 𝐶.labels[𝑙′] exists.

• The result type 𝑡* matches the label 𝐶.labels[𝑙′].

• The instruction type 𝑡*1 𝑡* i32 → 𝑡*2 is valid.

(𝐶 ⊢ 𝑡* ≤ 𝐶.labels[𝑙])* 𝐶 ⊢ 𝑡* ≤ 𝐶.labels[𝑙′] 𝐶 ⊢ 𝑡*1 𝑡
* i32 → 𝑡*2 : ok

𝐶 ⊢ br_table 𝑙* 𝑙′ : 𝑡*1 𝑡* i32 → 𝑡*2

Note

The br_table instruction is stack-polymorphic.

Furthermore, the result type 𝑡* is also chosen non-deterministically in this rule. Although it may seem necessary
to compute 𝑡* as the greatest lower bound of all label types in practice, a simple sequential algorithm does not
require this.

br_on_null 𝑙

The instruction (br_on_null 𝑙) is valid with the instruction type 𝑡* (ref null ht) → 𝑡* (ref ht) if:

• The label 𝐶.labels[𝑙] exists.

• The label 𝐶.labels[𝑙] is of the form 𝑡*.

• The heap type ht is valid.
𝐶.labels[𝑙] = 𝑡* 𝐶 ⊢ ht : ok

𝐶 ⊢ br_on_null 𝑙 : 𝑡* (ref null ht) → 𝑡* (ref ht)

br_on_non_null 𝑙

The instruction (br_on_non_null 𝑙) is valid with the instruction type 𝑡* (ref null ht) → 𝑡* if:

• The label 𝐶.labels[𝑙] exists.

• The label 𝐶.labels[𝑙] is of the form 𝑡* (ref null? ht).

50 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝐶.labels[𝑙] = 𝑡* (ref null? ht)

𝐶 ⊢ br_on_non_null 𝑙 : 𝑡* (ref null ht) → 𝑡*

br_on_cast 𝑙 rt1 rt2

The instruction (br_on_cast 𝑙 rt1 rt2) is valid with the instruction type 𝑡* rt1 → 𝑡* reftype if:

• The label 𝐶.labels[𝑙] exists.

• The label 𝐶.labels[𝑙] is of the form 𝑡* rt .

• The reference type rt1 is valid.

• The reference type rt2 is valid.

• The reference type rt2 matches the reference type rt1.

• The reference type rt2 matches the reference type rt .

• The reference type reftype is rt1 ∖ rt2.

𝐶.labels[𝑙] = 𝑡* rt 𝐶 ⊢ rt1 : ok 𝐶 ⊢ rt2 : ok 𝐶 ⊢ rt2 ≤ rt1 𝐶 ⊢ rt2 ≤ rt

𝐶 ⊢ br_on_cast 𝑙 rt1 rt2 : 𝑡* rt1 → 𝑡* (rt1 ∖ rt2)

br_on_cast_fail 𝑙 rt1 rt2

The instruction (br_on_cast_fail 𝑙 rt1 rt2) is valid with the instruction type 𝑡* rt1 → 𝑡* rt2 if:

• The label 𝐶.labels[𝑙] exists.

• The label 𝐶.labels[𝑙] is of the form 𝑡* rt .

• The reference type rt1 is valid.

• The reference type rt2 is valid.

• The reference type rt2 matches the reference type rt1.

• The reference type rt1 ∖ rt2 matches the reference type rt .

𝐶.labels[𝑙] = 𝑡* rt 𝐶 ⊢ rt1 : ok 𝐶 ⊢ rt2 : ok 𝐶 ⊢ rt2 ≤ rt1 𝐶 ⊢ rt1 ∖ rt2 ≤ rt

𝐶 ⊢ br_on_cast_fail 𝑙 rt1 rt2 : 𝑡* rt1 → 𝑡* rt2

call 𝑥

The instruction (call 𝑥) is valid with the instruction type 𝑡*1 → 𝑡*2 if:

• The function 𝐶.funcs[𝑥] exists.

• The expansion of 𝐶.funcs[𝑥] is (func 𝑡*1 → 𝑡*2).

𝐶.funcs[𝑥] ≈ func 𝑡*1 → 𝑡*2
𝐶 ⊢ call 𝑥 : 𝑡*1 → 𝑡*2

call_ref 𝑥

The instruction (call_ref 𝑥) is valid with the instruction type 𝑡*1 (ref null 𝑥) → 𝑡*2 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (func 𝑡*1 → 𝑡*2).

𝐶.types[𝑥] ≈ func 𝑡*1 → 𝑡*2
𝐶 ⊢ call_ref 𝑥 : 𝑡*1 (ref null 𝑥) → 𝑡*2

3.4. Instructions 51

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

call_indirect 𝑥 𝑦

The instruction (call_indirect 𝑥 𝑦) is valid with the instruction type 𝑡*1 at → 𝑡*2 if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form (at lim rt).

• The reference type rt matches the reference type (ref null func).

• The type 𝐶.types[𝑦] exists.

• The expansion of 𝐶.types[𝑦] is (func 𝑡*1 → 𝑡*2).

𝐶.tables[𝑥] = at lim rt 𝐶 ⊢ rt ≤ (ref null func) 𝐶.types[𝑦] ≈ func 𝑡*1 → 𝑡*2
𝐶 ⊢ call_indirect 𝑥 𝑦 : 𝑡*1 at → 𝑡*2

return

The instruction return is valid with the instruction type 𝑡*1 𝑡* → 𝑡*2 if:

• The result type 𝐶.return is of the form 𝑡*.

• The instruction type 𝑡*1 → 𝑡*2 is valid.

𝐶.return = (𝑡*) 𝐶 ⊢ 𝑡*1 → 𝑡*2 : ok

𝐶 ⊢ return : 𝑡*1 𝑡
* → 𝑡*2

Note

The return instruction is stack-polymorphic.

𝐶.return is absent (set to 𝜖) when validating an expression that is not a function body. This differs from it being
set to the empty result type [𝜖], which is the case for functions not returning anything.

return_call 𝑥

The instruction (return_call 𝑥) is valid with the instruction type 𝑡*3 𝑡*1 → 𝑡*4 if:

• The function 𝐶.funcs[𝑥] exists.

• The expansion of 𝐶.funcs[𝑥] is (func 𝑡*1 → 𝑡*2).

• The result type 𝐶.return is of the form 𝑡′
*
2.

• The result type 𝑡*2 matches the result type 𝑡′*2.

• The instruction type 𝑡*3 → 𝑡*4 is valid.

𝐶.funcs[𝑥] ≈ func 𝑡*1 → 𝑡*2 𝐶.return = (𝑡′
*
2) 𝐶 ⊢ 𝑡*2 ≤ 𝑡′

*
2 𝐶 ⊢ 𝑡*3 → 𝑡*4 : ok

𝐶 ⊢ return_call 𝑥 : 𝑡*3 𝑡
*
1 → 𝑡*4

Note

The return_call instruction is stack-polymorphic.

return_call_ref 𝑥

The instruction (return_call_ref 𝑥) is valid with the instruction type 𝑡*3 𝑡*1 (ref null 𝑥) → 𝑡*4 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (func 𝑡*1 → 𝑡*2).

• The result type 𝐶.return is of the form 𝑡′
*
2.

• The result type 𝑡*2 matches the result type 𝑡′*2.

52 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• The instruction type 𝑡*3 → 𝑡*4 is valid.

𝐶.types[𝑥] ≈ func 𝑡*1 → 𝑡*2 𝐶.return = (𝑡′
*
2) 𝐶 ⊢ 𝑡*2 ≤ 𝑡′

*
2 𝐶 ⊢ 𝑡*3 → 𝑡*4 : ok

𝐶 ⊢ return_call_ref 𝑥 : 𝑡*3 𝑡
*
1 (ref null 𝑥) → 𝑡*4

Note

The return_call_ref instruction is stack-polymorphic.

return_call_indirect 𝑥 𝑦

The instruction (return_call_indirect 𝑥 𝑦) is valid with the instruction type 𝑡*3 𝑡*1 at → 𝑡*4 if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form (at lim rt).

• The reference type rt matches the reference type (ref null func).

• The type 𝐶.types[𝑦] exists.

• The expansion of 𝐶.types[𝑦] is (func 𝑡*1 → 𝑡*2).

• The result type 𝐶.return is of the form 𝑡′
*
2.

• The result type 𝑡*2 matches the result type 𝑡′*2.

• The instruction type 𝑡*3 → 𝑡*4 is valid.

𝐶.tables[𝑥] = at lim rt 𝐶 ⊢ rt ≤ (ref null func)
𝐶.types[𝑦] ≈ func 𝑡*1 → 𝑡*2 𝐶.return = (𝑡′

*
2) 𝐶 ⊢ 𝑡*2 ≤ 𝑡′

*
2 𝐶 ⊢ 𝑡*3 → 𝑡*4 : ok

𝐶 ⊢ return_call_indirect 𝑥 𝑦 : 𝑡*3 𝑡
*
1 at → 𝑡*4

Note

The return_call_indirect instruction is stack-polymorphic.

throw 𝑥

The instruction (throw 𝑥) is valid with the instruction type 𝑡*1 𝑡* → 𝑡*2 if:

• The tag 𝐶.tags[𝑥] exists.

• The expansion of 𝐶.tags[𝑥] is (func 𝑡* →).

• The instruction type 𝑡*1 → 𝑡*2 is valid.

𝐶.tags[𝑥] ≈ func 𝑡* → 𝜖 𝐶 ⊢ 𝑡*1 → 𝑡*2 : ok

𝐶 ⊢ throw 𝑥 : 𝑡*1 𝑡
* → 𝑡*2

Note

The throw instruction is stack-polymorphic.

throw_ref

The instruction throw_ref is valid with the instruction type 𝑡*1 (ref null exn) → 𝑡*2 if:

• The instruction type 𝑡*1 → 𝑡*2 is valid.

3.4. Instructions 53

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝐶 ⊢ 𝑡*1 → 𝑡*2 : ok

𝐶 ⊢ throw_ref : 𝑡*1 (ref null exn) → 𝑡*2

Note

The throw_ref instruction is stack-polymorphic.

try_table blocktype catch* instr*

The instruction (try_table bt catch* instr*) is valid with the instruction type 𝑡*1 → 𝑡*2 if:

• The block type bt is valid as the instruction type 𝑡*1 → 𝑡*2.

• Let 𝐶 ′ be the same context as 𝐶, but with the result type sequence 𝑡*2 prepended to the field labels.

• Under the context 𝐶 ′, the instruction sequence instr* is valid with the instruction type 𝑡*1 →𝑥* 𝑡*2.

• For all catch in catch*:

– The catch clause catch is valid.
𝐶 ⊢ bt : 𝑡*1 → 𝑡*2 {labels (𝑡*2)} ⊕ 𝐶 ⊢ instr* : 𝑡*1 →𝑥* 𝑡*2 (𝐶 ⊢ catch : ok)*

𝐶 ⊢ try_table bt catch* instr* : 𝑡*1 → 𝑡*2

catch 𝑥 𝑙

The catch clause (catch 𝑥 𝑙) is valid if:

• The tag 𝐶.tags[𝑥] exists.

• The expansion of 𝐶.tags[𝑥] is (func 𝑡* →).

• The label 𝐶.labels[𝑙] exists.

• The result type 𝑡* matches the label 𝐶.labels[𝑙].

𝐶.tags[𝑥] ≈ func 𝑡* → 𝜖 𝐶 ⊢ 𝑡* ≤ 𝐶.labels[𝑙]

𝐶 ⊢ catch 𝑥 𝑙 : ok

catch_ref 𝑥 𝑙

The catch clause (catch_ref 𝑥 𝑙) is valid if:

• The tag 𝐶.tags[𝑥] exists.

• The expansion of 𝐶.tags[𝑥] is (func 𝑡* →).

• The label 𝐶.labels[𝑙] exists.

• The result type 𝑡* (ref exn) matches the label 𝐶.labels[𝑙].

𝐶.tags[𝑥] ≈ func 𝑡* → 𝜖 𝐶 ⊢ 𝑡* (ref exn) ≤ 𝐶.labels[𝑙]

𝐶 ⊢ catch_ref 𝑥 𝑙 : ok

catch_all 𝑙

The catch clause (catch_all 𝑙) is valid if:

• The label 𝐶.labels[𝑙] exists.

• The result type 𝜖 matches the label 𝐶.labels[𝑙].

𝐶 ⊢ 𝜖 ≤ 𝐶.labels[𝑙]

𝐶 ⊢ catch_all 𝑙 : ok

54 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

catch_all_ref 𝑙

The catch clause (catch_all_ref 𝑙) is valid if:

• The label 𝐶.labels[𝑙] exists.

• The result type (ref exn) matches the label 𝐶.labels[𝑙].

𝐶 ⊢ (ref exn) ≤ 𝐶.labels[𝑙]

𝐶 ⊢ catch_all_ref 𝑙 : ok

cont.new 𝑥

The instruction (cont.new 𝑥) is valid with the instruction type (ref null tu) → (ref 𝑥) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (cont tu).

• The expansion of tu is (func 𝑡*1 → 𝑡*2).

𝐶.types[𝑥] ≈ cont tu tu ≈𝐶 func 𝑡*1 → 𝑡*2
𝐶 ⊢ cont.new 𝑥 : (ref null tu) → (ref 𝑥)

cont.bind 𝑥 𝑥′

The instruction (cont.bind 𝑥 𝑥′) is valid with the instruction type 𝑡*3 (ref null 𝑥) → (ref 𝑥′) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (cont tu).

• The expansion of tu is (func 𝑡*3 𝑡*1 → 𝑡*2).

• The type 𝐶.types[𝑥′] exists.

• The expansion of 𝐶.types[𝑥′] is (cont tu ′).

• The expansion of tu ′ is (func 𝑡′*1 → 𝑡′
*
2).

• The composite type (func 𝑡*1 → 𝑡*2) matches the composite type (func 𝑡′*1 → 𝑡′
*
2).

𝐶.types[𝑥] ≈ cont tu tu ≈𝐶 func 𝑡*3 𝑡
*
1 → 𝑡*2

𝐶.types[𝑥′] ≈ cont tu ′ tu ′ ≈𝐶 func 𝑡′*1 → 𝑡′
*
2

𝐶 ⊢ (func 𝑡*1 → 𝑡*2) ≤ (func 𝑡′
*
1 → 𝑡′

*
2)

𝐶 ⊢ cont.bind 𝑥 𝑥′ : 𝑡*3 (ref null 𝑥) → (ref 𝑥′)

resume 𝑥 hdl*

The instruction (resume 𝑥 hdl*) is valid with the instruction type 𝑡*1 (ref null 𝑥) → 𝑡*2 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (cont tu).

• The expansion of tu is (func 𝑡*1 → 𝑡*2).

• For all hdl in hdl*:

– The effect handler hdl is valid with the result type 𝑡*2.

𝐶.types[𝑥] ≈ cont tu tu ≈𝐶 func 𝑡*1 → 𝑡*2 (𝐶 ⊢ hdl : 𝑡*2)
*

𝐶 ⊢ resume 𝑥 hdl* : 𝑡*1 (ref null 𝑥) → 𝑡*2

3.4. Instructions 55

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

resume_throw 𝑥 𝑥𝑒 hdl*

The instruction (resume_throw 𝑥 xe hdl*) is valid with the instruction type te* (ref null 𝑥) → 𝑡*2 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (cont tu).

• The expansion of tu is (func 𝑡*1 → 𝑡*2).

• The tag 𝐶.tags[xe] exists.

• The expansion of 𝐶.tags[xe] is (func te* →).

• The effect handler hdl is valid with the result type 𝑡*2.

𝐶.types[𝑥] ≈ cont tu tu ≈𝐶 func 𝑡*1 → 𝑡*2 𝐶.tags[xe] ≈ func te* → 𝜖 𝐶 ⊢ hdl : 𝑡*2
𝐶 ⊢ resume_throw 𝑥 xe hdl* : te* (ref null 𝑥) → 𝑡*2

on 𝑥 𝑙

The effect handler (on 𝑥 𝑙) is valid with the result type 𝑡* if:

• The tag 𝐶.tags[𝑥] exists.

• The expansion of 𝐶.tags[𝑥] is (func 𝑡*1 → 𝑡*2).

• The label 𝐶.labels[𝑙] exists.

• The label 𝐶.labels[𝑙] is of the form 𝑡′
*
1 (ref nul 𝑥

′).

• The result type 𝑡*1 matches the result type 𝑡′*1.

• The type 𝐶.types[𝑥′] exists.

• The expansion of 𝐶.types[𝑥′] is (cont tu).

• The expansion of tu is (func 𝑡′*2 → 𝑡′
*
).

• The composite type (func 𝑡*2 → 𝑡*) matches the composite type (func 𝑡′*2 → 𝑡′
*
).

𝐶.tags[𝑥] ≈ func 𝑡*1 → 𝑡*2 𝐶.labels[𝑙] = 𝑡′
*
1 (ref nul 𝑥

′) 𝐶 ⊢ 𝑡*1 ≤ 𝑡′
*
1

𝐶.types[𝑥′] ≈ cont tu tu ≈𝐶 func 𝑡′
*
2 → 𝑡′

*
𝐶 ⊢ (func 𝑡*2 → 𝑡*) ≤ (func 𝑡′

*
2 → 𝑡′

*
)

𝐶 ⊢ on 𝑥 𝑙 : 𝑡*

on 𝑥 switch

The effect handler (on 𝑥 switch) is valid with the result type 𝑡* if:

• The tag 𝐶.tags[𝑥] exists.

• The expansion of 𝐶.tags[𝑥] is (func → 𝑡*).

𝐶.tags[𝑥] ≈ func 𝜖 → 𝑡*

𝐶 ⊢ on 𝑥 switch : 𝑡*

suspend 𝑥

The instruction (suspend 𝑥) is valid with the instruction type 𝑡*1 → 𝑡*2 if:

• The tag 𝐶.tags[𝑥] exists.

• The expansion of 𝐶.tags[𝑥] is (func 𝑡*1 → 𝑡*2).

𝐶.tags[𝑥] ≈ func 𝑡*1 → 𝑡*2
𝐶 ⊢ suspend 𝑥 : 𝑡*1 → 𝑡*2

56 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

switch 𝑥 𝑥𝑒

The instruction (switch 𝑥 xe) is valid with the instruction type 𝑡*1 (ref null 𝑥) → 𝑡*2 if:

• The tag 𝐶.tags[xe] exists.

• The expansion of 𝐶.tags[xe] is (func → 𝑡*).

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (cont tu1).

• The expansion of tu1 is (func 𝑡*1 (ref nul 𝑦) → te*1).

• The result type te*1 matches the result type 𝑡*.

• The type 𝐶.types[𝑦] exists.

• The expansion of 𝐶.types[𝑦] is (cont tu2).

• The expansion of tu2 is (func 𝑡*2 → te*2).

• The result type 𝑡* matches the result type te*2.

𝐶.tags[xe] ≈ func 𝜖 → 𝑡*

𝐶.types[𝑥] ≈ cont tu1 tu1 ≈𝐶 func 𝑡*1 (ref nul 𝑦) → te*1 𝐶 ⊢ te*1 ≤ 𝑡*

𝐶.types[𝑦] ≈ cont tu2 tu2 ≈𝐶 func 𝑡*2 → te*2 𝐶 ⊢ 𝑡* ≤ te*2
𝐶 ⊢ switch 𝑥 xe : 𝑡*1 (ref null 𝑥) → 𝑡*2

3.4.3 Variable Instructions
local.get 𝑥

The instruction (local.get 𝑥) is valid with the instruction type 𝜖 → 𝑡 if:

• The local 𝐶.locals[𝑥] exists.

• The local 𝐶.locals[𝑥] is of the form (set 𝑡).

𝐶.locals[𝑥] = set 𝑡

𝐶 ⊢ local.get 𝑥 : 𝜖 → 𝑡

local.set 𝑥

The instruction (local.set 𝑥) is valid with the instruction type 𝑡→𝑥 𝜖 if:

• The local 𝐶.locals[𝑥] exists.

• The local 𝐶.locals[𝑥] is of the form (init 𝑡).

𝐶.locals[𝑥] = init 𝑡

𝐶 ⊢ local.set 𝑥 : 𝑡 →𝑥 𝜖

local.tee 𝑥

The instruction (local.tee 𝑥) is valid with the instruction type 𝑡→𝑥 𝑡 if:

• The local 𝐶.locals[𝑥] exists.

• The local 𝐶.locals[𝑥] is of the form (init 𝑡).

𝐶.locals[𝑥] = init 𝑡

𝐶 ⊢ local.tee 𝑥 : 𝑡 →𝑥 𝑡

3.4. Instructions 57

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

global.get 𝑥

The instruction (global.get 𝑥) is valid with the instruction type 𝜖 → 𝑡 if:

• The global 𝐶.globals[𝑥] exists.

• The global 𝐶.globals[𝑥] is of the form (mut? 𝑡).

𝐶.globals[𝑥] = mut? 𝑡

𝐶 ⊢ global.get 𝑥 : 𝜖 → 𝑡

global.set 𝑥

The instruction (global.set 𝑥) is valid with the instruction type 𝑡 → 𝜖 if:

• The global 𝐶.globals[𝑥] exists.

• The global 𝐶.globals[𝑥] is of the form (mut 𝑡).

𝐶.globals[𝑥] = mut 𝑡

𝐶 ⊢ global.set 𝑥 : 𝑡 → 𝜖

3.4.4 Table Instructions
table.get 𝑥

The instruction (table.get 𝑥) is valid with the instruction type at → rt if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form (at lim rt).

𝐶.tables[𝑥] = at lim rt

𝐶 ⊢ table.get 𝑥 : at → rt

table.set 𝑥

The instruction (table.set 𝑥) is valid with the instruction type at rt → 𝜖 if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form (at lim rt).

𝐶.tables[𝑥] = at lim rt

𝐶 ⊢ table.set 𝑥 : at rt → 𝜖

table.size 𝑥

The instruction (table.size 𝑥) is valid with the instruction type 𝜖 → at if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form (at lim rt).

𝐶.tables[𝑥] = at lim rt

𝐶 ⊢ table.size 𝑥 : 𝜖 → at

table.grow 𝑥

The instruction (table.grow 𝑥) is valid with the instruction type rt at → i32 if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form (at lim rt).

𝐶.tables[𝑥] = at lim rt

𝐶 ⊢ table.grow 𝑥 : rt at → i32

58 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

table.fill 𝑥

The instruction (table.fill 𝑥) is valid with the instruction type at rt at → 𝜖 if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form (at lim rt).

𝐶.tables[𝑥] = at lim rt

𝐶 ⊢ table.fill 𝑥 : at rt at → 𝜖

table.copy 𝑥 𝑦

The instruction (table.copy 𝑥1 𝑥2) is valid with the instruction type at1 at2 addrtype → 𝜖 if:

• The table 𝐶.tables[𝑥1] exists.

• The table 𝐶.tables[𝑥1] is of the form (at1 lim1 rt1).

• The table 𝐶.tables[𝑥2] exists.

• The table 𝐶.tables[𝑥2] is of the form (at2 lim2 rt2).

• The reference type rt2 matches the reference type rt1.

• The address type addrtype is min(at1, at2).

𝐶.tables[𝑥1] = at1 lim1 rt1 𝐶.tables[𝑥2] = at2 lim2 rt2 𝐶 ⊢ rt2 ≤ rt1
𝐶 ⊢ table.copy 𝑥1 𝑥2 : at1 at2 min(at1, at2) → 𝜖

table.init 𝑥 𝑦

The instruction (table.init 𝑥 𝑦) is valid with the instruction type at i32 i32 → 𝜖 if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form (at lim rt1).

• The element segment 𝐶.elems[𝑦] exists.

• The element segment 𝐶.elems[𝑦] is of the form rt2.

• The reference type rt2 matches the reference type rt1.
𝐶.tables[𝑥] = at lim rt1 𝐶.elems[𝑦] = rt2 𝐶 ⊢ rt2 ≤ rt1

𝐶 ⊢ table.init 𝑥 𝑦 : at i32 i32 → 𝜖

elem.drop 𝑥

The instruction (elem.drop 𝑥) is valid with the instruction type 𝜖 → 𝜖 if:

• The element segment 𝐶.elems[𝑥] exists.

𝐶.elems[𝑥] = rt

𝐶 ⊢ elem.drop 𝑥 : 𝜖 → 𝜖

3.4.5 Memory Instructions
𝑡.load 𝑥 memarg

The instruction (nt .load 𝑥 memarg) is valid with the instruction type at → nt if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to |nt |/8.

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ |nt |/8
𝐶 ⊢ nt .load 𝑥 memarg : at → nt

3.4. Instructions 59

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝑡.load𝑁_sx 𝑥 memarg

The instruction (i𝑁.load𝑀_sx 𝑥 memarg) is valid with the instruction type at → i𝑁 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to 𝑀/8.

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ 𝑀/8

𝐶 ⊢ i𝑁.load𝑀_sx 𝑥 memarg : at → i𝑁

𝑡.store 𝑥 memarg

The instruction (nt .store 𝑥 memarg) is valid with the instruction type at nt → 𝜖 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to |nt |/8.

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ |nt |/8
𝐶 ⊢ nt .store 𝑥 memarg : at nt → 𝜖

𝑡.store𝑁 𝑥 memarg

The instruction (i𝑁.store𝑀 𝑥 memarg) is valid with the instruction type at i𝑁 → 𝜖 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to 𝑀/8.

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ 𝑀/8

𝐶 ⊢ i𝑁.store𝑀 𝑥 memarg : at i𝑁 → 𝜖

v128.load 𝑥 memarg

The instruction (v128.load 𝑥 memarg) is valid with the instruction type at → v128 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to |v128|/8.

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ |v128|/8
𝐶 ⊢ v128.load 𝑥 memarg : at → v128

v128.load𝑁x𝑀_sx 𝑥 memarg

The instruction (v128.load𝑀x𝑁_sx 𝑥 memarg) is valid with the instruction type at → v128 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to 𝑀/8 ·𝑁 .

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ 𝑀/8 ·𝑁
𝐶 ⊢ v128.load𝑀x𝑁_sx 𝑥 memarg : at → v128

60 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

v128.load𝑁_splat 𝑥 memarg

The instruction (v128.load𝑁_splat 𝑥 memarg) is valid with the instruction type at → v128 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to 𝑁/8.

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ 𝑁/8

𝐶 ⊢ v128.load𝑁_splat 𝑥 memarg : at → v128

v128.load𝑁_zero 𝑥 memarg

The instruction (v128.load𝑁_zero 𝑥 memarg) is valid with the instruction type at → v128 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to 𝑁/8.

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ 𝑁/8

𝐶 ⊢ v128.load𝑁_zero 𝑥 memarg : at → v128

v128.load𝑁_lane 𝑥 memarg laneidx

The instruction (v128.load𝑁_lane 𝑥 memarg 𝑖) is valid with the instruction type at v128 → v128 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to 𝑁/8.

• 𝑖 is less than 128/𝑁 .

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ 𝑁/8 𝑖 < 128/𝑁

𝐶 ⊢ v128.load𝑁_lane 𝑥 memarg 𝑖 : at v128 → v128

v128.store 𝑥 memarg

The instruction (v128.store 𝑥 memarg) is valid with the instruction type at v128 → 𝜖 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to |v128|/8.

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ |v128|/8
𝐶 ⊢ v128.store 𝑥 memarg : at v128 → 𝜖

v128.store𝑁_lane 𝑥 memarg laneidx

The instruction (v128.store𝑁_lane 𝑥 memarg 𝑖) is valid with the instruction type at v128 → 𝜖 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• 2memarg.align is less than or equal to 𝑁/8.

• 𝑖 is less than 128/𝑁 .

𝐶.mems[𝑥] = at lim page 2memarg.align ≤ 𝑁/8 𝑖 < 128/𝑁

𝐶 ⊢ v128.store𝑁_lane 𝑥 memarg 𝑖 : at v128 → 𝜖

3.4. Instructions 61

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

memory.size 𝑥

The instruction (memory.size 𝑥) is valid with the instruction type 𝜖 → at if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

𝐶.mems[𝑥] = at lim page

𝐶 ⊢ memory.size 𝑥 : 𝜖 → at

memory.grow 𝑥

The instruction (memory.grow 𝑥) is valid with the instruction type at → at if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

𝐶.mems[𝑥] = at lim page

𝐶 ⊢ memory.grow 𝑥 : at → at

memory.fill 𝑥

The instruction (memory.fill 𝑥) is valid with the instruction type at i32 at → 𝜖 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

𝐶.mems[𝑥] = at lim page

𝐶 ⊢ memory.fill 𝑥 : at i32 at → 𝜖

memory.copy 𝑥 𝑦

The instruction (memory.copy 𝑥1 𝑥2) is valid with the instruction type at1 at2 addrtype → 𝜖 if:

• The memory 𝐶.mems[𝑥1] exists.

• The memory 𝐶.mems[𝑥1] is of the form (at1 lim1 page).

• The memory 𝐶.mems[𝑥2] exists.

• The memory 𝐶.mems[𝑥2] is of the form (at2 lim2 page).

• The address type addrtype is min(at1, at2).

𝐶.mems[𝑥1] = at1 lim1 page 𝐶.mems[𝑥2] = at2 lim2 page

𝐶 ⊢ memory.copy 𝑥1 𝑥2 : at1 at2 min(at1, at2) → 𝜖

memory.init 𝑥 𝑦

The instruction (memory.init 𝑥 𝑦) is valid with the instruction type at i32 i32 → 𝜖 if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form (at lim page).

• The data segment 𝐶.datas[𝑦] exists.

• The data segment 𝐶.datas[𝑦] is of the form ok.

𝐶.mems[𝑥] = at lim page 𝐶.datas[𝑦] = ok

𝐶 ⊢ memory.init 𝑥 𝑦 : at i32 i32 → 𝜖

62 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

data.drop 𝑥

The instruction (data.drop 𝑥) is valid with the instruction type 𝜖 → 𝜖 if:

• The data segment 𝐶.datas[𝑥] exists.

• The data segment 𝐶.datas[𝑥] is of the form ok.

𝐶.datas[𝑥] = ok

𝐶 ⊢ data.drop 𝑥 : 𝜖 → 𝜖

3.4.6 Reference Instructions
ref.null ht

The instruction (ref.null ht) is valid with the instruction type 𝜖 → (ref null ht) if:

• The heap type ht is valid.
𝐶 ⊢ ht : ok

𝐶 ⊢ ref.null ht : 𝜖 → (ref null ht)

ref.func 𝑥

The instruction (ref.func 𝑥) is valid with the instruction type 𝜖 → (ref dt) if:

• The function 𝐶.funcs[𝑥] exists.

• The function 𝐶.funcs[𝑥] is of the form dt .

• 𝑥 is contained in 𝐶.refs.
𝐶.funcs[𝑥] = dt 𝑥 ∈ 𝐶.refs

𝐶 ⊢ ref.func 𝑥 : 𝜖 → (ref dt)

ref.is_null

The instruction ref.is_null is valid with the instruction type (ref null ht) → i32 if:

• The heap type ht is valid.
𝐶 ⊢ ht : ok

𝐶 ⊢ ref.is_null : (ref null ht) → i32

ref.as_non_null

The instruction ref.as_non_null is valid with the instruction type (ref null ht) → (ref ht) if:

• The heap type ht is valid.
𝐶 ⊢ ht : ok

𝐶 ⊢ ref.as_non_null : (ref null ht) → (ref ht)

ref.eq

The instruction ref.eq is valid with the instruction type (ref null eq) (ref null eq) → i32.

𝐶 ⊢ ref.eq : (ref null eq) (ref null eq) → i32

3.4. Instructions 63

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ref.test rt

The instruction (ref.test rt) is valid with the instruction type rt ′ → i32 if:

• The reference type rt is valid.

• The reference type rt ′ is valid.

• The reference type rt matches the reference type rt ′.

𝐶 ⊢ rt : ok 𝐶 ⊢ rt ′ : ok 𝐶 ⊢ rt ≤ rt ′

𝐶 ⊢ ref.test rt : rt ′ → i32

Note

The liberty to pick a supertype rt ′ allows typing the instruction with the least precise super type of rt as input,
that is, the top type in the corresponding heap subtyping hierarchy.

ref.cast rt

The instruction (ref.cast rt) is valid with the instruction type rt ′ → rt if:

• The reference type rt is valid.

• The reference type rt ′ is valid.

• The reference type rt matches the reference type rt ′.

𝐶 ⊢ rt : ok 𝐶 ⊢ rt ′ : ok 𝐶 ⊢ rt ≤ rt ′

𝐶 ⊢ ref.cast rt : rt ′ → rt

Note

The liberty to pick a supertype rt ′ allows typing the instruction with the least precise super type of rt as input,
that is, the top type in the corresponding heap subtyping hierarchy.

3.4.7 Aggregate Reference Instructions
struct.new 𝑥

The instruction (struct.new 𝑥) is valid with the instruction type 𝑡* → (ref 𝑥) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (struct (mut? zt)*).

• The value type sequence 𝑡* is unpack(zt)*.

𝐶.types[𝑥] ≈ struct (mut? zt)*

𝐶 ⊢ struct.new 𝑥 : unpack(zt)* → (ref 𝑥)

struct.new_default 𝑥

The instruction (struct.new_default 𝑥) is valid with the instruction type 𝜖 → (ref 𝑥) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (struct (mut? zt)*).

• For all zt in zt*:

– A default value for unpack(zt) is defined.

𝐶.types[𝑥] ≈ struct (mut? zt)* (defaultunpack(zt) ̸= 𝜖)*

𝐶 ⊢ struct.new_default 𝑥 : 𝜖 → (ref 𝑥)

64 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

struct.get_sx ? 𝑥 𝑦

The instruction (struct.get_sx ? 𝑥 𝑖) is valid with the instruction type (ref null 𝑥) → 𝑡 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (struct ft*).

• The length of ft* is greater than 𝑖.

• The field type ft*[𝑖] is of the form (mut? zt).

• The signedness sx ? is absent if and only if zt is a packed type.

• The value type 𝑡 is unpack(zt).

𝐶.types[𝑥] ≈ struct ft* ft*[𝑖] = mut? zt sx ? = 𝜖 ⇔ zt = unpack(zt)

𝐶 ⊢ struct.get_sx ? 𝑥 𝑖 : (ref null 𝑥) → unpack(zt)

struct.set 𝑥 𝑦

The instruction (struct.set 𝑥 𝑖) is valid with the instruction type (ref null 𝑥) 𝑡 → 𝜖 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (struct ft*).

• The length of ft* is greater than 𝑖.

• The field type ft*[𝑖] is of the form (mut zt).

• The value type 𝑡 is unpack(zt).

𝐶.types[𝑥] ≈ struct ft* ft*[𝑖] = mut zt

𝐶 ⊢ struct.set 𝑥 𝑖 : (ref null 𝑥) unpack(zt) → 𝜖

array.new 𝑥

The instruction (array.new 𝑥) is valid with the instruction type 𝑡 i32 → (ref 𝑥) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut? zt)).

• The value type 𝑡 is unpack(zt).

𝐶.types[𝑥] ≈ array (mut? zt)

𝐶 ⊢ array.new 𝑥 : unpack(zt) i32 → (ref 𝑥)

array.new_default 𝑥

The instruction (array.new_default 𝑥) is valid with the instruction type i32 → (ref 𝑥) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut? zt)).

• A default value for unpack(zt) is defined.

𝐶.types[𝑥] ≈ array (mut? zt) defaultunpack(zt) ̸= 𝜖

𝐶 ⊢ array.new_default 𝑥 : i32 → (ref 𝑥)

array.new_fixed 𝑥 𝑛

The instruction (array.new_fixed 𝑥 𝑛) is valid with the instruction type 𝑡𝑛 → (ref 𝑥) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut? zt)).

• The value type 𝑡 is unpack(zt).

3.4. Instructions 65

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝐶.types[𝑥] ≈ array (mut? zt)

𝐶 ⊢ array.new_fixed 𝑥 𝑛 : unpack(zt)𝑛 → (ref 𝑥)

array.new_elem 𝑥 𝑦

The instruction (array.new_elem 𝑥 𝑦) is valid with the instruction type i32 i32 → (ref 𝑥) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut? rt)).

• The element segment 𝐶.elems[𝑦] exists.

• The element segment 𝐶.elems[𝑦] matches the reference type rt .

𝐶.types[𝑥] ≈ array (mut? rt) 𝐶 ⊢ 𝐶.elems[𝑦] ≤ rt

𝐶 ⊢ array.new_elem 𝑥 𝑦 : i32 i32 → (ref 𝑥)

array.new_data 𝑥 𝑦

The instruction (array.new_data 𝑥 𝑦) is valid with the instruction type i32 i32 → (ref 𝑥) if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut? zt)).

• The value type unpack(zt) is of the form numtype or unpack(zt) is of the form vectype.

• The data segment 𝐶.datas[𝑦] exists.

• The data segment 𝐶.datas[𝑦] is of the form ok.

𝐶.types[𝑥] ≈ array (mut? zt) unpack(zt) = numtype ∨ unpack(zt) = vectype 𝐶.datas[𝑦] = ok

𝐶 ⊢ array.new_data 𝑥 𝑦 : i32 i32 → (ref 𝑥)

array.get_sx ? 𝑥

The instruction (array.get_sx ? 𝑥) is valid with the instruction type (ref null 𝑥) i32 → 𝑡 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut? zt)).

• The signedness sx ? is absent if and only if zt is a packed type.

• The value type 𝑡 is unpack(zt).

𝐶.types[𝑥] ≈ array (mut? zt) sx ? = 𝜖 ⇔ zt = unpack(zt)

𝐶 ⊢ array.get_sx ? 𝑥 : (ref null 𝑥) i32 → unpack(zt)

array.set 𝑥

The instruction (array.set 𝑥) is valid with the instruction type (ref null 𝑥) i32 𝑡 → 𝜖 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut zt)).

• The value type 𝑡 is unpack(zt).

𝐶.types[𝑥] ≈ array (mut zt)

𝐶 ⊢ array.set 𝑥 : (ref null 𝑥) i32 unpack(zt) → 𝜖

array.len

The instruction array.len is valid with the instruction type (ref null array) → i32.

𝐶 ⊢ array.len : (ref null array) → i32

66 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

array.fill 𝑥

The instruction (array.fill 𝑥) is valid with the instruction type (ref null 𝑥) i32 𝑡 i32 → 𝜖 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut zt)).

• The value type 𝑡 is unpack(zt).

𝐶.types[𝑥] ≈ array (mut zt)

𝐶 ⊢ array.fill 𝑥 : (ref null 𝑥) i32 unpack(zt) i32 → 𝜖

array.copy 𝑥 𝑦

The instruction (array.copy 𝑥1 𝑥2) is valid with the instruction type (ref null 𝑥1) i32 (ref null 𝑥2) i32 i32 → 𝜖 if:

• The type 𝐶.types[𝑥1] exists.

• The expansion of 𝐶.types[𝑥1] is (array (mut zt1)).

• The type 𝐶.types[𝑥2] exists.

• The expansion of 𝐶.types[𝑥2] is (array (mut? zt2)).

• The storage type zt2 matches the storage type zt1.

𝐶.types[𝑥1] ≈ array (mut zt1) 𝐶.types[𝑥2] ≈ array (mut? zt2) 𝐶 ⊢ zt2 ≤ zt1
𝐶 ⊢ array.copy 𝑥1 𝑥2 : (ref null 𝑥1) i32 (ref null 𝑥2) i32 i32 → 𝜖

array.init_elem 𝑥 𝑦

The instruction (array.init_elem 𝑥 𝑦) is valid with the instruction type (ref null 𝑥) i32 i32 i32 → 𝜖 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut zt)).

• The element segment 𝐶.elems[𝑦] exists.

• The element segment 𝐶.elems[𝑦] matches the storage type zt .

𝐶.types[𝑥] ≈ array (mut zt) 𝐶 ⊢ 𝐶.elems[𝑦] ≤ zt

𝐶 ⊢ array.init_elem 𝑥 𝑦 : (ref null 𝑥) i32 i32 i32 → 𝜖

array.init_data 𝑥 𝑦

The instruction (array.init_data 𝑥 𝑦) is valid with the instruction type (ref null 𝑥) i32 i32 i32 → 𝜖 if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (array (mut zt)).

• The value type unpack(zt) is of the form numtype or unpack(zt) is of the form vectype.

• The data segment 𝐶.datas[𝑦] exists.

• The data segment 𝐶.datas[𝑦] is of the form ok.

𝐶.types[𝑥] ≈ array (mut zt) unpack(zt) = numtype ∨ unpack(zt) = vectype 𝐶.datas[𝑦] = ok

𝐶 ⊢ array.init_data 𝑥 𝑦 : (ref null 𝑥) i32 i32 i32 → 𝜖

3.4.8 Scalar Reference Instructions
ref.i31

The instruction ref.i31 is valid with the instruction type i32 → (ref i31).

𝐶 ⊢ ref.i31 : i32 → (ref i31)

3.4. Instructions 67

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

i31.get_sx

The instruction (i31.get_sx) is valid with the instruction type (ref null i31) → i32.

𝐶 ⊢ i31.get_sx : (ref null i31) → i32

3.4.9 External Reference Instructions
any.convert_extern

The instruction any.convert_extern is valid with the instruction type (ref null?1 extern) → (ref null?2 any) if:

• null?1 is of the form null?2.

null?1 = null?2
𝐶 ⊢ any.convert_extern : (ref null?1 extern) → (ref null?2 any)

extern.convert_any

The instruction extern.convert_any is valid with the instruction type (ref null?1 any) → (ref null?2 extern) if:

• null?1 is of the form null?2.

null?1 = null?2
𝐶 ⊢ extern.convert_any : (ref null?1 any) → (ref null?2 extern)

3.4.10 Numeric Instructions
𝑡.const 𝑐

The instruction (nt .const 𝑐nt) is valid with the instruction type 𝜖 → nt .

𝐶 ⊢ nt .const 𝑐nt : 𝜖 → nt

𝑡.unop

The instruction (nt .unopnt) is valid with the instruction type nt → nt .

𝐶 ⊢ nt .unopnt : nt → nt

𝑡.binop

The instruction (nt .binopnt) is valid with the instruction type nt nt → nt .

𝐶 ⊢ nt .binopnt : nt nt → nt

𝑡.testop

The instruction (nt .testopnt) is valid with the instruction type nt → i32.

𝐶 ⊢ nt .testopnt : nt → i32

𝑡.relop

The instruction (nt .relopnt) is valid with the instruction type nt nt → i32.

𝐶 ⊢ nt .relopnt : nt nt → i32

68 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝑡1.cvtop_𝑡2_sx ?

The instruction (nt1.cvtop_nt2) is valid with the instruction type nt2 → nt1.

𝐶 ⊢ nt1.cvtop_nt2 : nt2 → nt1

3.4.11 Vector Instructions
Vector instructions can have a prefix to describe the shape of the operand. Packed numeric types, i8 and i16, are not
value types. An auxiliary function maps such packed type shapes to value types:

unpack(i𝑁x𝑁) = unpack(i𝑁)

v128.const 𝑐

The instruction (v128.const 𝑐) is valid with the instruction type 𝜖 → v128.

𝐶 ⊢ v128.const 𝑐 : 𝜖 → v128

v128.vvunop

The instruction (v128.vvunop) is valid with the instruction type v128 → v128.

𝐶 ⊢ v128.vvunop : v128 → v128

v128.vvbinop

The instruction (v128.vvbinop) is valid with the instruction type v128 v128 → v128.

𝐶 ⊢ v128.vvbinop : v128 v128 → v128

v128.vvternop

The instruction (v128.vvternop) is valid with the instruction type v128 v128 v128 → v128.

𝐶 ⊢ v128.vvternop : v128 v128 v128 → v128

v128.vvtestop

The instruction (v128.vvtestop) is valid with the instruction type v128 → i32.

𝐶 ⊢ v128.vvtestop : v128 → i32

shape.vunop

The instruction (sh.vunop) is valid with the instruction type v128 → v128.

𝐶 ⊢ sh.vunop : v128 → v128

shape.vbinop

The instruction (sh.vbinop) is valid with the instruction type v128 v128 → v128.

𝐶 ⊢ sh.vbinop : v128 v128 → v128

3.4. Instructions 69

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

shape.vternop

The instruction (sh.vternop) is valid with the instruction type v128 v128 v128 → v128.

𝐶 ⊢ sh.vternop : v128 v128 v128 → v128

shape.vtestop

The instruction (sh.vtestop) is valid with the instruction type v128 → i32.

𝐶 ⊢ sh.vtestop : v128 → i32

shape.vrelop

The instruction (sh.vrelop) is valid with the instruction type v128 v128 → v128.

𝐶 ⊢ sh.vrelop : v128 v128 → v128

ishape.vishiftop

The instruction (sh.vshiftop) is valid with the instruction type v128 i32 → v128.

𝐶 ⊢ sh.vshiftop : v128 i32 → v128

ishape.bitmask

The instruction (sh.bitmask) is valid with the instruction type v128 → i32.

𝐶 ⊢ sh.bitmask : v128 → i32

i8x16.vswizzlop

The instruction (sh.vswizzlop) is valid with the instruction type v128 v128 → v128.

𝐶 ⊢ sh.vswizzlop : v128 v128 → v128

i8x16.shuffle laneidx 16

The instruction (sh.shuffle 𝑖*) is valid with the instruction type v128 v128 → v128 if:

• For all 𝑖 in 𝑖*:

– The lane index 𝑖 is less than 2 · dim(sh).

(𝑖 < 2 · dim(sh))*

𝐶 ⊢ sh.shuffle 𝑖* : v128 v128 → v128

shape.splat

The instruction (sh.splat) is valid with the instruction type numtype → v128 if:

• The number type numtype is unpack(sh).

𝐶 ⊢ sh.splat : unpack(sh) → v128

shape.extract_lane_sx ? laneidx

The instruction (sh.extract_lane_sx ? 𝑖) is valid with the instruction type v128 → numtype if:

• The lane index 𝑖 is less than dim(sh).

• The number type numtype is unpack(sh).

𝑖 < dim(sh)

𝐶 ⊢ sh.extract_lane_sx ? 𝑖 : v128 → unpack(sh)

70 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

shape.replace_lane laneidx

The instruction (sh.replace_lane 𝑖) is valid with the instruction type v128 numtype → v128 if:

• The lane index 𝑖 is less than dim(sh).

• The number type numtype is unpack(sh).

𝑖 < dim(sh)

𝐶 ⊢ sh.replace_lane 𝑖 : v128 unpack(sh) → v128

ishape1.vextunop_ishape2
The instruction (sh1.vextunop_sh2) is valid with the instruction type v128 → v128.

𝐶 ⊢ sh1.vextunop_sh2 : v128 → v128

ishape1.vextbinop_ishape2
The instruction (sh1.vextbinop_sh2) is valid with the instruction type v128 v128 → v128.

𝐶 ⊢ sh1.vextbinop_sh2 : v128 v128 → v128

ishape1.vextternop_ishape2
The instruction (sh1.vextternop_sh2) is valid with the instruction type v128 v128 v128 → v128.

𝐶 ⊢ sh1.vextternop_sh2 : v128 v128 v128 → v128

ishape1.narrow_ishape2_sx

The instruction (sh1.narrow_sh2_sx) is valid with the instruction type v128 v128 → v128.

𝐶 ⊢ sh1.narrow_sh2_sx : v128 v128 → v128

shape.vcvtop_half ?_shape_sx ?_zero?

The instruction (sh1.vcvtop_sh2) is valid with the instruction type v128 → v128.

𝐶 ⊢ sh1.vcvtop_sh2 : v128 → v128

3.4.12 Instruction Sequences
Typing of instruction sequences is defined recursively.

Empty Instruction Sequence: 𝜖

The instruction sequence instr* is valid with the instruction type it if:

• Either:

– The instruction sequence instr* is empty.

– The instruction type it is of the form 𝜖 → 𝜖.

• Or:

– The instruction sequence instr* is of the form instr1 instr
*
2.

– The instruction type it is of the form 𝑡*1 →𝑥*
1 𝑥*

2
𝑡*3.

– The instruction instr1 is valid with the instruction type 𝑡*1 →𝑥*
1
𝑡*2.

3.4. Instructions 71

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– For all 𝑥1 in 𝑥*
1:

∗ The local 𝐶.locals[𝑥1] exists.

∗ The local 𝐶.locals[𝑥1] is of the form (init 𝑡).

– Under the context 𝐶 with the local types of 𝑥*
1 updated to (set 𝑡)*, the instruction sequence instr*2 is

valid with the instruction type 𝑡*2 →𝑥*
2
𝑡*3.

• Or:

– The instruction sequence instr* is valid with the instruction type it ′′.

– The instruction type it ′′ matches the instruction type it .

– The instruction type it is valid.

• Or:

– The instruction type it is of the form 𝑡* 𝑡*1 →𝑥* 𝑡* 𝑡*2.

– The instruction sequence instr* is valid with the instruction type 𝑡*1 →𝑥* 𝑡*2.

– The result type 𝑡* is valid.

𝐶 ⊢ 𝜖 : 𝜖 → 𝜖

𝐶 ⊢ instr1 : 𝑡*1 →𝑥*
1
𝑡*2 (𝐶.locals[𝑥1] = init 𝑡)* 𝐶[.local[𝑥*

1] = (set 𝑡)*] ⊢ instr*2 : 𝑡*2 →𝑥*
2
𝑡*3

𝐶 ⊢ instr1 instr
*
2 : 𝑡*1 →𝑥*

1 𝑥*
2
𝑡*3

𝐶 ⊢ instr* : it 𝐶 ⊢ it ≤ it ′ 𝐶 ⊢ it ′ : ok

𝐶 ⊢ instr* : it ′
𝐶 ⊢ instr* : 𝑡*1 →𝑥* 𝑡*2 𝐶 ⊢ 𝑡* : ok

𝐶 ⊢ instr* : (𝑡* 𝑡*1) →𝑥* (𝑡* 𝑡*2)

Note

In combination with the previous rule, subsumption allows to compose instructions whose types would not
directly fit otherwise. For example, consider the instruction sequence

(i32.const 1) (i32.const 2) (i32.add)

To type this sequence, its subsequence (i32.const 2) (i32.add) needs to be valid with an intermediate type. But
the direct type of (i32.const 2) is 𝜖 → i32, not matching the two inputs expected by i32.add. The subsumption
rule allows to weaken the type of (const i32 2) to the supertype i32 → i32 i32, such that it can be composed with
i32.add and yields the intermediate type i32 → i32 i32 for the subsequence. That can in turn be composed with
the first constant.

Furthermore, subsumption allows to drop init variables 𝑥* from the instruction type in a context where they are
not needed, for example, at the end of the body of a block.

3.4.13 Expressions
Expressions expr are classified by result types 𝑡*.

The expression instr* is valid with the result type 𝑡* if:

• The instruction sequence instr* is valid with the instruction type 𝜖 → 𝑡*.
𝐶 ⊢ instr* : 𝜖 →𝜖 𝑡

*

𝐶 ⊢ instr* : 𝑡*

72 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Constant Expressions

In a constant expression, all instructions must be constant.

instr* is constant if:

• For all instr in instr*:

– instr is constant.

val is constant if:

• Either:

– The value val is of the form (nt .const 𝑐nt).

• Or:

– The value val is of the form (vt .const 𝑐vt).

• Or:

– The value val is of the form (ref.null ht).

• Or:

– The value val is of the form ref.i31.

• Or:

– The value val is of the form (ref.func 𝑥).

• Or:

– The value val is of the form (struct.new 𝑥).

• Or:

– The value val is of the form (struct.new_default 𝑥).

• Or:

– The value val is of the form (array.new 𝑥).

• Or:

– The value val is of the form (array.new_default 𝑥).

• Or:

– The value val is of the form (array.new_fixed 𝑥 𝑛).

• Or:

– The value val is of the form any.convert_extern.

• Or:

– The value val is of the form extern.convert_any.

• Or:

– The value val is of the form (global.get 𝑥).

– The global 𝐶.globals[𝑥] exists.

– The global 𝐶.globals[𝑥] is of the form (𝜖 𝑡).

• Or:

– The value val is of the form (i𝑁.binop).

– i𝑁 is contained in [i32; i64].

– binop is contained in [add; sub; mul].

3.4. Instructions 73

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(𝐶 ⊢ instr const)*

𝐶 ⊢ instr* const

𝐶 ⊢ (nt .const 𝑐nt) const 𝐶 ⊢ (vt .const 𝑐vt) const

i𝑁 ∈ i32 i64 binop ∈ add sub mul

𝐶 ⊢ (i𝑁.binop) const

𝐶 ⊢ (ref.null ht) const 𝐶 ⊢ (ref.i31) const 𝐶 ⊢ (ref.func 𝑥) const

𝐶 ⊢ (struct.new 𝑥) const 𝐶 ⊢ (struct.new_default 𝑥) const

𝐶 ⊢ (array.new 𝑥) const 𝐶 ⊢ (array.new_default 𝑥) const 𝐶 ⊢ (array.new_fixed 𝑥 𝑛) const

𝐶 ⊢ (any.convert_extern) const 𝐶 ⊢ (extern.convert_any) const

𝐶.globals[𝑥] = 𝑡

𝐶 ⊢ (global.get 𝑥) const

Note

Currently, constant expressions occurring in globals are further constrained in that contained global.get in-
structions are only allowed to refer to imported or previously defined globals. Constant expressions occurring
in tables may only have global.get instructions that refer to imported globals. This is enforced in the validation
rule for modules by constraining the context 𝐶 accordingly.

The definition of constant expression may be extended in future versions of WebAssembly.

3.5 Modules
Modules are valid when all the components they contain are valid. To verify this, most definitions are themselves
classified with a suitable type.

3.5.1 Types
The sequence of types defined in a module is validated incrementally, yielding a sequence of defined types repre-
senting them individually.

The type definition (type rectype) is valid with the defined type sequence dt* if:

• The length of 𝐶.types is equal to 𝑥.

• The defined type sequence dt* is of the form roll*𝑥(rectype).

• Let 𝐶 ′ be the same context as 𝐶, but with the defined type sequence dt* appended to the field types.

• Under the context 𝐶 ′, the recursive type rectype is valid for the type index 𝑥.

𝑥 = |𝐶.types| dt* = roll*𝑥(rectype) 𝐶 ⊕ {types dt*} ⊢ rectype : ok(𝑥)

𝐶 ⊢ type rectype : dt*

The type definition sequence type* is valid with the defined type sequence deftype* if:

• Either:

– The type definition sequence type* is empty.

– The defined type sequence deftype* is empty.

• Or:

– The type definition sequence type* is of the form type1 type
′*.

– The defined type sequence deftype* is of the form dt*1 dt
*.

– The type definition type1 is valid with the defined type sequence dt*1.

74 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– Let 𝐶 ′ be the same context as 𝐶, but with the defined type sequence dt*1 appended to the field types.

– Under the context 𝐶 ′, the type definition sequence type ′* is valid with the defined type sequence dt*.

𝐶 ⊢ 𝜖 : 𝜖

𝐶 ⊢ type1 : dt*1 𝐶 ⊕ {types dt*1} ⊢ type* : dt*

𝐶 ⊢ type1 type
* : dt*1 dt

*

3.5.2 Tags
Tags tag are classified by their tag types, which are defined types expanding to function types.

The tag (tag tagtype) is valid with the tag type tagtype ′ if:

• The tag type tagtype is valid.

• The tag type tagtype ′ is clos𝐶(tagtype).
𝐶 ⊢ tagtype : ok

𝐶 ⊢ tag tagtype : clos𝐶(tagtype)

3.5.3 Globals
Globals global are classified by global types.

The global (global globaltype expr) is valid with the global type globaltype if:

• The global type globaltype is valid.

• The global type globaltype is of the form (mut? 𝑡).

• The expression expr is valid with the value type 𝑡.

• expr is constant.

𝐶 ⊢ globaltype : ok globaltype = mut? 𝑡 𝐶 ⊢ expr : 𝑡 const

𝐶 ⊢ global globaltype expr : globaltype

Sequences of globals are handled incrementally, such that each definition has access to previous definitions.

The global sequence global* is valid with the global type sequence globaltype* if:

• Either:

– The global sequence global* is empty.

– The global type sequence globaltype* is empty.

• Or:

– The global sequence global* is of the form global1 global
′*.

– The global type sequence globaltype* is of the form gt1 gt
*.

– The global global1 is valid with the global type gt1.

– Let 𝐶 ′ be the same context as 𝐶, but with the global type sequence gt1 appended to the field globals.

– Under the context 𝐶 ′, the global sequence global ′* is valid with the global type sequence gt*.

𝐶 ⊢ 𝜖 : 𝜖

𝐶 ⊢ global1 : gt1 𝐶 ⊕ {globals gt1} ⊢ global* : gt*

𝐶 ⊢ global1 global
* : gt1 gt

*

3.5. Modules 75

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3.5.4 Memories
Memories mem are classified by memory types.

The memory (memory memtype) is valid with the memory type memtype if:

• The memory type memtype is valid.
𝐶 ⊢ memtype : ok

𝐶 ⊢ memory memtype : memtype

3.5.5 Tables
Tables table are classified by table types.

The table (table tabletype expr) is valid with the table type tabletype if:

• The table type tabletype is valid.

• The table type tabletype is of the form (at lim rt).

• The expression expr is valid with the value type rt .

• expr is constant.
𝐶 ⊢ tabletype : ok tabletype = at lim rt 𝐶 ⊢ expr : rt const

𝐶 ⊢ table tabletype expr : tabletype

3.5.6 Functions
Functions func are classified by defined types that expand to function types of the form func 𝑡*1 → 𝑡*2.

The function (func 𝑥 local* expr) is valid with the type 𝐶.types[𝑥] if:

• The type 𝐶.types[𝑥] exists.

• The expansion of 𝐶.types[𝑥] is (func 𝑡*1 → 𝑡*2).

• For all local in local*:

– The local local is valid with the local type lt .

• lt* is the concatenation of all such lt .

• Under the context 𝐶 with the field locals appended by (set 𝑡1)
* lt* and the field labels appended by 𝑡*2 and

the field return appended by 𝑡*2, the expression expr is valid with the result type 𝑡*2.

𝐶.types[𝑥] ≈ func 𝑡*1 → 𝑡*2 (𝐶 ⊢ local : lt)* 𝐶 ⊕ {locals (set 𝑡1)* lt*, labels (𝑡*2), return (𝑡*2)} ⊢ expr : 𝑡*2
𝐶 ⊢ func 𝑥 local* expr : 𝐶.types[𝑥]

3.5.7 Locals
Locals local are classified with local types.

The local (local 𝑡) is valid with the local type (init 𝑡) if:

• Either:

– The initialization status init is of the form set.

– A default value for 𝑡 is defined.

• Or:

– The initialization status init is of the form unset.

– A default value for 𝑡 is not defined.

76 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

default𝑡 ̸= 𝜖

𝐶 ⊢ local 𝑡 : set 𝑡

default𝑡 = 𝜖

𝐶 ⊢ local 𝑡 : unset 𝑡

Note

For cases where both rules are applicable, the former yields the more permissable type.

3.5.8 Data Segments
Data segments data are classified by the singleton data type, which merely expresses well-formedness.

The memory segment (data 𝑏* datamode) is valid if:

• The data mode datamode is valid.
𝐶 ⊢ datamode : ok

𝐶 ⊢ data 𝑏* datamode : ok

The data mode datamode is valid if:

• Either:

– The data mode datamode is of the form (active 𝑥 expr).

– The memory 𝐶.mems[𝑥] exists.

– The memory 𝐶.mems[𝑥] is of the form (at lim page).

– The expression expr is valid with the value type at .

– expr is constant.

• Or:

– The data mode datamode is of the form passive.
𝐶.mems[𝑥] = at lim page 𝐶 ⊢ expr : at const

𝐶 ⊢ active 𝑥 expr : ok 𝐶 ⊢ passive : ok

3.5.9 Element Segments
Element segments elem are classified by their element type.

The table segment (elem elemtype expr* elemmode) is valid with the element type elemtype if:

• The reference type elemtype is valid.

• For all expr in expr*:

– The expression expr is valid with the value type elemtype .

– expr is constant.

• The element mode elemmode is valid with the element type elemtype.
𝐶 ⊢ elemtype : ok (𝐶 ⊢ expr : elemtype const)* 𝐶 ⊢ elemmode : elemtype

𝐶 ⊢ elem elemtype expr* elemmode : elemtype

The element mode elemmode is valid with the element type rt if:

• Either:

– The element mode elemmode is of the form (active 𝑥 expr).

– The table 𝐶.tables[𝑥] exists.

– The table 𝐶.tables[𝑥] is of the form (at lim rt ′).

– The reference type rt matches the reference type rt ′.

– The expression expr is valid with the value type at .

3.5. Modules 77

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– expr is constant.

• Or:

– The element mode elemmode is of the form passive.

• Or:

– The element mode elemmode is of the form declare.
𝐶.tables[𝑥] = at lim rt ′ 𝐶 ⊢ rt ≤ rt ′ 𝐶 ⊢ expr : at const

𝐶 ⊢ active 𝑥 expr : rt 𝐶 ⊢ passive : rt 𝐶 ⊢ declare : rt

3.5.10 Start Function
The start function (start 𝑥) is valid if:

• The function 𝐶.funcs[𝑥] exists.

• The expansion of 𝐶.funcs[𝑥] is (func →).

𝐶.funcs[𝑥] ≈ func 𝜖 → 𝜖

𝐶 ⊢ start 𝑥 : ok

3.5.11 Imports
Imports import are classified by external types.

The import (import name1 name2 xt) is valid with the external type externtype if:

• The external type xt is valid.

• The external type externtype is clos𝐶(xt).
𝐶 ⊢ xt : ok

𝐶 ⊢ import name1 name2 xt : clos𝐶(xt)

3.5.12 Exports
Exports export are classified by their external type.

The export (export name externidx) is valid with the name name and the external type xt if:

• The external index externidx is valid with the external type xt .
𝐶 ⊢ externidx : xt

𝐶 ⊢ export name externidx : name xt

tag 𝑥

The external index (tag 𝑥) is valid with the external type (tag jt) if:

• The tag 𝐶.tags[𝑥] exists.

• The tag 𝐶.tags[𝑥] is of the form jt .

𝐶.tags[𝑥] = jt

𝐶 ⊢ tag 𝑥 : tag jt

78 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

global 𝑥

The external index (global 𝑥) is valid with the external type (global gt) if:

• The global 𝐶.globals[𝑥] exists.

• The global 𝐶.globals[𝑥] is of the form gt .

𝐶.globals[𝑥] = gt

𝐶 ⊢ global 𝑥 : global gt

memory 𝑥

The external index (memory 𝑥) is valid with the external type (mem mt) if:

• The memory 𝐶.mems[𝑥] exists.

• The memory 𝐶.mems[𝑥] is of the form mt .

𝐶.mems[𝑥] = mt

𝐶 ⊢ memory 𝑥 : mem mt

table 𝑥

The external index (table 𝑥) is valid with the external type (table tt) if:

• The table 𝐶.tables[𝑥] exists.

• The table 𝐶.tables[𝑥] is of the form tt .

𝐶.tables[𝑥] = tt

𝐶 ⊢ table 𝑥 : table tt

func 𝑥

The external index (func 𝑥) is valid with the external type (func dt) if:

• The function 𝐶.funcs[𝑥] exists.

• The function 𝐶.funcs[𝑥] is of the form dt .

𝐶.funcs[𝑥] = dt

𝐶 ⊢ func 𝑥 : func dt

3.5.13 Modules
Modules are classified by their mapping from the external types of their imports to those of their exports.

A module is entirely closed, that is, its components can only refer to definitions that appear in the module itself.
Consequently, no initial context is required. Instead, the context 𝐶 for validation of the module’s content is con-
structed from the definitions in the module.

The module (module type* import* tag* global* mem* table* func* data* elem* start? export*) is valid with
the module type moduletype if:

• Under the context {return 𝜖}, the type definition sequence type* is valid with the defined type sequence dt ′*.

• For all import in import*:

– Under the context {types dt ′*, return 𝜖}, the import import is valid with the external type xt i.

• xt*i is the concatenation of all such xt i.

• For all tag in tag*:

– Under the context 𝐶 ′, the tag tag is valid with the tag type jt .

• jt* is the concatenation of all such jt .

• Under the context 𝐶 ′, the global sequence global* is valid with the global type sequence gt*.

3.5. Modules 79

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• For all mem in mem*:

– Under the context 𝐶 ′, the memory mem is valid with the memory type mt .

• mt* is the concatenation of all such mt .

• For all table in table*:

– Under the context 𝐶 ′, the table table is valid with the table type tt .

• tt* is the concatenation of all such tt .

• For all func in func*:

– The function func is valid with the defined type dt .

• dt* is the concatenation of all such dt .

• For all data in data*:

– The memory segment data is valid.

• ok* is the concatenation of all such ok .

• For all elem in elem*:

– The table segment elem is valid with the element type rt .

• rt* is the concatenation of all such rt .

• If start is defined, then:

– The start function start is valid.

• For all export in export*:

– The export export is valid with the name nm and the external type xte.

• nm* is the concatenation of all such nm .

• xt*e is the concatenation of all such xte.

• nm* disjoint is true.

• The context 𝐶 is of the form 𝐶 ′ with the field tags appended by jt*i jt* and the field globals appended by
gt* and the field mems appended by mt*i mt* and the field tables appended by tt*i tt* and the field datas
appended by ok* and the field elems appended by rt*.

• The context 𝐶 ′ is of the form {types dt ′*, globals gt*i , funcs dt
*
i dt

, return 𝜖, refs 𝑥}.

• The function index sequence 𝑥* is of the form funcidx(global* mem* table* elem*).

• The tag type sequence jt*i is of the form tags(xt*i).

• The global type sequence gt*i is of the form globals(xt*i).

• The memory type sequence mt*i is of the form mems(xt*i).

• The table type sequence tt*i is of the form tables(xt*i).

• The defined type sequence dt*i is of the form funcs(xt*i).

• The module type moduletype is clos𝐶(xt*i → xt*e).

{} ⊢ type* : dt ′
*

({types dt ′*} ⊢ import : xt i)
*

(𝐶 ′ ⊢ tag : jt)* 𝐶 ′ ⊢ global* : gt* (𝐶 ′ ⊢ mem : mt)* (𝐶 ′ ⊢ table : tt)* (𝐶 ⊢ func : dt)*

(𝐶 ⊢ data : ok)* (𝐶 ⊢ elem : rt)* (𝐶 ⊢ start : ok)? (𝐶 ⊢ export : nm xte)
* nm* disjoint

𝐶 = 𝐶 ′ ⊕ {tags jt*i jt*, globals gt*, mems mt*i mt*, tables tt*i tt
, datas ok, elems rt*}

𝐶 ′ = {types dt ′*, globals gt*i , funcs dt
*
i dt

, refs 𝑥} 𝑥* = funcidx(global* mem* table* elem*)
jt*i = tags(xt*i) gt*i = globals(xt*i) mt*i = mems(xt*i) tt*i = tables(xt*i) dt*i = funcs(xt*i)

⊢module type* import* tag* global* mem* table* func* data* elem* start? export* : clos𝐶(xt
*
i → xt*e)

80 Chapter 3. Validation

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

All functions in a module are mutually recursive. Consequently, the definition of the context 𝐶 in this rule
is recursive: it depends on the outcome of validation of the function, table, memory, and global definitions
contained in the module, which itself depends on 𝐶. However, this recursion is just a specification device. All
types needed to construct 𝐶 can easily be determined from a simple pre-pass over the module that does not
perform any actual validation.

Globals, however, are not recursive but evaluated sequentially, such that each constant expressions only has
access to imported or previously defined globals.

3.5. Modules 81

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

82 Chapter 3. Validation

CHAPTER 4

Execution

4.1 Conventions
WebAssembly code is executed when instantiating a module or invoking an exported function on the resulting
module instance.

Execution behavior is defined in terms of an abstract machine that models the program state. It includes a stack,
which records operand values and control constructs, and an abstract store containing global state.

For each instruction, there is a rule that specifies the effect of its execution on the program state. Furthermore,
there are rules describing the instantiation of a module. As with validation, all rules are given in two equivalent
forms:

1. In prose, describing the execution in intuitive form.

2. In formal notation, describing the rule in mathematical form.18

Note

As with validation, the prose and formal rules are equivalent, so that understanding of the formal notation is
not required to read this specification. The formalism offers a more concise description in notation that is used
widely in programming languages semantics and is readily amenable to mathematical proof.

4.1.1 Prose Notation
Execution is specified by stylised, step-wise rules for each instruction of the abstract syntax. The following con-
ventions are adopted in stating these rules.

• The execution rules implicitly assume a given store 𝑠.

• The execution rules also assume the presence of an implicit stack that is modified by pushing or popping
values, labels, and frames.

• Certain rules require the stack to contain at least one frame. The most recent frame is referred to as the
current frame.

18 The semantics is derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan Gohman, Luke
Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly19. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

19 https://dl.acm.org/citation.cfm?doid=3062341.3062363

83

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• Both the store and the current frame are mutated by replacing some of their components. Such replacement
is assumed to apply globally.

• The execution of an instruction may trap, in which case the entire computation is aborted and no further
modifications to the store are performed by it. (Other computations can still be initiated afterwards.)

• The execution of an instruction may also end in a jump to a designated target, which defines the next instruc-
tion to execute.

• Execution can enter and exit instruction sequences that form blocks.

• Instruction sequences are implicitly executed in order, unless a trap, jump, or exception occurs.

• In various places the rules contain assertions expressing crucial invariants about the program state.

4.1.2 Formal Notation

Note

This section gives a brief explanation of the notation for specifying execution formally. For the interested reader,
a more thorough introduction can be found in respective text books.20

The formal execution rules use a standard approach for specifying operational semantics, rendering them into
reduction rules. Every rule has the following general form:

configuration →˓ configuration

A configuration is a syntactic description of a program state. Each rule specifies one step of execution. As long
as there is at most one reduction rule applicable to a given configuration, reduction – and thereby execution – is
deterministic. WebAssembly has only very few exceptions to this, which are noted explicitly in this specification.

For WebAssembly, a configuration typically is a tuple (𝑠; 𝑓 ; instr*) consisting of the current store 𝑠, the call frame
𝑓 of the current function, and the sequence of instructions that is to be executed. (A more precise definition is
given later.)

To avoid unnecessary clutter, the store 𝑠 and the frame 𝑓 are often combined into a state 𝑧, which is a pair (𝑠; 𝑓).
Moreover, 𝑧 is omitted from reduction rules that do not touch them.

There is no separate representation of the stack. Instead, it is conveniently represented as part of the configuration’s
instruction sequence. In particular, values are defined to coincide with const and ref instructions, and a sequence
of such instructions can be interpreted as an operand “stack” that grows to the right.

Note

For example, the reduction rule for the i32.add instruction can be given as follows:

(i32.const 𝑛1) (i32.const 𝑛2) (i32.add) →˓ (i32.const (𝑛1 + 𝑛2) mod 232)

Per this rule, two const instructions and the add instruction itself are removed from the instruction stream and
replaced with one new const instruction. This can be interpreted as popping two values off the stack and pushing
the result.

When no result is produced, an instruction reduces to the empty sequence:

nop →˓ 𝜖

Labels and frames are similarly defined to be part of an instruction sequence.
20 For example: Benjamin Pierce. Types and Programming Languages21. The MIT Press 2002
21 https://www.cis.upenn.edu/~bcpierce/tapl/

84 Chapter 4. Execution

https://www.cis.upenn.edu/~bcpierce/tapl/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The order of reduction is determined by the details of the reduction rules. Usually, the left-most instruction that is
not a constant will be the subject of the next reduction step.

Reduction terminates when no more reduction rules are applicable. Soundness of the WebAssembly type system
guarantees that this is only the case when the original instruction sequence has either been reduced to a sequence
of value instructions, which can be interpreted as the values of the resulting operand stack, or if an exception or
trap occurred.

Note

For example, the following instruction sequence,

(f64.const 𝑞1) (f64.const 𝑞2) (f64.neg) (f64.const 𝑞3) (f64.add) (f64.mul)

terminates after three steps:

→˓ (f64.const 𝑞1) (f64.const 𝑞4) (f64.const 𝑞3) (f64.add) (f64.mul)
→˓ (f64.const 𝑞1) (f64.const 𝑞5) (f64.mul)
→˓ (f64.const 𝑞6)

where 𝑞4 = −𝑞2 and 𝑞5 = −𝑞2 + 𝑞3 and 𝑞6 = 𝑞1 · (−𝑞2 + 𝑞3).

4.2 Runtime Structure
Store, stack, and other runtime structure forming the WebAssembly abstract machine, such as values or module
instances, are made precise in terms of additional auxiliary syntax.

4.2.1 Values
WebAssembly computations manipulate values of either the four basic number types, i.e., integers and floating-
point data of 32 or 64 bit width each, or vectors of 128 bit width, or of reference type.

In most places of the semantics, values of different types can occur. In order to avoid ambiguities, values are
therefore represented with an abstract syntax that makes their type explicit. It is convenient to reuse the same
notation as for the const instructions and ref.null producing them.

References other than null are represented with additional administrative instructions. They either are scalar ref-
erences, containing a 31-bit integer, structure references, pointing to a specific structure address, array references,
pointing to a specific array address, function references, pointing to a specific function address, exception refer-
ences, pointing to a specific exception address, continuation references, pointing to a specific continuation address,
or host references pointing to an uninterpreted form of host address defined by the embedder. Any of the aformen-
tioned references can furthermore be wrapped up as an external reference.

val ::= num | vec | ref

num ::= numtype.const numnumtype

vec ::= vectype.const vecvectype

ref ::= addrref
| ref.null heaptype

addrref ::= ref.i31 u31
| ref.struct structaddr
| ref.array arrayaddr
| ref.func funcaddr
| ref.exn exnaddr
| ref.cont contaddr
| ref.host hostaddr
| ref.extern addrref

4.2. Runtime Structure 85

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

Future versions of WebAssembly may add additional forms of values.

Value types can have an associated default value; it is the respective value 0 for number types, 0 for vector types,
and null for nullable reference types. For other references, no default value is defined, default𝑡 hence is an optional
value val?.

defaulti𝑁 = (i𝑁.const 0)
defaultf𝑁 = (f𝑁.const +0)
defaultv𝑁 = (v𝑁.const 0)
defaultref null ht = (ref.null ht)
defaultref ht = 𝜖

Convention

• The meta variable 𝑟 ranges over reference values where clear from context.

4.2.2 Results
A result is the outcome of a computation. It is either a sequence of values, a thrown exception, or a trap.

result ::= val* | (ref.exn exnaddr) throw_ref | trap

4.2.3 Store
The store represents all global state that can be manipulated by WebAssembly programs. It consists of the runtime
representation of all instances of functions, tables, memories, globals, tags, element segments, data segments, and
structures, arrays, exceptions or continuations that have been allocated during the life time of the abstract machine.

It is an invariant of the semantics that no element or data instance is addressed from anywhere else but the owning
module instances.

Syntactically, the store is defined as a record listing the existing instances of each category:

store ::= {tags taginst*
globals globalinst*

mems meminst*

tables tableinst*

funcs funcinst*

datas datainst*

elems eleminst*

structs structinst*

arrays arrayinst*

exns exninst*

conts continst?
*}

Note

In practice, implementations may apply techniques like garbage collection or reference counting to remove
objects from the store that are no longer referenced. However, such techniques are not semantically observable,
and hence outside the scope of this specification.

86 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Convention

• The meta variable 𝑠 ranges over stores where clear from context.

4.2.4 Addresses
Function instances, table instances, memory instances, global instances, tag instances, element instances, data
instances and structure, array, exception instances or continuation instances in the store are referenced with abstract
addresses. These are simply indices into the respective store component. In addition, an embedder may supply an
uninterpreted set of host addresses.

addr ::= 0 | 1 | 2 | . . .
funcaddr ::= addr
tableaddr ::= addr
memaddr ::= addr
globaladdr ::= addr

tagaddr ::= addr
elemaddr ::= addr
dataaddr ::= addr

structaddr ::= addr
arrayaddr ::= addr
exnaddr ::= addr
contaddr ::= addr
hostaddr ::= addr

An embedder may assign identity to exported store objects corresponding to their addresses, even where this iden-
tity is not observable from within WebAssembly code itself (such as for function instances or immutable globals).

Note

Addresses are dynamic, globally unique references to runtime objects, in contrast to indices, which are static,
module-local references to their original definitions. A memory address memaddr denotes the abstract address
of a memory instance in the store, not an offset inside a memory instance.

There is no specific limit on the number of allocations of store objects, hence logical addresses can be arbitrarily
large natural numbers.

Conventions

• The notation addr(𝐴) denotes the set of addresses from address space addr occurring free in 𝐴. We some-
times reinterpret this set as the list of its elements, without assuming any particular order.

4.2.5 External Addresses
An external address is the runtime address of an entity that can be imported or exported. It is an address denoting
either a function instance, global instance, table instance, memory instance, or tag instance in the shared store.

externaddr ::= tag tagaddr | global globaladdr | mem memaddr | table tableaddr | func funcaddr

4.2. Runtime Structure 87

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.2.6 Module Instances
A module instance is the runtime representation of a module. It is created by instantiating a module, and collects
runtime representations of all entities that are imported, defined, or exported by the module.

moduleinst ::= {types deftype*
tags tagaddr*

globals globaladdr*

mems memaddr*

tables tableaddr*

funcs funcaddr*

datas dataaddr*

elems elemaddr*

exports exportinst*}

Each component references runtime instances corresponding to respective declarations from the original module
– whether imported or defined – in the order of their static indices. Function instances, table instances, memory
instances, global instances, and tag instances are denoted by their respective addresses in the store.

It is an invariant of the semantics that all export instances in a given module instance have different names.

Note

All record fields except exports are to be considered private components of a module instance. They are not
accessible to other modules, only to function instances originating from the same module.

4.2.7 Function Instances
A function instance is the runtime representation of a function. It effectively is a closure of the original function
over the runtime module instance of its originating module. The module instance is used to resolve references to
other definitions during execution of the function.

funcinst ::= {type deftype,module moduleinst , code code}
code ::= func | hostfunc

A host function is a function expressed outside WebAssembly but passed to a module as an import. The definition
and behavior of host functions are outside the scope of this specification. For the purpose of this specification, it
is assumed that when invoked, a host function behaves non-deterministically, but within certain constraints that
ensure the integrity of the runtime.

Note

Function instances are immutable, and their identity is not observable by WebAssembly code. However, an
embedder might provide implicit or explicit means for distinguishing their addresses.

4.2.8 Table Instances
A table instance is the runtime representation of a table. It records its type and holds a sequence of reference
values.

tableinst ::= {type tabletype, elem ref *}

Table elements can be mutated through table instructions, the execution of an active element segment, or by external
means provided by the embedder.

It is an invariant of the semantics that all table elements have a type matching the element type of tabletype. It
also is an invariant that the length of the element sequence never exceeds the maximum size of tabletype.

88 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.2.9 Memory Instances
A memory instance is the runtime representation of a linear memory. It records its type and holds a sequence of
bytes.

meminst ::= {type memtype, bytes byte*}

The length of the sequence always is a multiple of the WebAssembly page size, which is defined to be the constant
65536 – abbreviated 64 Ki.

A memory’s bytes can be mutated through memory instructions, the execution of an active data segment, or by
external means provided by the embedder.

It is an invariant of the semantics that the length of the byte sequence, divided by page size, never exceeds the
maximum size of memtype.

4.2.10 Global Instances
A global instance is the runtime representation of a global variable. It records its type and holds an individual
value.

globalinst ::= {type globaltype, value val}

The value of mutable globals can be mutated through variable instructions or by external means provided by the
embedder.

It is an invariant of the semantics that the value has a type matching the value type of globaltype.

4.2.11 Tag Instances
A tag instance is the runtime representation of a tag definition. It records the defined type of the tag.

taginst ::= {type tagtype}

4.2.12 Element Instances
An element instance is the runtime representation of an element segment. It holds a list of references and its type.

eleminst ::= {type elemtype, elem ref *}

It is an invariant of the semantics that all elements of a segment have a type matching elemtype.

4.2.13 Data Instances
An data instance is the runtime representation of a data segment. It holds a list of bytes.

datainst ::= {bytes byte*}

4.2.14 Export Instances
An export instance is the runtime representation of an export. It defines the export’s name and the associated
external address.

exportinst ::= {name name, addr externaddr}

4.2. Runtime Structure 89

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Conventions

The following auxiliary functions are assumed on sequences of external addresses. They extract addresses of a
specific kind in an order-preserving fashion:

• funcs(xa*) extracts all function addresses from xa*,

• tables(xa*) extracts all table addresses from xa*,

• mems(xa*) extracts all memory addresses from xa*,

• globals(xa*) extracts all global addresses from xa*,

• tags(xa*) extracts all tag addresses from xa*.

4.2.15 Aggregate Instances
A structure instance is the runtime representation of a heap object allocated from a structure type. Likewise,
an array instance is the runtime representation of a heap object allocated from an array type. Both record their
respective defined type and hold a list of the values of their fields.

structinst ::= {type deftype, fields fieldval*}
arrayinst ::= {type deftype, fields fieldval*}
fieldval ::= val | packval
packval ::= packtype.pack i𝑁

Conventions

• Conversion of a regular value to a field value is defined as follows:

packvaltype(val) = val
packpacktype(i32.const 𝑖) = packtype.pack wrap32,|packtype|(𝑖)

• The inverse conversion of a field value to a regular value is defined as follows:

unpack𝜖valtype(val) = val
unpacksxpacktype(packtype.pack 𝑖) = i32.const extendsx|packtype|,32(𝑖)

4.2.16 Exception Instances
An exception instance is the runtime representation of an exception produced by a throw instruction. It holds the
address of the respective tag and the argument values.

exninst ::= {tag tagaddr , fields val*}

4.2.17 Continuation Instances
A continuation instance is the runtime representation of a continuation produced by a suspend or switch instrucion.

gframe ::= label𝑛 {instr*}
| frame𝑛 {frame}
| handler𝑛 {catch*}
| prompt {addrhdl*}

continst ::= vals val* [_] instr*
| frame val* gframe continst instr*

90 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Conventions

• Filling the hole of a continuation instance with values and instructions is defined as follows:

contfill(vals val* [_] instr*, val ′*, instr ′*) = vals val* val ′
*
[_] instr ′* instr*

contfill(frame val* gframe continst instr*, val ′
*
, instr ′

*
) = frame val* gframe contfill(continst , val ′

*
, instr ′

*
) instr*

• Finding a corresponding handler of a tag is defined as follows:

gethandlersuspend(𝜖, ea) = 𝜖
gethandlersuspend((on ea ′ switch) addrhdl*, ea) = gethandlersuspend(addrhdl*, ea)
gethandlersuspend((on ea ′ 𝑙) addrhdl*, ea) = 𝑙 if ea = ea ′

gethandlersuspend((on ea ′ 𝑙) addrhdl*, ea) = gethandlersuspend(addrhdl*, ea) otherwise
gethandlerswitch(𝜖, ea) = false
gethandlerswitch((on ea ′ 𝑙) addrhdl*, ea) = gethandlerswitch(addrhdl*, ea)
gethandlerswitch((on ea ′ switch) addrhdl*, ea) = true if ea = ea ′

gethandlerswitch((on ea ′ switch) addrhdl*, ea) = gethandlerswitch(addrhdl*, ea) otherwise

• Converting syntactic handlers to runtime handlers is defined as follows:

hdlinst(𝑧, (on 𝑥 𝑙)) = on 𝑧.tags[𝑥] 𝑙
hdlinst(𝑧, (on 𝑥 switch)) = on 𝑧.tags[𝑥] switch

4.2.18 Stack
Besides the store, most instructions interact with an implicit stack. The stack contains the two kinds of entries:

• Values: the operands of instructions.

• Control Frames: currently active control flow structures.

The latter can in turn be one of the following:

• Labels: active structured control instructions that can be targeted by branches.

• (Call) Frames: the activation records of active function calls.

• Handlers: active exception handlers.

• Prompts: active effect handlers.

Note

Where clear from context, call frame is abbreviated to just frame.

All these entries can occur on the stack in any order during the execution of a program. Stack entries are described
by abstract syntax as follows.

Note

It is possible to model the WebAssembly semantics using separate stacks for operands, control constructs, and
calls. However, because the stacks are interdependent, additional book keeping about associated stack heights
would be required. For the purpose of this specification, an interleaved representation is simpler.

Values

Values are represented by themselves.

4.2. Runtime Structure 91

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Labels

Labels carry an argument arity 𝑛 and their associated branch target, which is expressed syntactically as an instruc-
tion sequence:

label ::= label𝑛{instr*}

Intuitively, instr* is the continuation to execute when the branch is taken, in place of the original control construct.

Note

For example, a loop label has the form

label𝑛{(loop bt . . .)}

When performing a branch to this label, this executes the loop, effectively restarting it from the beginning.
Conversely, a simple block label has the form

label𝑛{𝜖}

When branching, the empty continuation ends the targeted block, such that execution can proceed with consec-
utive instructions.

Call Frames

Call frames carry the return arity 𝑛 of the respective function, hold the values of its locals (including arguments)
in the order corresponding to their static local indices, and a reference to the function’s own module instance:

callframe ::= frame𝑛{frame}
frame ::= {locals (val?)*,module moduleinst}

Locals may be uninitialized, in which case they are empty. Locals are mutated by respective variable instructions.

Exception Handlers

Exception handlers are installed by try_table instructions and record the corresponding list of catch clauses:

handler ::= handler𝑛{catch*}

The handlers on the stack are searched when an exception is thrown.

Effect Handlers

Effect handlers are installed by resume and resume_throw instructions and record the corresponding list of effect
handler clauses:

prompt ::= prompt{addrhdl*}
addrhdl ::= on tagaddr labelidx

| on tagaddr switch

Conventions

• The meta variable 𝐿 ranges over labels where clear from context.

• The meta variable 𝑓 ranges over frame states where clear from context.

• The meta variable 𝐻 ranges over exception handlers where clear from context.

• The following auxiliary definition takes a block type and looks up the instruction type that it denotes in the
current frame:

instrtype𝑧(𝑥) = 𝑡*1 → 𝑡*2 if 𝑧.types[𝑥] ≈ func 𝑡*1 → 𝑡*2
instrtype𝑧(𝑡

?) = 𝜖 → 𝑡?

92 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.2.19 Administrative Instructions

Note

This section is only relevant for the formal notation.

In order to express the reduction of traps, calls, exception handling, effect handling, and control instructions, the
syntax of instructions is extended to include the following administrative instructions:

instr ::= . . .
| addrref
| label𝑛{instr*} instr*

| frame𝑛{frame} instr*

| handler𝑛{catch*} instr*

| prompt{addrhdl*} instr*

| suspending tagaddr resumption continst
| resuming continst
| trap

resumption ::= suspend val*

| switch continst

An address reference represents an allocated reference value of respective form “on the stack”.

The label, frame, handler and prompt instructions model labels, frames, active exception handlers, and active effect
handlers, respectively, “on the stack”. Moreover, the administrative syntax maintains the nesting structure of the
original structured control instruction or function body and their instruction sequences.

TODO(lyl): The suspending and resuming instructions are

The trap instruction represents the occurrence of a trap. Traps are bubbled up through nested instruction sequences,
ultimately reducing the entire program to a single trap instruction, signalling abrupt termination.

Note

For example, the reduction rule for block is:

(block bt instr*) →˓ (label𝑛{𝜖} instr*)

if the block type bt denotes a function type func 𝑡𝑚1 → 𝑡𝑛2 , such that 𝑛 is the block’s result arity. This rule
replaces the block with a label instruction, which can be interpreted as “pushing” the label on the stack. When
its end is reached, i.e., the inner instruction sequence has been reduced to the empty sequence – or rather,
a sequence of 𝑛 values representing the results – then the label instruction is eliminated courtesy of its own
reduction rule:

(label𝑛{instr*} val*) →˓ val*

This can be interpreted as removing the label from the stack and only leaving the locally accumulated operand
values. Validation guarantees that 𝑛 matches the number |val*| of resulting values at this point.

Configurations

A configuration describes the current computation. It consists of the computations’s state and the sequence of
instructions left to execute. The state in turn consists of a global store and a current frame referring to the module
instance in which the computation runs, i.e., where the current function originates from.

config ::= state; instr*

state ::= store; frame

4.2. Runtime Structure 93

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The current version of WebAssembly is single-threaded, but configurations with multiple threads may be sup-
ported in the future.

4.3 Numerics
Numeric primitives are defined in a generic manner, by operators indexed over a bit width 𝑁 .

Some operators are non-deterministic, because they can return one of several possible results (such as different NaN
values). Technically, each operator thus returns a set of allowed values. For convenience, deterministic results are
expressed as plain values, which are assumed to be identified with a respective singleton set.

Some operators are partial, because they are not defined on certain inputs. Technically, an empty set of results is
returned for these inputs.

In formal notation, each operator is defined by equational clauses that apply in decreasing order of precedence.
That is, the first clause that is applicable to the given arguments defines the result. In some cases, similar clauses
are combined into one by using the notation ± or ∓. When several of these placeholders occur in a single clause,
then they must be resolved consistently: either the upper sign is chosen for all of them or the lower sign.

Note

For example, the fcopysign operator is defined as follows:

fcopysign𝑁 (±𝑝1,±𝑝2) = ±𝑝1
fcopysign𝑁 (±𝑝1,∓𝑝2) = ∓𝑝1

This definition is to be read as a shorthand for the following expansion of each clause into two separate ones:

fcopysign𝑁 (+𝑝1,+𝑝2) = +𝑝1
fcopysign𝑁 (−𝑝1,−𝑝2) = −𝑝1
fcopysign𝑁 (+𝑝1,−𝑝2) = −𝑝1
fcopysign𝑁 (−𝑝1,+𝑝2) = +𝑝1

Numeric operators are lifted to input sequences by applying the operator element-wise, returning a sequence of
results. When there are multiple inputs, they must be of equal length.

𝑜𝑝(𝑐𝑛1 , . . . , 𝑐
𝑛
𝑘) = 𝑜𝑝(𝑐𝑛1 [0], . . . , 𝑐

𝑛
𝑘 [0]) . . . 𝑜𝑝(𝑐𝑛1 [𝑛− 1], . . . , 𝑐𝑛𝑘 [𝑛− 1])

Note

For example, the unary operator fabs, when given a sequence of floating-point values, return a sequence of
floating-point results:

fabs𝑁 (𝑧𝑛) = fabs𝑁 (𝑧[0]) . . . fabs𝑁 (𝑧[𝑛])

The binary operator iadd, when given two sequences of integers of the same length, 𝑛, return a sequence of
integer results:

iadd𝑁 (𝑖𝑛1 , 𝑖
𝑛
2) = iadd𝑁 (𝑖1[0], 𝑖2[0]) . . . iadd𝑁 (𝑖1[𝑛], 𝑖2[𝑛])

Conventions:

• The meta variable 𝑑 is used to range over single bits.

94 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• The meta variable 𝑝 is used to range over (signless) magnitudes of floating-point values, including nan and
∞.

• The meta variable 𝑞 is used to range over (signless) rational magnitudes, excluding nan or ∞.

• The notation 𝑓−1 denotes the inverse of a bijective function 𝑓 .

• Truncation of rational values is written trunc(±𝑞), with the usual mathematical definition:

trunc(±𝑞) = ±𝑖 (if 𝑖 ∈ N ∧+𝑞 − 1 < 𝑖 ≤ +𝑞)

• Saturation of integers is written sat_u𝑁 (𝑖) and sat_s𝑁 (𝑖). The arguments to these two functions range over
arbitrary signed integers.

– Unsigned saturation, sat_u𝑁 (𝑖) clamps 𝑖 to between 0 and 2𝑁 − 1:

sat_u𝑁 (𝑖) = 0 (if 𝑖 < 0)
sat_u𝑁 (𝑖) = 2𝑁 − 1 (if 𝑖 > 2𝑁 − 1)
sat_u𝑁 (𝑖) = 𝑖 (otherwise)

– Signed saturation, sat_s𝑁 (𝑖) clamps 𝑖 to between −2𝑁−1 and 2𝑁−1 − 1:

sat_s𝑁 (𝑖) = −2𝑁−1 (if 𝑖 < −2𝑁−1)
sat_s𝑁 (𝑖) = 2𝑁−1 − 1 (if 𝑖 > 2𝑁−1 − 1)
sat_s𝑁 (𝑖) = 𝑖 (otherwise)

4.3.1 Representations
Numbers and numeric vectors have an underlying binary representation as a sequence of bits:

bitsi𝑁 (𝑖) = ibits𝑁 (𝑖)
bitsf𝑁 (𝑧) = fbits𝑁 (𝑧)
bitsv𝑁 (𝑖) = ibits𝑁 (𝑖)

The first case of these applies to representations of both integer value types and packed types.

Each of these functions is a bijection, hence they are invertible.

Integers

Integers are represented as base two unsigned numbers:

ibits𝑁 (𝑖) = 𝑑𝑁−1 . . . 𝑑0 (𝑖 = 2𝑁−1 · 𝑑𝑁−1 + · · ·+ 20 · 𝑑0)

Boolean operators like ∧, ∨, or ⊻ are lifted to bit sequences of equal length by applying them pointwise.

Floating-Point

Floating-point values are represented in the respective binary format defined by IEEE 75422 (Section 3.4):

fbits𝑁 (±(1 +𝑚 · 2−𝑀) · 2𝑒) = fsign(±) ibits𝐸(𝑒+ fbias𝑁) ibits𝑀 (𝑚)
fbits𝑁 (±(0 +𝑚 · 2−𝑀) · 2𝑒) = fsign(±) (0)𝐸 ibits𝑀 (𝑚)
fbits𝑁 (±∞) = fsign(±) (1)𝐸 (0)𝑀

fbits𝑁 (±nan(𝑛)) = fsign(±) (1)𝐸 ibits𝑀 (𝑛)

fbias𝑁 = 2𝐸−1 − 1
fsign(+) = 0
fsign(−) = 1

where 𝑀 = signif(𝑁) and 𝐸 = expon(𝑁).
22 https://ieeexplore.ieee.org/document/8766229

4.3. Numerics 95

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Vectors

Numeric vectors of type v𝑁 have the same underlying representation as an i𝑁. They can also be interpreted as a
sequence of numeric values packed into a v𝑁 with a particular shape 𝑡x𝑀 , provided that 𝑁 = |𝑡| ·𝑀 .

lanes𝑡x𝑀 (𝑐) = 𝑐0 . . . 𝑐𝑀−1

(where 𝑤= |𝑡|/8
∧ 𝑏*= bytesi𝑁 (𝑐)
∧ 𝑐𝑖= bytes−1

𝑡 (𝑏*[𝑖 · 𝑤 : 𝑤]))

This function is a bijection on i𝑁, hence it is invertible.

Numeric values can be packed into lanes of a specific lane type and vice versa:

packnumtype(𝑐) = 𝑐
packpacktype(𝑐) = wrap|unpack(packtype)|,|packtype|(𝑐)

unpacknumtype(𝑐) = 𝑐
unpackpacktype(𝑐) = extendu|packtype|,|unpack(packtype)|(𝑐)

Storage

When a number is stored into memory, it is converted into a sequence of bytes in little endian23 byte order:

bytes𝑡(𝑖) = littleendian(bits𝑡(𝑖))

littleendian(𝜖) = 𝜖
littleendian(𝑑8 𝑑′

*
) = littleendian(𝑑′

*
) ibits−1

8 (𝑑8)

Again these functions are invertible bijections.

4.3.2 Integer Operations
Sign Interpretation

Integer operators are defined on i𝑁 values. Operators that use a signed interpretation convert the value using the
following definition, which takes the two’s complement when the value lies in the upper half of the value range
(i.e., its most significant bit is 1):

signed𝑁 (𝑖) = 𝑖 (0 ≤ 𝑖 < 2𝑁−1)
signed𝑁 (𝑖) = 𝑖− 2𝑁 (2𝑁−1 ≤ 𝑖 < 2𝑁)

This function is bijective, and hence invertible.

Boolean Interpretation

The integer result of predicates – i.e., tests and relational operators – is defined with the help of the following
auxiliary function producing the value 1 or 0 depending on a condition.

bool(𝐶) = 1 (if 𝐶)
bool(𝐶) = 0 (otherwise)

iadd𝑁 (𝑖1, 𝑖2)

• Return the result of adding 𝑖1 and 𝑖2 modulo 2𝑁 .

iadd𝑁 (𝑖1, 𝑖2) = (𝑖1 + 𝑖2) mod 2𝑁

isub𝑁 (𝑖1, 𝑖2)

• Return the result of subtracting 𝑖2 from 𝑖1 modulo 2𝑁 .

isub𝑁 (𝑖1, 𝑖2) = (𝑖1 − 𝑖2 + 2𝑁) mod 2𝑁

23 https://en.wikipedia.org/wiki/Endianness#Little-endian

96 Chapter 4. Execution

https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

imul𝑁 (𝑖1, 𝑖2)

• Return the result of multiplying 𝑖1 and 𝑖2 modulo 2𝑁 .

imul𝑁 (𝑖1, 𝑖2) = (𝑖1 · 𝑖2) mod 2𝑁

idiv_u𝑁 (𝑖1, 𝑖2)

• If 𝑖2 is 0, then the result is undefined.

• Else, return the result of dividing 𝑖1 by 𝑖2, truncated toward zero.

idiv_u𝑁 (𝑖1, 0) = {}
idiv_u𝑁 (𝑖1, 𝑖2) = trunc(𝑖1/𝑖2)

Note

This operator is partial.

idiv_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• If 𝑗2 is 0, then the result is undefined.

• Else if 𝑗1 divided by 𝑗2 is 2𝑁−1, then the result is undefined.

• Else, return the result of dividing 𝑗1 by 𝑗2, truncated toward zero.

idiv_s𝑁 (𝑖1, 0) = {}
idiv_s𝑁 (𝑖1, 𝑖2) = {} (if signed𝑁 (𝑖1)/signed𝑁 (𝑖2) = 2𝑁−1)
idiv_s𝑁 (𝑖1, 𝑖2) = signed−1

𝑁 (trunc(signed𝑁 (𝑖1)/signed𝑁 (𝑖2)))

Note

This operator is partial. Besides division by 0, the result of (−2𝑁−1)/(−1) = +2𝑁−1 is not representable as
an 𝑁 -bit signed integer.

irem_u𝑁 (𝑖1, 𝑖2)

• If 𝑖2 is 0, then the result is undefined.

• Else, return the remainder of dividing 𝑖1 by 𝑖2.

irem_u𝑁 (𝑖1, 0) = {}
irem_u𝑁 (𝑖1, 𝑖2) = 𝑖1 − 𝑖2 · trunc(𝑖1/𝑖2)

Note

This operator is partial.

As long as both operators are defined, it holds that 𝑖1 = 𝑖2 · idiv_u(𝑖1, 𝑖2) + irem_u(𝑖1, 𝑖2).

4.3. Numerics 97

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

irem_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• If 𝑖2 is 0, then the result is undefined.

• Else, return the remainder of dividing 𝑗1 by 𝑗2, with the sign of the dividend 𝑗1.

irem_s𝑁 (𝑖1, 0) = {}
irem_s𝑁 (𝑖1, 𝑖2) = signed−1

𝑁 (𝑗1 − 𝑗2 · trunc(𝑗1/𝑗2))
(where 𝑗1 = signed𝑁 (𝑖1) ∧ 𝑗2 = signed𝑁 (𝑖2))

Note

This operator is partial.

As long as both operators are defined, it holds that 𝑖1 = 𝑖2 · idiv_s(𝑖1, 𝑖2) + irem_s(𝑖1, 𝑖2).

inot𝑁 (𝑖)

• Return the bitwise negation of 𝑖.

inot𝑁 (𝑖) = ibits−1
𝑁 (ibits𝑁 (𝑖) ⊻ ibits𝑁 (2𝑁 − 1))

irev𝑁 (𝑖)

• Return the bitwise reversal of 𝑖.

irev𝑁 (𝑖) = ibits−1
𝑁 ((𝑑𝑁 [𝑁 − 𝑖])𝑖≤𝑁) (if 𝑑𝑁 = ibits𝑁 (𝑖))

iand𝑁 (𝑖1, 𝑖2)

• Return the bitwise conjunction of 𝑖1 and 𝑖2.

iand𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) ∧ ibits𝑁 (𝑖2))

iandnot𝑁 (𝑖1, 𝑖2)

• Return the bitwise conjunction of 𝑖1 and the bitwise negation of 𝑖2.

iandnot𝑁 (𝑖1, 𝑖2) = iand𝑁 (𝑖1, inot𝑁 (𝑖2))

ior𝑁 (𝑖1, 𝑖2)

• Return the bitwise disjunction of 𝑖1 and 𝑖2.

ior𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) ∨ ibits𝑁 (𝑖2))

ixor𝑁 (𝑖1, 𝑖2)

• Return the bitwise exclusive disjunction of 𝑖1 and 𝑖2.

ixor𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (ibits𝑁 (𝑖1) ⊻ ibits𝑁 (𝑖2))

ishl𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 left by 𝑘 bits, modulo 2𝑁 .

ishl𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑁−𝑘

2 0𝑘) (if ibits𝑁 (𝑖1) = 𝑑𝑘1 𝑑𝑁−𝑘
2 ∧ 𝑘 = 𝑖2 mod𝑁)

98 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ishr_u𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 right by 𝑘 bits, extended with 0 bits.

ishr_u𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (0𝑘 𝑑𝑁−𝑘

1) (if ibits𝑁 (𝑖1) = 𝑑𝑁−𝑘
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod𝑁)

ishr_s𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of shifting 𝑖1 right by 𝑘 bits, extended with the most significant bit of the original value.

ishr_s𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑘+1

0 𝑑𝑁−𝑘−1
1) (if ibits𝑁 (𝑖1) = 𝑑0 𝑑

𝑁−𝑘−1
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod𝑁)

irotl𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of rotating 𝑖1 left by 𝑘 bits.

irotl𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑁−𝑘

2 𝑑𝑘1) (if ibits𝑁 (𝑖1) = 𝑑𝑘1 𝑑𝑁−𝑘
2 ∧ 𝑘 = 𝑖2 mod𝑁)

irotr𝑁 (𝑖1, 𝑖2)

• Let 𝑘 be 𝑖2 modulo 𝑁 .

• Return the result of rotating 𝑖1 right by 𝑘 bits.

irotr𝑁 (𝑖1, 𝑖2) = ibits−1
𝑁 (𝑑𝑘2 𝑑𝑁−𝑘

1) (if ibits𝑁 (𝑖1) = 𝑑𝑁−𝑘
1 𝑑𝑘2 ∧ 𝑘 = 𝑖2 mod𝑁)

iclz𝑁 (𝑖)

• Return the count of leading zero bits in 𝑖; all bits are considered leading zeros if 𝑖 is 0.

iclz𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = 0𝑘 (1 𝑑*)?)

ictz𝑁 (𝑖)

• Return the count of trailing zero bits in 𝑖; all bits are considered trailing zeros if 𝑖 is 0.

ictz𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = (𝑑* 1)? 0𝑘)

ipopcnt𝑁 (𝑖)

• Return the count of non-zero bits in 𝑖.

ipopcnt𝑁 (𝑖) = 𝑘 (if ibits𝑁 (𝑖) = (0* 1)𝑘 0*)

ieqz𝑁 (𝑖)

• Return 1 if 𝑖 is zero, 0 otherwise.

ieqz𝑁 (𝑖) = bool(𝑖 = 0)

inez𝑁 (𝑖)

• Return 0 if 𝑖 is zero, 1 otherwise.

inez𝑁 (𝑖) = bool(𝑖 = / = 0)

4.3. Numerics 99

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ieq𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 equals 𝑖2, 0 otherwise.

ieq𝑁 (𝑖1, 𝑖2) = bool(𝑖1 = 𝑖2)

ine𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 does not equal 𝑖2, 0 otherwise.

ine𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ̸= 𝑖2)

ilt_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is less than 𝑖2, 0 otherwise.

ilt_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 < 𝑖2)

ilt_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is less than 𝑗2, 0 otherwise.

ilt_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) < signed𝑁 (𝑖2))

igt_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is greater than 𝑖2, 0 otherwise.

igt_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 > 𝑖2)

igt_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is greater than 𝑗2, 0 otherwise.

igt_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) > signed𝑁 (𝑖2))

ile_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is less than or equal to 𝑖2, 0 otherwise.

ile_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ≤ 𝑖2)

ile_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is less than or equal to 𝑗2, 0 otherwise.

ile_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) ≤ signed𝑁 (𝑖2))

ige_u𝑁 (𝑖1, 𝑖2)

• Return 1 if 𝑖1 is greater than or equal to 𝑖2, 0 otherwise.

ige_u𝑁 (𝑖1, 𝑖2) = bool(𝑖1 ≥ 𝑖2)

100 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ige_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1.

• Let 𝑗2 be the signed interpretation of 𝑖2.

• Return 1 if 𝑗1 is greater than or equal to 𝑗2, 0 otherwise.

ige_s𝑁 (𝑖1, 𝑖2) = bool(signed𝑁 (𝑖1) ≥ signed𝑁 (𝑖2))

iextend𝑀_s𝑁 (𝑖)

• Let 𝑗 be the result of computing wrap𝑁,𝑀 (𝑖).

• Return extends𝑀,𝑁 (𝑗).

iextend𝑀_s𝑁 (𝑖) = extends𝑀,𝑁 (wrap𝑁,𝑀 (𝑖))

ibitselect𝑁 (𝑖1, 𝑖2, 𝑖3)

• Let 𝑗1 be the bitwise conjunction of 𝑖1 and 𝑖3.

• Let 𝑗′3 be the bitwise negation of 𝑖3.

• Let 𝑗2 be the bitwise conjunction of 𝑖2 and 𝑗′3.

• Return the bitwise disjunction of 𝑗1 and 𝑗2.

ibitselect𝑁 (𝑖1, 𝑖2, 𝑖3) = ior𝑁 (iand𝑁 (𝑖1, 𝑖3), iand𝑁 (𝑖2, inot𝑁 (𝑖3)))

iabs𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖.

• If 𝑗 is greater than or equal to 0, then return 𝑖.

• Else return the negation of j, modulo 2𝑁 .

iabs𝑁 (𝑖) = 𝑖 (if signed𝑁 (𝑖) ≥ 0)
iabs𝑁 (𝑖) = −signed𝑁 (𝑖) mod 2𝑁 (otherwise)

ineg𝑁 (𝑖)

• Return the result of negating 𝑖, modulo 2𝑁 .

ineg𝑁 (𝑖) = (2𝑁 − 𝑖) mod 2𝑁

imin_u𝑁 (𝑖1, 𝑖2)

• Return 𝑖1 if ilt_u𝑁 (𝑖1, 𝑖2) is 1, return 𝑖2 otherwise.

imin_u𝑁 (𝑖1, 𝑖2) = 𝑖1 (if ilt_u𝑁 (𝑖1, 𝑖2) = 1)
imin_u𝑁 (𝑖1, 𝑖2) = 𝑖2 (otherwise)

imin_s𝑁 (𝑖1, 𝑖2)

• Return 𝑖1 if ilt_s𝑁 (𝑖1, 𝑖2) is 1, return 𝑖2 otherwise.

imin_s𝑁 (𝑖1, 𝑖2) = 𝑖1 (if ilt_s𝑁 (𝑖1, 𝑖2) = 1)
imin_s𝑁 (𝑖1, 𝑖2) = 𝑖2 (otherwise)

imax_u𝑁 (𝑖1, 𝑖2)

• Return 𝑖1 if igt_u𝑁 (𝑖1, 𝑖2) is 1, return 𝑖2 otherwise.

imax_u𝑁 (𝑖1, 𝑖2) = 𝑖1 (if igt_u𝑁 (𝑖1, 𝑖2) = 1)
imax_u𝑁 (𝑖1, 𝑖2) = 𝑖2 (otherwise)

4.3. Numerics 101

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

imax_s𝑁 (𝑖1, 𝑖2)

• Return 𝑖1 if igt_s𝑁 (𝑖1, 𝑖2) is 1, return 𝑖2 otherwise.

imax_s𝑁 (𝑖1, 𝑖2) = 𝑖1 (if igt_s𝑁 (𝑖1, 𝑖2) = 1)
imax_s𝑁 (𝑖1, 𝑖2) = 𝑖2 (otherwise)

iadd_sat_u𝑁 (𝑖1, 𝑖2)

• Let 𝑖 be the result of adding 𝑖1 and 𝑖2.

• Return sat_u𝑁 (𝑖).

iadd_sat_u𝑁 (𝑖1, 𝑖2) = sat_u𝑁 (𝑖1 + 𝑖2)

iadd_sat_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1
• Let 𝑗2 be the signed interpretation of 𝑖2
• Let 𝑗 be the result of adding 𝑗1 and 𝑗2.

• Return the value whose signed interpretation is sat_s𝑁 (𝑗).

iadd_sat_s𝑁 (𝑖1, 𝑖2) = signed−1
𝑁 (sat_s𝑁 (signed𝑁 (𝑖1) + signed𝑁 (𝑖2)))

isub_sat_u𝑁 (𝑖1, 𝑖2)

• Let 𝑖 be the result of subtracting 𝑖2 from 𝑖1.

• Return sat_u𝑁 (𝑖).

isub_sat_u𝑁 (𝑖1, 𝑖2) = sat_u𝑁 (𝑖1 − 𝑖2)

isub_sat_s𝑁 (𝑖1, 𝑖2)

• Let 𝑗1 be the signed interpretation of 𝑖1
• Let 𝑗2 be the signed interpretation of 𝑖2
• Let 𝑗 be the result of subtracting 𝑗2 from 𝑗1.

• Return the value whose signed interpretation is sat_s𝑁 (𝑗).

isub_sat_s𝑁 (𝑖1, 𝑖2) = signed−1
𝑁 (sat_s𝑁 (signed𝑁 (𝑖1)− signed𝑁 (𝑖2)))

iavgr_u𝑁 (𝑖1, 𝑖2)

• Let 𝑗 be the result of adding 𝑖1, 𝑖2, and 1.

• Return the result of dividing 𝑗 by 2, truncated toward zero.

iavgr_u𝑁 (𝑖1, 𝑖2) = trunc((𝑖1 + 𝑖2 + 1)/2)

iq15mulrsat_s𝑁 (𝑖1, 𝑖2)

• Return the whose signed interpretation is the result of sat_s𝑁 (ishr_s𝑁 (𝑖1 · 𝑖2 + 214, 15)).

iq15mulrsat_s𝑁 (𝑖1, 𝑖2) = signed−1
𝑁 (sat_s𝑁 (ishr_s𝑁 (𝑖1 · 𝑖2 + 214, 15)))

102 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.3.3 Floating-Point Operations
Floating-point arithmetic follows the IEEE 75424 standard, with the following qualifications:

• All operators use round-to-nearest ties-to-even, except where otherwise specified. Non-default directed
rounding attributes are not supported.

• Following the recommendation that operators propagate NaN payloads from their operands is permitted but
not required.

• All operators use “non-stop” mode, and floating-point exceptions are not otherwise observable. In particular,
neither alternate floating-point exception handling attributes nor operators on status flags are supported.
There is no observable difference between quiet and signalling NaNs.

Note

Some of these limitations may be lifted in future versions of WebAssembly.

Rounding

Rounding always is round-to-nearest ties-to-even, in correspondence with IEEE 75425 (Section 4.3.1).

An exact floating-point number is a rational number that is exactly representable as a floating-point number of
given bit width 𝑁 .

A limit number for a given floating-point bit width 𝑁 is a positive or negative number whose magnitude is the
smallest power of 2 that is not exactly representable as a floating-point number of width 𝑁 (that magnitude is 2128
for 𝑁 = 32 and 21024 for 𝑁 = 64).

A candidate number is either an exact floating-point number or a positive or negative limit number for the given
bit width 𝑁 .

A candidate pair is a pair 𝑧1, 𝑧2 of candidate numbers, such that no candidate number exists that lies between the
two.

A real number 𝑟 is converted to a floating-point value of bit width 𝑁 as follows:

• If 𝑟 is 0, then return +0.

• Else if 𝑟 is an exact floating-point number, then return 𝑟.

• Else if 𝑟 greater than or equal to the positive limit, then return +∞.

• Else if 𝑟 is less than or equal to the negative limit, then return −∞.

• Else if 𝑧1 and 𝑧2 are a candidate pair such that 𝑧1 < 𝑟 < 𝑧2, then:

– If |𝑟 − 𝑧1| < |𝑟 − 𝑧2|, then let 𝑧 be 𝑧1.

– Else if |𝑟 − 𝑧1| > |𝑟 − 𝑧2|, then let 𝑧 be 𝑧2.

– Else if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| and the significand of 𝑧1 is even, then let 𝑧 be 𝑧1.

– Else, let 𝑧 be 𝑧2.

• If 𝑧 is 0, then:

– If 𝑟 < 0, then return −0.

– Else, return +0.

• Else if 𝑧 is a limit number, then:

– If 𝑟 < 0, then return −∞.

– Else, return +∞.
24 https://ieeexplore.ieee.org/document/8766229
25 https://ieeexplore.ieee.org/document/8766229

4.3. Numerics 103

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• Else, return 𝑧.

float𝑁 (0) = +0
float𝑁 (𝑟) = 𝑟 (if 𝑟 ∈ exact𝑁)
float𝑁 (𝑟) = +∞ (if 𝑟 ≥ +limit𝑁)
float𝑁 (𝑟) = −∞ (if 𝑟 ≤ −limit𝑁)
float𝑁 (𝑟) = closest𝑁 (𝑟, 𝑧1, 𝑧2) (if 𝑧1 < 𝑟 < 𝑧2 ∧ (𝑧1, 𝑧2) ∈ candidatepair𝑁)

closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧1) (if |𝑟 − 𝑧1| < |𝑟 − 𝑧2|)
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧2) (if |𝑟 − 𝑧1| > |𝑟 − 𝑧2|)
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧1) (if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| ∧ even𝑁 (𝑧1))
closest𝑁 (𝑟, 𝑧1, 𝑧2) = rectify𝑁 (𝑟, 𝑧2) (if |𝑟 − 𝑧1| = |𝑟 − 𝑧2| ∧ even𝑁 (𝑧2))

rectify𝑁 (𝑟,±limit𝑁) = ±∞
rectify𝑁 (𝑟, 0) = +0 (𝑟 ≥ 0)
rectify𝑁 (𝑟, 0) = −0 (𝑟 < 0)
rectify𝑁 (𝑟, 𝑧) = 𝑧

where:

exact𝑁 = f𝑁∩Q

limit𝑁 = 22
expon(𝑁)−1

candidate𝑁 = exact𝑁 ∪ {+limit𝑁 ,−limit𝑁}
candidatepair𝑁 = {(𝑧1, 𝑧2) ∈ candidate2𝑁 | 𝑧1 < 𝑧2 ∧ ∀𝑧 ∈ candidate𝑁 , 𝑧 ≤ 𝑧1 ∨ 𝑧 ≥ 𝑧2}
even𝑁 ((𝑑+𝑚 · 2−𝑀) · 2𝑒) ⇔ 𝑚mod 2 = 0
even𝑁 (±limit𝑁) ⇔ true

NaN Propagation

When the result of a floating-point operator other than fneg, fabs, or fcopysign is a NaN, then its sign is non-
deterministic and the payload is computed as follows:

• If the payload of all NaN inputs to the operator is canonical (including the case that there are no NaN inputs),
then the payload of the output is canonical as well.

• Otherwise the payload is picked non-deterministically among all arithmetic NaNs; that is, its most significant
bit is 1 and all others are unspecified.

• In the deterministic profile, however, a positive canonical NaNs is reliably produced in the latter case.

The non-deterministic result is expressed by the following auxiliary function producing a set of allowed outputs
from a set of inputs:

nans𝑁{𝑧*} = {+nan(canon𝑁)}
[!DET] nans𝑁{𝑧*} = {+nan(𝑛),−nan(𝑛) | 𝑛 = canon𝑁} (if {𝑧*} ⊆ {+nan(canon𝑁),−nan(canon𝑁)}
[!DET] nans𝑁{𝑧*} = {+nan(𝑛),−nan(𝑛) | 𝑛 ≥ canon𝑁} (if {𝑧*} ̸⊆ {+nan(canon𝑁),−nan(canon𝑁)}

fadd𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite signs, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal sign, then return that infinity.

• Else if either 𝑧1 or 𝑧2 is an infinity, then return that infinity.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return that zero.

• Else if either 𝑧1 or 𝑧2 is a zero, then return the other operand.

• Else if both 𝑧1 and 𝑧2 are values with the same magnitude but opposite signs, then return positive zero.

• Else return the result of adding 𝑧1 and 𝑧2, rounded to the nearest representable value.

104 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fadd𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fadd𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fadd𝑁 (±∞,∓∞) = nans𝑁{}
fadd𝑁 (±∞,±∞) = ±∞
fadd𝑁 (𝑧1,±∞) = ±∞
fadd𝑁 (±∞, 𝑧2) = ±∞
fadd𝑁 (±0,∓0) = +0
fadd𝑁 (±0,±0) = ±0
fadd𝑁 (𝑧1,±0) = 𝑧1
fadd𝑁 (±0, 𝑧2) = 𝑧2
fadd𝑁 (±𝑞,∓𝑞) = +0
fadd𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 + 𝑧2)

fsub𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal signs, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite sign, then return 𝑧1.

• Else if 𝑧1 is an infinity, then return that infinity.

• Else if 𝑧2 is an infinity, then return that infinity negated.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return 𝑧1.

• Else if 𝑧2 is a zero, then return 𝑧1.

• Else if 𝑧1 is a zero, then return 𝑧2 negated.

• Else if both 𝑧1 and 𝑧2 are the same value, then return positive zero.

• Else return the result of subtracting 𝑧2 from 𝑧1, rounded to the nearest representable value.

fsub𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fsub𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fsub𝑁 (±∞,±∞) = nans𝑁{}
fsub𝑁 (±∞,∓∞) = ±∞
fsub𝑁 (𝑧1,±∞) = ∓∞
fsub𝑁 (±∞, 𝑧2) = ±∞
fsub𝑁 (±0,±0) = +0
fsub𝑁 (±0,∓0) = ±0
fsub𝑁 (𝑧1,±0) = 𝑧1
fsub𝑁 (±0,±𝑞2) = ∓𝑞2
fsub𝑁 (±𝑞,±𝑞) = +0
fsub𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 − 𝑧2)

Note

Up to the non-determinism regarding NaNs, it always holds that fsub𝑁 (𝑧1, 𝑧2) = fadd𝑁 (𝑧1, fneg𝑁 (𝑧2)).

fmul𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if one of 𝑧1 and 𝑧2 is a zero and the other an infinity, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are infinities of equal sign, then return positive infinity.

• Else if both 𝑧1 and 𝑧2 are infinities of opposite sign, then return negative infinity.

• Else if either 𝑧1 or 𝑧2 is an infinity and the other a value with equal sign, then return positive infinity.

4.3. Numerics 105

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• Else if either 𝑧1 or 𝑧2 is an infinity and the other a value with opposite sign, then return negative infinity.

• Else if both 𝑧1 and 𝑧2 are zeroes of equal sign, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return negative zero.

• Else return the result of multiplying 𝑧1 and 𝑧2, rounded to the nearest representable value.

fmul𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmul𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmul𝑁 (±∞,±0) = nans𝑁{}
fmul𝑁 (±∞,∓0) = nans𝑁{}
fmul𝑁 (±0,±∞) = nans𝑁{}
fmul𝑁 (±0,∓∞) = nans𝑁{}
fmul𝑁 (±∞,±∞) = +∞
fmul𝑁 (±∞,∓∞) = −∞
fmul𝑁 (±𝑞1,±∞) = +∞
fmul𝑁 (±𝑞1,∓∞) = −∞
fmul𝑁 (±∞,±𝑞2) = +∞
fmul𝑁 (±∞,∓𝑞2) = −∞
fmul𝑁 (±0,±0) = +0
fmul𝑁 (±0,∓0) = −0
fmul𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1 · 𝑧2)

fdiv𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if both 𝑧1 and 𝑧2 are infinities, then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if 𝑧1 is an infinity and 𝑧2 a value with equal sign, then return positive infinity.

• Else if 𝑧1 is an infinity and 𝑧2 a value with opposite sign, then return negative infinity.

• Else if 𝑧2 is an infinity and 𝑧1 a value with equal sign, then return positive zero.

• Else if 𝑧2 is an infinity and 𝑧1 a value with opposite sign, then return negative zero.

• Else if 𝑧1 is a zero and 𝑧2 a value with equal sign, then return positive zero.

• Else if 𝑧1 is a zero and 𝑧2 a value with opposite sign, then return negative zero.

• Else if 𝑧2 is a zero and 𝑧1 a value with equal sign, then return positive infinity.

• Else if 𝑧2 is a zero and 𝑧1 a value with opposite sign, then return negative infinity.

• Else return the result of dividing 𝑧1 by 𝑧2, rounded to the nearest representable value.

fdiv𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fdiv𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fdiv𝑁 (±∞,±∞) = nans𝑁{}
fdiv𝑁 (±∞,∓∞) = nans𝑁{}
fdiv𝑁 (±0,±0) = nans𝑁{}
fdiv𝑁 (±0,∓0) = nans𝑁{}
fdiv𝑁 (±∞,±𝑞2) = +∞
fdiv𝑁 (±∞,∓𝑞2) = −∞
fdiv𝑁 (±𝑞1,±∞) = +0
fdiv𝑁 (±𝑞1,∓∞) = −0
fdiv𝑁 (±0,±𝑞2) = +0
fdiv𝑁 (±0,∓𝑞2) = −0
fdiv𝑁 (±𝑞1,±0) = +∞
fdiv𝑁 (±𝑞1,∓0) = −∞
fdiv𝑁 (𝑧1, 𝑧2) = float𝑁 (𝑧1/𝑧2)

106 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fma𝑁 (𝑧1, 𝑧2, 𝑧3)

The function fma is the same as fusedMultiplyAdd defined by IEEE 75426 (Section 5.4.1). It computes (𝑧1 ·𝑧2)+𝑧3
as if with unbounded range and precision, rounding only once for the final result.

• If either 𝑧1 or 𝑧2 or 𝑧3 is a NaN, return an element of nans𝑁𝑧1, 𝑧2, 𝑧3.

• Else if either 𝑧1 or 𝑧2 is a zero and the other is an infinity, then return an element of nans𝑁{}.

• Else if both 𝑧1 or 𝑧2 are infinities of equal sign, and 𝑧3 is a negative infinity, then return an element of
nans𝑁{}.

• Else if both 𝑧1 or 𝑧2 are infinities of opposite sign, and 𝑧3 is a positive infinity, then return an element of
nans𝑁{}.

• Else if either 𝑧1 or 𝑧2 is an infinity and the other is a value of the same sign, and 𝑧3 is a negative infinity,
then return an element of nans𝑁{}.

• Else if either 𝑧1 or 𝑧2 is an infinity and the other is a value of the opposite sign, and 𝑧3 is a positive infinity,
then return an element of nans𝑁{}.

• Else if both 𝑧1 and 𝑧2 are zeroes of the same sign and 𝑧3 is a zero, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of the opposite sign and 𝑧3 is a positive zero, then return positive zero.

• Else if both 𝑧1 and 𝑧2 are zeroes of the opposite sign and 𝑧3 is a negative zero, then return negative zero.

• Else return the result of multiplying 𝑧1 and 𝑧2, adding 𝑧3 to the intermediate, and the final result ref:rounded
<aux-ieee> to the nearest representable value.

fma𝑁 (±nan(𝑛), 𝑧2, 𝑧3) = nans𝑁{±nan(𝑛), 𝑧2, 𝑧3}
fma𝑁 (𝑧1,±nan(𝑛), 𝑧3) = nans𝑁{±nan(𝑛), 𝑧1, 𝑧3}
fma𝑁 (𝑧1, 𝑧2,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1, 𝑧2}
fma𝑁 (±∞,±0, 𝑧3) = nans𝑁{}
fma𝑁 (±∞,∓0, 𝑧3) = nans𝑁{}
fma𝑁 (±∞,±∞,−∞) = nans𝑁{}
fma𝑁 (±∞,∓∞,+∞) = nans𝑁{}
fma𝑁 (±𝑞1,±∞,−∞) = nans𝑁{}
fma𝑁 (±𝑞1,∓∞,+∞) = nans𝑁{}
fma𝑁 (±∞,±𝑞1,−∞) = nans𝑁{}
fma𝑁 (∓∞,±𝑞1,+∞) = nans𝑁{}
fma𝑁 (±0,±0,∓0) = +0
fma𝑁 (±0,±0,±0) = +0
fma𝑁 (±0,∓0,+0) = +0
fma𝑁 (±0,∓0,−0) = −0
fma𝑁 (𝑧1, 𝑧2, 𝑧3) = float𝑁 (𝑧1 · 𝑧2 + 𝑧3)

fmin𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if either 𝑧1 or 𝑧2 is a negative infinity, then return negative infinity.

• Else if either 𝑧1 or 𝑧2 is a positive infinity, then return the other value.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite signs, then return negative zero.

• Else return the smaller value of 𝑧1 and 𝑧2.
26 https://ieeexplore.ieee.org/document/8766229

4.3. Numerics 107

https://ieeexplore.ieee.org/document/8766229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fmin𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmin𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmin𝑁 (+∞, 𝑧2) = 𝑧2
fmin𝑁 (−∞, 𝑧2) = −∞
fmin𝑁 (𝑧1,+∞) = 𝑧1
fmin𝑁 (𝑧1,−∞) = −∞
fmin𝑁 (±0,∓0) = −0
fmin𝑁 (𝑧1, 𝑧2) = 𝑧1 (if 𝑧1 ≤ 𝑧2)
fmin𝑁 (𝑧1, 𝑧2) = 𝑧2 (if 𝑧2 ≤ 𝑧1)

fmax𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return an element of nans𝑁{𝑧1, 𝑧2}.

• Else if either 𝑧1 or 𝑧2 is a positive infinity, then return positive infinity.

• Else if either 𝑧1 or 𝑧2 is a negative infinity, then return the other value.

• Else if both 𝑧1 and 𝑧2 are zeroes of opposite signs, then return positive zero.

• Else return the larger value of 𝑧1 and 𝑧2.

fmax𝑁 (±nan(𝑛), 𝑧2) = nans𝑁{±nan(𝑛), 𝑧2}
fmax𝑁 (𝑧1,±nan(𝑛)) = nans𝑁{±nan(𝑛), 𝑧1}
fmax𝑁 (+∞, 𝑧2) = +∞
fmax𝑁 (−∞, 𝑧2) = 𝑧2
fmax𝑁 (𝑧1,+∞) = +∞
fmax𝑁 (𝑧1,−∞) = 𝑧1
fmax𝑁 (±0,∓0) = +0
fmax𝑁 (𝑧1, 𝑧2) = 𝑧1 (if 𝑧1 ≥ 𝑧2)
fmax𝑁 (𝑧1, 𝑧2) = 𝑧2 (if 𝑧2 ≥ 𝑧1)

fcopysign𝑁 (𝑧1, 𝑧2)

• If 𝑧1 and 𝑧2 have the same sign, then return 𝑧1.

• Else return 𝑧1 with negated sign.

fcopysign𝑁 (±𝑝1,±𝑝2) = ±𝑝1
fcopysign𝑁 (±𝑝1,∓𝑝2) = ∓𝑝1

fabs𝑁 (𝑧)

• If 𝑧 is a NaN, then return 𝑧 with positive sign.

• Else if 𝑧 is an infinity, then return positive infinity.

• Else if 𝑧 is a zero, then return positive zero.

• Else if 𝑧 is a positive value, then 𝑧.

• Else return 𝑧 negated.

fabs𝑁 (±nan(𝑛)) = +nan(𝑛)
fabs𝑁 (±∞) = +∞
fabs𝑁 (±0) = +0
fabs𝑁 (±𝑞) = +𝑞

fneg𝑁 (𝑧)

• If 𝑧 is a NaN, then return 𝑧 with negated sign.

• Else if 𝑧 is an infinity, then return that infinity negated.

• Else if 𝑧 is a zero, then return that zero negated.

• Else return 𝑧 negated.

108 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fneg𝑁 (±nan(𝑛)) = ∓nan(𝑛)
fneg𝑁 (±∞) = ∓∞
fneg𝑁 (±0) = ∓0
fneg𝑁 (±𝑞) = ∓𝑞

fsqrt𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is negative infinity, then return an element of nans𝑁{}.

• Else if 𝑧 is positive infinity, then return positive infinity.

• Else if 𝑧 is a zero, then return that zero.

• Else if 𝑧 has a negative sign, then return an element of nans𝑁{}.

• Else return the square root of 𝑧.

fsqrt𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fsqrt𝑁 (−∞) = nans𝑁{}
fsqrt𝑁 (+∞) = +∞
fsqrt𝑁 (±0) = ±0
fsqrt𝑁 (−𝑞) = nans𝑁{}
fsqrt𝑁 (+𝑞) = float𝑁

(︀√
𝑞
)︀

fceil𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is smaller than 0 but greater than −1, then return negative zero.

• Else return the smallest integral value that is not smaller than 𝑧.

fceil𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fceil𝑁 (±∞) = ±∞
fceil𝑁 (±0) = ±0
fceil𝑁 (−𝑞) = −0 (if −1 < −𝑞 < 0)
fceil𝑁 (±𝑞) = float𝑁 (𝑖) (if ±𝑞 ≤ 𝑖 < ±𝑞 + 1)

ffloor𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than 1, then return positive zero.

• Else return the largest integral value that is not larger than 𝑧.

ffloor𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
ffloor𝑁 (±∞) = ±∞
ffloor𝑁 (±0) = ±0
ffloor𝑁 (+𝑞) = +0 (if 0 < +𝑞 < 1)
ffloor𝑁 (±𝑞) = float𝑁 (𝑖) (if ±𝑞 − 1 < 𝑖 ≤ ±𝑞)

4.3. Numerics 109

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ftrunc𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than 1, then return positive zero.

• Else if 𝑧 is smaller than 0 but greater than −1, then return negative zero.

• Else return the integral value with the same sign as 𝑧 and the largest magnitude that is not larger than the
magnitude of 𝑧.

ftrunc𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
ftrunc𝑁 (±∞) = ±∞
ftrunc𝑁 (±0) = ±0
ftrunc𝑁 (+𝑞) = +0 (if 0 < +𝑞 < 1)
ftrunc𝑁 (−𝑞) = −0 (if −1 < −𝑞 < 0)
ftrunc𝑁 (±𝑞) = float𝑁 (±𝑖) (if +𝑞 − 1 < 𝑖 ≤ +𝑞)

fnearest𝑁 (𝑧)

• If 𝑧 is a NaN, then return an element of nans𝑁{𝑧}.

• Else if 𝑧 is an infinity, then return 𝑧.

• Else if 𝑧 is a zero, then return 𝑧.

• Else if 𝑧 is greater than 0 but smaller than or equal to 0.5, then return positive zero.

• Else if 𝑧 is smaller than 0 but greater than or equal to −0.5, then return negative zero.

• Else return the integral value that is nearest to 𝑧; if two values are equally near, return the even one.

fnearest𝑁 (±nan(𝑛)) = nans𝑁{±nan(𝑛)}
fnearest𝑁 (±∞) = ±∞
fnearest𝑁 (±0) = ±0
fnearest𝑁 (+𝑞) = +0 (if 0 < +𝑞 ≤ 0.5)
fnearest𝑁 (−𝑞) = −0 (if −0.5 ≤ −𝑞 < 0)
fnearest𝑁 (±𝑞) = float𝑁 (±𝑖) (if |𝑖− 𝑞| < 0.5)
fnearest𝑁 (±𝑞) = float𝑁 (±𝑖) (if |𝑖− 𝑞| = 0.5 ∧ 𝑖 even)

feq𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if both 𝑧1 and 𝑧2 are the same value, then return 1.

• Else return 0.
feq𝑁 (±nan(𝑛), 𝑧2) = 0
feq𝑁 (𝑧1,±nan(𝑛)) = 0
feq𝑁 (±0,∓0) = 1
feq𝑁 (𝑧1, 𝑧2) = bool(𝑧1 = 𝑧2)

fne𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if both 𝑧1 and 𝑧2 are the same value, then return 0.

• Else return 1.

110 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fne𝑁 (±nan(𝑛), 𝑧2) = 1
fne𝑁 (𝑧1,±nan(𝑛)) = 1
fne𝑁 (±0,∓0) = 0
fne𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ̸= 𝑧2)

flt𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 0.

• Else if 𝑧1 is positive infinity, then return 0.

• Else if 𝑧1 is negative infinity, then return 1.

• Else if 𝑧2 is positive infinity, then return 1.

• Else if 𝑧2 is negative infinity, then return 0.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if 𝑧1 is smaller than 𝑧2, then return 1.

• Else return 0.
flt𝑁 (±nan(𝑛), 𝑧2) = 0
flt𝑁 (𝑧1,±nan(𝑛)) = 0
flt𝑁 (𝑧, 𝑧) = 0
flt𝑁 (+∞, 𝑧2) = 0
flt𝑁 (−∞, 𝑧2) = 1
flt𝑁 (𝑧1,+∞) = 1
flt𝑁 (𝑧1,−∞) = 0
flt𝑁 (±0,∓0) = 0
flt𝑁 (𝑧1, 𝑧2) = bool(𝑧1 < 𝑧2)

fgt𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 0.

• Else if 𝑧1 is positive infinity, then return 1.

• Else if 𝑧1 is negative infinity, then return 0.

• Else if 𝑧2 is positive infinity, then return 0.

• Else if 𝑧2 is negative infinity, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 0.

• Else if 𝑧1 is larger than 𝑧2, then return 1.

• Else return 0.
fgt𝑁 (±nan(𝑛), 𝑧2) = 0
fgt𝑁 (𝑧1,±nan(𝑛)) = 0
fgt𝑁 (𝑧, 𝑧) = 0
fgt𝑁 (+∞, 𝑧2) = 1
fgt𝑁 (−∞, 𝑧2) = 0
fgt𝑁 (𝑧1,+∞) = 0
fgt𝑁 (𝑧1,−∞) = 1
fgt𝑁 (±0,∓0) = 0
fgt𝑁 (𝑧1, 𝑧2) = bool(𝑧1 > 𝑧2)

4.3. Numerics 111

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fle𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 1.

• Else if 𝑧1 is positive infinity, then return 0.

• Else if 𝑧1 is negative infinity, then return 1.

• Else if 𝑧2 is positive infinity, then return 1.

• Else if 𝑧2 is negative infinity, then return 0.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if 𝑧1 is smaller than or equal to 𝑧2, then return 1.

• Else return 0.
fle𝑁 (±nan(𝑛), 𝑧2) = 0
fle𝑁 (𝑧1,±nan(𝑛)) = 0
fle𝑁 (𝑧, 𝑧) = 1
fle𝑁 (+∞, 𝑧2) = 0
fle𝑁 (−∞, 𝑧2) = 1
fle𝑁 (𝑧1,+∞) = 1
fle𝑁 (𝑧1,−∞) = 0
fle𝑁 (±0,∓0) = 1
fle𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ≤ 𝑧2)

fge𝑁 (𝑧1, 𝑧2)

• If either 𝑧1 or 𝑧2 is a NaN, then return 0.

• Else if 𝑧1 and 𝑧2 are the same value, then return 1.

• Else if 𝑧1 is positive infinity, then return 1.

• Else if 𝑧1 is negative infinity, then return 0.

• Else if 𝑧2 is positive infinity, then return 0.

• Else if 𝑧2 is negative infinity, then return 1.

• Else if both 𝑧1 and 𝑧2 are zeroes, then return 1.

• Else if 𝑧1 is larger than or equal to 𝑧2, then return 1.

• Else return 0.
fge𝑁 (±nan(𝑛), 𝑧2) = 0
fge𝑁 (𝑧1,±nan(𝑛)) = 0
fge𝑁 (𝑧, 𝑧) = 1
fge𝑁 (+∞, 𝑧2) = 1
fge𝑁 (−∞, 𝑧2) = 0
fge𝑁 (𝑧1,+∞) = 0
fge𝑁 (𝑧1,−∞) = 1
fge𝑁 (±0,∓0) = 1
fge𝑁 (𝑧1, 𝑧2) = bool(𝑧1 ≥ 𝑧2)

fpmin𝑁 (𝑧1, 𝑧2)

• If 𝑧2 is less than 𝑧1 then return 𝑧2.

• Else return 𝑧1.

fpmin𝑁 (𝑧1, 𝑧2) = 𝑧2 (if flt𝑁 (𝑧2, 𝑧1) = 1)
fpmin𝑁 (𝑧1, 𝑧2) = 𝑧1 (otherwise)

112 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

fpmax𝑁 (𝑧1, 𝑧2)

• If 𝑧1 is less than 𝑧2 then return 𝑧2.

• Else return 𝑧1.

fpmax𝑁 (𝑧1, 𝑧2) = 𝑧2 (if flt𝑁 (𝑧1, 𝑧2) = 1)
fpmax𝑁 (𝑧1, 𝑧2) = 𝑧1 (otherwise)

4.3.4 Conversions
extendu𝑀,𝑁 (𝑖)

• Return 𝑖.

extendu𝑀,𝑁 (𝑖) = 𝑖

Note

In the abstract syntax, unsigned extension just reinterprets the same value.

extends𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖 of size 𝑀 .

• Return the two’s complement of 𝑗 relative to size 𝑁 .

extends𝑀,𝑁 (𝑖) = signed−1
𝑁 (signed𝑀 (𝑖))

wrap𝑀,𝑁 (𝑖)

• Return 𝑖 modulo 2𝑁 .

wrap𝑀,𝑁 (𝑖) = 𝑖mod 2𝑁

truncu𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then the result is undefined.

• Else if 𝑧 is an infinity, then the result is undefined.

• Else if 𝑧 is a number and trunc(𝑧) is a value within range of the target type, then return that value.

• Else the result is undefined.
truncu𝑀,𝑁 (±nan(𝑛)) = {}
truncu𝑀,𝑁 (±∞) = {}
truncu𝑀,𝑁 (±𝑞) = trunc(±𝑞) (if −1 < trunc(±𝑞) < 2𝑁)
truncu𝑀,𝑁 (±𝑞) = {} (otherwise)

Note

This operator is partial. It is not defined for NaNs, infinities, or values for which the result is out of range.

truncs𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then the result is undefined.

• Else if 𝑧 is an infinity, then the result is undefined.

• If 𝑧 is a number and trunc(𝑧) is a value within range of the target type, then return that value.

• Else the result is undefined.

4.3. Numerics 113

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

truncs𝑀,𝑁 (±nan(𝑛)) = {}
truncs𝑀,𝑁 (±∞) = {}
truncs𝑀,𝑁 (±𝑞) = trunc(±𝑞) (if −2𝑁−1 − 1 < trunc(±𝑞) < 2𝑁−1)
truncs𝑀,𝑁 (±𝑞) = {} (otherwise)

Note

This operator is partial. It is not defined for NaNs, infinities, or values for which the result is out of range.

trunc_sat_u𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then return 0.

• Else if 𝑧 is negative infinity, then return 0.

• Else if 𝑧 is positive infinity, then return 2𝑁 − 1.

• Else, return sat_u𝑁 (trunc(𝑧)).

trunc_sat_u𝑀,𝑁 (±nan(𝑛)) = 0
trunc_sat_u𝑀,𝑁 (−∞) = 0
trunc_sat_u𝑀,𝑁 (+∞) = 2𝑁 − 1
trunc_sat_u𝑀,𝑁 (𝑧) = sat_u𝑁 (trunc(𝑧))

trunc_sat_s𝑀,𝑁 (𝑧)

• If 𝑧 is a NaN, then return 0.

• Else if 𝑧 is negative infinity, then return −2𝑁−1.

• Else if 𝑧 is positive infinity, then return 2𝑁−1 − 1.

• Else, return the value whose signed interpretation is sat_s𝑁 (trunc(𝑧)).

trunc_sat_s𝑀,𝑁 (±nan(𝑛)) = 0
trunc_sat_s𝑀,𝑁 (−∞) = −2𝑁−1

trunc_sat_s𝑀,𝑁 (+∞) = 2𝑁−1 − 1
trunc_sat_s𝑀,𝑁 (𝑧) = signed−1

𝑁 (sat_s𝑁 (trunc(𝑧)))

promote𝑀,𝑁 (𝑧)

• If 𝑧 is a canonical NaN, then return an element of nans𝑁{} (i.e., a canonical NaN of size 𝑁).

• Else if 𝑧 is a NaN, then return an element of nans𝑁{±nan(1)} (i.e., any arithmetic NaN of size 𝑁).

• Else, return 𝑧.

promote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{} (if 𝑛 = canon𝑁)
promote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{+nan(1)} (otherwise)
promote𝑀,𝑁 (𝑧) = 𝑧

demote𝑀,𝑁 (𝑧)

• If 𝑧 is a canonical NaN, then return an element of nans𝑁{} (i.e., a canonical NaN of size 𝑁).

• Else if 𝑧 is a NaN, then return an element of nans𝑁{±nan(1)} (i.e., any NaN of size 𝑁).

• Else if 𝑧 is an infinity, then return that infinity.

• Else if 𝑧 is a zero, then return that zero.

• Else, return float𝑁 (𝑧).

114 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

demote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{} (if 𝑛 = canon𝑁)
demote𝑀,𝑁 (±nan(𝑛)) = nans𝑁{+nan(1)} (otherwise)
demote𝑀,𝑁 (±∞) = ±∞
demote𝑀,𝑁 (±0) = ±0
demote𝑀,𝑁 (±𝑞) = float𝑁 (±𝑞)

convertu𝑀,𝑁 (𝑖)

• Return float𝑁 (𝑖).

convertu𝑀,𝑁 (𝑖) = float𝑁 (𝑖)

converts𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖.

• Return float𝑁 (𝑗).

converts𝑀,𝑁 (𝑖) = float𝑁 (signed𝑀 (𝑖))

reinterpret𝑡1,𝑡2(𝑐)

• Let 𝑑* be the bit sequence bits𝑡1(𝑐).

• Return the constant 𝑐′ for which bits𝑡2(𝑐
′) = 𝑑*.

reinterpret𝑡1,𝑡2(𝑐) = bits−1
𝑡2 (bits𝑡1(𝑐))

narrows
𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖 of size 𝑀 .

• Return the value whose signed interpretation is sat_s𝑁 (𝑗).

narrows
𝑀,𝑁 (𝑖) = signed−1

𝑁 (sat_s𝑁 (signed𝑀 (𝑖)))

narrowu
𝑀,𝑁 (𝑖)

• Let 𝑗 be the signed interpretation of 𝑖 of size 𝑀 .

• Return sat_u𝑁 (𝑗).

narrowu
𝑀,𝑁 (𝑖) = sat_u𝑁 (signed𝑀 (𝑖))

4.3.5 Vector Operations
Most vector operations are performed by applying numeric operations lanewise. However, some operators consider
multiple lanes at once.

ivbitmask𝑁 (𝑖𝑚)

1. For each 𝑖𝑘 in 𝑖𝑚, let 𝑏𝑘 be the result of computing ilt_s𝑁 (𝑖, 0).

2. Let 𝑏𝑚 be the concatenation of all 𝑏𝑘.

3. Return the result of computing ibits−1
32 ((0)

32−𝑚 𝑏𝑚).

ivbitmask𝑁 (𝑖𝑚) = ibits−1
32 ((0)

32−𝑚 ilt_s𝑁 (𝑖, 0)𝑚)

4.3. Numerics 115

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ivswizzle(𝑖𝑛, 𝑗𝑛)

1. For each 𝑗𝑘 in 𝑗𝑛, let 𝑟𝑘 be the value ivswizzle_lane(𝑖𝑛, 𝑗𝑘).

2. Let 𝑟𝑛 be the concatenation of all 𝑟𝑘.

3. Return 𝑟𝑛.

ivswizzle(𝑖𝑛, 𝑗𝑛) = ivswizzle_lane(𝑖𝑛, 𝑗)𝑛

where:

ivswizzle_lane(𝑖𝑛, 𝑗) = 𝑖𝑛[𝑗] (if 𝑗 < 𝑛)
ivswizzle_lane(𝑖𝑛, 𝑗) = 0 (otherwise)

ivshuffle(𝑗𝑛, 𝑖𝑛1 , 𝑖
𝑛
2)

1. Let 𝑖* ne the concatenation of 𝑖𝑛1 and 𝑖𝑛2 .

2. For each 𝑗𝑘 in 𝑗𝑛, let 𝑟𝑘 be 𝑖*[𝑗𝑘].

3. Let 𝑟𝑛 be the concatenation of all 𝑟𝑘.

4. Return 𝑟𝑛.

ivshuffle(𝑗𝑛, 𝑖𝑛1 , 𝑖
𝑛
2) = ((𝑖𝑛1 𝑖𝑛2)[𝑗])

𝑛 (if (𝑗 < 2 · 𝑛)𝑛)

ivadd_pairwise𝑁 (𝑖2𝑚)

1. Let (𝑖1 𝑖2)𝑚 be 𝑖2𝑚, decomposed into pairwise elements.

2. For each 𝑖1𝑘 in 𝑖𝑚1 and corresponding 𝑖2𝑘 in 𝑖𝑚2 , let 𝑟𝑘 be iadd𝑁 (𝑖1𝑘, 𝑖2𝑘).

3. Let 𝑟𝑚 be the concatenation of all 𝑟𝑘.

4. Return 𝑟𝑚.

ivadd_pairwise𝑁 (𝑖2𝑚) = (iadd𝑁 (𝑖1, 𝑖2))
𝑚 (if 𝑖2𝑚 = (𝑖1 𝑖2)

𝑚)

ivmul𝑁 (𝑖𝑚1 , 𝑖𝑚2)

1. For each 𝑖1𝑘 in 𝑖𝑚1 and corresponding 𝑖2𝑘 in 𝑖𝑚2 , let 𝑟𝑘 be imul𝑁 (𝑖1𝑘, 𝑖2𝑘).

2. Let 𝑟𝑚 be the concatenation of all 𝑟𝑘.

3. Return 𝑟𝑚.

ivmul𝑁 (𝑖𝑚1 , 𝑖𝑚2) = (imul𝑁 (𝑖1, 𝑖2))
𝑚

ivdot𝑁 (𝑖2𝑚1 , 𝑖2𝑚2)

1. For each 𝑖1𝑘 in 𝑖2𝑚1 and corresponding 𝑖2𝑘 in 𝑖2𝑚2 , let 𝑗𝑘 be imul𝑁 (𝑖1𝑘, 𝑖2𝑘).

2. Let 𝑗2𝑚 be the concatenation of all 𝑗𝑘.

3. Let (𝑗1 𝑗2)𝑚 be 𝑗2𝑚, decomposed into pairwise elements.

4. For each 𝑖1𝑘 in 𝑖𝑚1 and corresponding 𝑖2𝑘 in 𝑖𝑚2 , let 𝑟𝑘 be iadd𝑁 (𝑖1𝑘, 𝑖2𝑘).

5. Let 𝑟𝑚 be the concatenation of all 𝑟𝑘.

6. Return 𝑟𝑚.

ivdot𝑁 (𝑖2𝑚1 , 𝑖2𝑚2) = (iadd𝑁 (𝑗1, 𝑗2))
𝑚 (if (imul𝑁 (𝑖1, 𝑖2))

2𝑚 = (𝑗1 𝑗2)
𝑚)

116 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ivdotsat𝑁 (𝑖𝑚1 , 𝑖𝑚2)

1. For each 𝑖1𝑘 in 𝑖2𝑚1 and corresponding 𝑖2𝑘 in 𝑖2𝑚2 , let 𝑗𝑘 be imul𝑁 (𝑖1𝑘, 𝑖2𝑘).

2. Let 𝑗2𝑚 be the concatenation of all 𝑗𝑘.

3. Let (𝑗1 𝑗2)𝑚 be 𝑗2𝑚, decomposed into pairwise elements.

4. For each 𝑖1𝑘 in 𝑖𝑚1 and corresponding 𝑖2𝑘 in 𝑖𝑚2 , let 𝑟𝑘 be iadd_sat𝑁 (𝑖1𝑘, 𝑖2𝑘).

5. Let 𝑟𝑚 be the concatenation of all 𝑟𝑘.

6. Return 𝑟𝑚.

ivdotsat𝑁 (𝑖2𝑚1 , 𝑖2𝑚2) = (iadd_sat𝑁 (𝑗1, 𝑗2))
𝑚 (if (imul𝑁 (𝑖1, 𝑖2))

2𝑚 = (𝑗1 𝑗2)
𝑚)

The previous operators are lifted to operators on arguments of vector type by wrapping them in corresponding lane
projections and injections and intermediate extension operations:

vextunopsh1,sh2(𝑐)

extadd_pairwise_sx i𝑁1x𝑀1,i𝑁2x𝑀2
(𝑐) = lanes−1

i𝑁2x𝑀2
(𝑗*) (if 𝑖* = lanesi𝑁1x𝑀1

(𝑐)
∧ 𝑖′

*
= extendsx𝑁1,𝑁2

(𝑖)*

∧ 𝑗* = ivadd_pairwise𝑁2
(𝑖′

*
)

vextbinopsh1,sh2(𝑐1, 𝑐2)

vextbinop i𝑁1x𝑀1,i𝑁2x𝑀2
(𝑐1, 𝑐2) = lanes−1

i𝑁2x𝑀2
(𝑗*) (if 𝑖*1 = lanesi𝑁1x𝑀1

(𝑐1)[ℎ : 𝑘]
∧ 𝑖*2 = lanesi𝑁1x𝑀1

(𝑐2)[ℎ : 𝑘]
∧ 𝑖′1

*
= extendsx𝑁1,𝑁2

(𝑖1)
*

∧ 𝑖′2
*
= extendsx𝑁1,𝑁2

(𝑖2)
*

∧ 𝑗* = 𝑓𝑁2
(𝑖′1

*
, 𝑖′1

*
)

where 𝑓 , sx 1, sx 2, ℎ, and 𝑘 are instantiated as follows, depending on the operator:

vextbinop 𝑓 sx 1 sx 2 ℎ 𝑘
extmul_low_sx ivmul sx sx 0 𝑀2

extmul_high_sx ivmul sx sx 𝑀2 𝑀2

dot_s ivdot s s 0 𝑀1

relaxed_dot_s ivdotsat s relaxed(𝑅idot)[s, u] 0 𝑀1

Note

Relaxed operations and the paramater 𝑅idot are introduced below.

vextternopsh1,sh2(𝑐1, 𝑐2, 𝑐3)

relaxed_dot_add_si𝑁1x𝑀1,i𝑁2x𝑀2(𝑐1, 𝑐2, 𝑐3) = 𝑐 (if 𝑁 = 2 ·𝑁1

∧𝑀 = 2 ·𝑀2

∧ 𝑐′ = relaxed_dot_si𝑁1x𝑀1,i𝑁x𝑀 (𝑐1, 𝑐2)
∧ 𝑐′′ = extadd_pairwise_si𝑁x𝑀,i𝑁2x𝑀2

(𝑐′)
∧ 𝑐 ∈ addi𝑁2x𝑀2(𝑐

′′, 𝑐3)

narrow_sx sh1,sh2
(𝑐1, 𝑐2)

narrow_sx i𝑁1x𝑀1,i𝑁2x𝑀2
(𝑐1, 𝑐2) = lanes−1

i𝑁2x𝑀2
(𝑗*) (if 𝑖*1 = lanesi𝑁1x𝑀1

(𝑐1)
∧ 𝑖*2 = lanesi𝑁1x𝑀1

(𝑐2)
∧ 𝑖′1

*
= narrowsx

𝑁1,𝑁2
(𝑖1)

*

∧ 𝑖′2
*
= narrowsx

𝑁1,𝑁2
(𝑖2)

*

∧ 𝑗* = 𝑖′1
* ⊕ 𝑖′1

*

4.3. Numerics 117

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

vcvtop_half ?_zero?
sh1,sh2

(𝑖)

vcvtop_half ?_zero?
𝑡1x𝑀1,𝑡2x𝑀2

(𝑖) = 𝑗 (if condition
∧ 𝑐* = lanes𝑡1x𝑀1

(𝑖)[ℎ : 𝑘]

∧ 𝑐′
**

= ×(vcvtop|𝑡1|,|𝑡2|(𝑐)
* ⊕ (0)𝑛)

∧ 𝑗 ∈ lanes−1
𝑡2x𝑀2

(𝑐′
*
)*

where ℎ, 𝑘, 𝑛, and condition are instantiated as follows, depending on the operator:

half ? zero? ℎ 𝑘 𝑛 condition
𝜖 𝜖 0 𝑀1 0 (𝑀1 = 𝑀2)
low 𝜖 0 𝑀2 0 (𝑀1 = 2 ·𝑀2)
high 𝜖 𝑀2 𝑀2 0 (𝑀1 = 2 ·𝑀2)
𝜖 zero 0 𝑀1 𝑀1 (2 ·𝑀1 = 𝑀2)

while ×{𝑥*}𝑁 transforms a sequence of 𝑁 sets of non-deterministic values into a set of non-deterministic se-
quences of 𝑁 values by computing the set product:

×(𝑆1 . . . 𝑆𝑁) = {𝑥1 . . . 𝑥𝑁 | 𝑥1 ∈ 𝑆1 ∧ · · · ∧ 𝑥𝑁 ∈ 𝑆𝑁}

4.3.6 Relaxed Operations
The result of relaxed operators are implementation-dependent, because the set of possible results may depend on
properties of the host environment, such as its hardware. Technically, their behaviour is controlled by a set of global
parameters to the semantics that an implementation can instantiate in different ways. These choices are fixed, that
is, parameters are constant during the execution of any given program.

Every such parameter is an index into a sequence of possible sets of results and must be instantiated to a defined
index. In the deterministic profile, every parameter is prescribed to be 0. This behaviour is expressed by the
following auxiliary function, where 𝑅 is a global parameter selecting one of the allowed outcomes:

[!DET] relaxed(𝑅)[𝐴0, . . . , 𝐴𝑛] = 𝐴𝑅

relaxed(𝑅)[𝐴0, . . . , 𝐴𝑛] = 𝐴0

Note

Each parameter can be thought of as inducing a family of operations that is fixed to one particular choice by an
implementation. The fixed operation itself can still be non-deterministic or partial.

Implementations are expexted to either choose the behaviour that is the most efficient on the underlying hard-
ware, or the behaviour of the deterministic profile.

frelaxed_madd𝑁 (𝑧1, 𝑧2, 𝑧3)

The implementation-specific behaviour of this operation is determined by the global parameter 𝑅fmadd ∈ {0, 1}.

• Return relaxed(𝑅fmadd)[fadd𝑁 (fmul𝑁 (𝑧1, 𝑧2), 𝑧3), fma𝑁 (𝑧1, 𝑧2, 𝑧3)].

frelaxed_madd𝑁 (𝑧1, 𝑧2, 𝑧3) = relaxed(𝑅fmadd)[fadd𝑁 (fmul𝑁 (𝑧1, 𝑧2), 𝑧3), fma𝑁 (𝑧1, 𝑧2, 𝑧3)]

Note

Relaxed multiply-add allows for fused or unfused results, which leads to implementation-dependent rounding
behaviour. In the deterministic profile, the unfused behaviour is used.

118 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

frelaxed_nmadd𝑁 (𝑧1, 𝑧2, 𝑧3)

• Return frelaxed_madd(−𝑧1, 𝑧2, 𝑧3).

frelaxed_nmadd𝑁 (𝑧1, 𝑧2, 𝑧3) = frelaxed_madd𝑁 (−𝑧1, 𝑧2, 𝑧3)

Note

This operation is implementation-dependent because frelaxed_madd is implementation-dependent.

frelaxed_min𝑁 (𝑧1, 𝑧2)

The implementation-specific behaviour of this operation is determined by the global parameter 𝑅fmin ∈
{0, 1, 2, 3}.

• If 𝑧1 is a NaN, then return relaxed(𝑅fmin)[fmin𝑁 (𝑧1, 𝑧2), nan(𝑛), 𝑧2, 𝑧2].

• If 𝑧2 is a NaN, then return relaxed(𝑅fmin)[fmin𝑁 (𝑧1, 𝑧2), 𝑧1, nan(𝑛), 𝑧1].

• If both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return relaxed(𝑅fmin)[fmin𝑁 (𝑧1, 𝑧2), pm 0, mp 0, -0]`.

• Return fmin𝑁 (𝑧1, 𝑧2).

frelaxed_min𝑁 (±nan(𝑛), 𝑧2) = relaxed(𝑅fmin)[fmin𝑁 (±nan(𝑛), 𝑧2), nan(𝑛), 𝑧2, 𝑧2]
frelaxed_min𝑁 (𝑧1,±nan(𝑛)) = relaxed(𝑅fmin)[fmin𝑁 (𝑧1,±nan(𝑛)), 𝑧1, nan(𝑛), 𝑧1]
frelaxed_min𝑁 (±0,∓0) = relaxed(𝑅fmin)[fmin𝑁 (±0,∓0),±0,∓0,−0]
frelaxed_min𝑁 (𝑧1, 𝑧2) = fmin𝑁 (𝑧1, 𝑧2) (otherwise)

Note

Relaxed minimum is implementation-dependent for NaNs and for zeroes with different signs. In the determin-
istic profile, it behaves like regular fmin.

frelaxed_max𝑁 (𝑧1, 𝑧2)

The implementation-specific behaviour of this operation is determined by the global parameter 𝑅fmax ∈
{0, 1, 2, 3}.

• If 𝑧1 is a NaN, then return relaxed(𝑅fmax)[fmax𝑁 (𝑧1, 𝑧2), nan(𝑛), 𝑧2, 𝑧2].

• If 𝑧2 is a NaN, then return relaxed(𝑅fmax)[fmax𝑁 (𝑧1, 𝑧2), 𝑧1, nan(𝑛), 𝑧1].

• If both 𝑧1 and 𝑧2 are zeroes of opposite sign, then return relaxed(𝑅fmax)[fmax𝑁 (𝑧1, 𝑧2), pm 0, mp 0, +0]`.

• Return fmax𝑁 (𝑧1, 𝑧2).

frelaxed_max𝑁 (±nan(𝑛), 𝑧2) = relaxed(𝑅fmax)[fmax𝑁 (±nan(𝑛), 𝑧2), nan(𝑛), 𝑧2, 𝑧2]
frelaxed_max𝑁 (𝑧1,±nan(𝑛)) = relaxed(𝑅fmax)[fmax𝑁 (𝑧1,±nan(𝑛)), 𝑧1, nan(𝑛), 𝑧1]
frelaxed_max𝑁 (±0,∓0) = relaxed(𝑅fmax)[fmax𝑁 (±0,∓0),±0,∓0,+0]
frelaxed_max𝑁 (𝑧1, 𝑧2) = fmax𝑁 (𝑧1, 𝑧2) (otherwise)

Note

Relaxed maximum is implementation-dependent for NaNs and for zeroes with different signs. In the determin-
istic profile, it behaves like regular fmax.

4.3. Numerics 119

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

irelaxed_q15mulr_s𝑁 (𝑖1, 𝑖2)

The implementation-specific behaviour of this operation is determined by the global parameter 𝑅iq15mulr ∈ {0, 1}.

• If both 𝑖1 and 𝑖2 equal (signed−1
𝑁 (−2𝑁−1), then return relaxed(𝑅iq15mulr)[2

𝑁−1 − 1, signed−1
𝑁 (−2𝑁−1)].

• Return iq15mulrsat_s(𝑖1, 𝑖2)

irelaxed_q15mulr_s𝑁 (signed−1
𝑁 (−2𝑁−1), signed−1

𝑁 (−2𝑁−1)) = relaxed(𝑅iq15mulr)[2
𝑁−1 − 1, signed−1

𝑁 (−2𝑁−1)]
irelaxed_q15mulr_s𝑁 (𝑖1, 𝑖2) = iq15mulrsat_s(𝑖1, 𝑖2)

Note

Relaxed Q15 multiplication is implementation-dependent when the result overflows. In the deterministic pro-
file, it behaves like regular iq15mulrsat_s.

relaxed_trunc𝑢𝑀,𝑁 (𝑧)

The implementation-specific behaviour of this operation is determined by the global parameter 𝑅trunc_u ∈ {0, 1}.

• If 𝑧 is normal or subnormal and trunc(𝑧) is non-negative and less than 2𝑁 , then return truncu𝑀,𝑁 (𝑧).

• Else, return relaxed(𝑅trunc_u)[trunc_sat_u𝑀,𝑁 (𝑧),R].

relaxed_trunc𝑢𝑀,𝑁 (±𝑞) = truncu𝑀,𝑁 (±𝑞) (if 0 ≤ trunc(±𝑞) < 2𝑁)

relaxed_trunc𝑢𝑀,𝑁 (𝑧) = relaxed(𝑅trunc_u)[trunc_sat_u𝑀,𝑁 (𝑧),R] (otherwise)

Note

Relaxed unsigned truncation is non-deterministic for NaNs and out-of-range values. In the deterministic profile,
it behaves like regular trunc_sat_u.

relaxed_trunc𝑠𝑀,𝑁 (𝑧)

The implementation-specific behaviour of this operation is determined by the global parameter 𝑅trunc_s ∈ {0, 1}.

• If 𝑧 is normal or subnormal and trunc(𝑧) is greater than or equal to −2𝑁−1 and less than 2𝑁−1, then return
truncs𝑀,𝑁 (𝑧).

• Else, return relaxed(𝑅trunc_s)[trunc_sat_s𝑀,𝑁 (𝑧),R].

relaxed_trunc𝑠𝑀,𝑁 (±𝑞) = truncs𝑀,𝑁 (±𝑞) (if −2𝑁−1 ≤ trunc(±𝑞) < 2𝑁−1)

relaxed_trunc𝑠𝑀,𝑁 (𝑧) = relaxed(𝑅trunc_s)[trunc_sat_s𝑀,𝑁 (𝑧),R] (otherwise)

Note

Relaxed signed truncation is non-deterministic for NaNs and out-of-range values. In the deterministic profile,
it behaves like regular trunc_sat_s.

ivrelaxed_swizzle(𝑖𝑛, 𝑗𝑛)

The implementation-specific behaviour of this operation is determined by the global parameter 𝑅swizzle ∈ {0, 1}.

• For each 𝑗𝑘 in 𝑗𝑛, let 𝑟𝑘 be the value ivrelaxed_swizzle_lane(𝑖𝑛, 𝑗𝑘).

• Let 𝑟𝑛 be the concatenation of all 𝑟𝑘.

• Return 𝑟𝑛.

120 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ivrelaxed_swizzle(𝑖𝑛, 𝑗𝑛) = ivrelaxed_swizzle_lane(𝑖𝑛, 𝑗)𝑛

where:

ivrelaxed_swizzle_lane(𝑖𝑛, 𝑗) = 𝑖[𝑗] (if 𝑗 < 16)
ivrelaxed_swizzle_lane(𝑖𝑛, 𝑗) = 0 (if signed8(𝑗) < 0)
ivrelaxed_swizzle_lane(𝑖𝑛, 𝑗) = relaxed(𝑅swizzle)[0, 𝑖

𝑛[𝑗 mod 𝑛]] (otherwise)

Note

Relaxed swizzle is implementation-dependent if the signed interpretation of any of the 8-bit indices in 𝑗𝑛 is
larger than or equal to 16. In the deterministic profile, it behaves like regular ivswizzle.

relaxed_dot(𝑖1, 𝑖2)

The implementation-specific behaviour of this operation is determined by the global parameter 𝑅idot ∈ {0, 1}. It
also affects the behaviour of relaxed_dot_add.

Its definition is part of the definition of vextbinop specified above.

Note

Relaxed dot product is implementation-dependent when the second operand is negative in a signed intepretation.
In the deterministic profile, it behaves like signed dot product.

irelaxed_laneselect𝑁 (𝑖1, 𝑖2, 𝑖3)

The implementation-specific behaviour of this operation is determined by the global parameter𝑅laneselect ∈ {0, 1}.

• If 𝑖3 is smaller than 2𝑁−1, then let 𝑖′3 be the value 0, otherwise 2𝑁 − 1.

• Let 𝑖′′3 be relaxed(𝑅laneselect)[𝑖3, 𝑖
′
3].

• Return ibitselect𝑁 (𝑖1, 𝑖2, 𝑖
′′
3).

irelaxed_laneselect𝑁 (𝑖1, 𝑖2, 𝑖3) = ibitselect𝑁 (𝑖1, 𝑖2, relaxed(𝑅laneselect)[𝑖3, extend
s
1,𝑁 (ishr_u𝑁 (𝑖3, 𝑁 − 1))])

Note

Relaxed lane selection is non-deterministic when the mask mixes set and cleared bits, since the value of the
high bit may or may not be expanded to all bits. In the deterministic profile, it behaves like ibitselect.

4.4 Types
Execution has to check and compare types in a few places, such as executing call_indirect or instantiating modules.

It is an invariant of the semantics that all types occurring during execution are closed.

Note

Runtime type checks generally involve types from multiple modules or types not defined by a module at all,
such that any module-local type indices occurring inside them would not geenrally be meaningful.

4.4. Types 121

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.4.1 Instantiation
Any form of type can be instantiated into a closed type inside a module instance by substituting each type index 𝑥
occurring in it with the corresponding defined type moduleinst .types[𝑥].

closmoduleinst(𝑡) = 𝑡[:= dt*] if dt* = moduleinst .types

Note

This is the runtime equivalent to type closure, which is applied at validation time.

4.5 Values

4.5.1 Value Typing
For the purpose of checking argument values against the parameter types of exported functions, values are classified
by value types. The following auxiliary typing rules specify this typing relation relative to a store 𝑆 in which
possibly referenced addresses live.

Numeric Values

The number value (nt .const 𝑐) is valid with the number type nt .

𝑠 ⊢ nt .const 𝑐 : nt

Vector Values

The vector value (vt .const 𝑐) is valid with the vector type vt .

𝑠 ⊢ vt .const 𝑐 : vt

Null References

The reference value (ref.null ht) is valid with the reference type (ref null ht ′) if:

• The heap type ht ′ matches the heap type ht .

{} ⊢ ht ′ ≤ ht

𝑠 ⊢ ref.null ht : (ref null ht ′)

Note

A null reference can be typed with any smaller type. In particular, that allows it to be typed with the least type
in its respective hierarchy. That ensures that the value is compatible with any nullable type in that hierarchy.

Scalar References

The reference value (ref.i31 𝑖) is valid with the reference type (ref i31).

𝑠 ⊢ ref.i31 𝑖 : (ref i31)

Structure References

The reference value (ref.struct 𝑎) is valid with the reference type (ref dt) if:

• The structure instance 𝑠.structs[𝑎] exists.

• The defined type 𝑠.structs[𝑎].type is of the form dt .

𝑠.structs[𝑎].type = dt

𝑠 ⊢ ref.struct 𝑎 : (ref dt)

122 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Array References

The reference value (ref.array 𝑎) is valid with the reference type (ref dt) if:

• The array instance 𝑠.arrays[𝑎] exists.

• The defined type 𝑠.arrays[𝑎].type is of the form dt .

𝑠.arrays[𝑎].type = dt

𝑠 ⊢ ref.array 𝑎 : (ref dt)

Exception References

The reference value (ref.exn 𝑎) is valid with the reference type (ref exn) if:

• The exception instance 𝑠.exns[𝑎] exists.

𝑠.exns[𝑎] = exn

𝑠 ⊢ ref.exn 𝑎 : (ref exn)

Continuation References

The reference value (ref.cont 𝑎) is valid with the reference type (ref dt) if:

• The continuation instance 𝑠.conts[𝑎] exists.

• The continuation instance 𝑠.conts[𝑎] is absent or 𝑠.conts[𝑎] is of the form continst .

𝑠.conts[𝑎] = 𝜖 ∨ 𝑠.conts[𝑎] = continst

𝑠 ⊢ ref.cont 𝑎 : (ref dt)

Function References

The reference value (ref.func 𝑎) is valid with the reference type (ref dt) if:

• The function instance 𝑠.funcs[𝑎] exists.

• The defined type 𝑠.funcs[𝑎].type is of the form dt .

𝑠.funcs[𝑎].type = dt

𝑠 ⊢ ref.func 𝑎 : (ref dt)

Host References

The reference value (ref.host 𝑎) is valid with the reference type (ref any).

𝑠 ⊢ ref.host 𝑎 : (ref any)

Note

A bare host reference is considered internalized.

External References

The reference value (ref.extern addrref) is valid with the reference type (ref extern) if:

• The reference value addrref is valid with the reference type (ref any).

𝑠 ⊢ addrref : (ref any)

𝑠 ⊢ ref.extern addrref : (ref extern)

4.5. Values 123

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Subsumption

The reference value ref is valid with the reference type rt if:

• The reference value ref is valid with the reference type rt ′.

• The reference type rt ′ matches the reference type rt .

𝑠 ⊢ ref : rt ′ {} ⊢ rt ′ ≤ rt

𝑠 ⊢ ref : rt

4.5.2 External Typing
For the purpose of checking external address against imports, such values are classified by external types. The
following auxiliary typing rules specify this typing relation relative to a store 𝑆 in which the referenced instances
live.

Functions

The external address (func 𝑎) is valid with the external type (func funcinst .type) if:

• The function instance 𝑠.funcs[𝑎] exists.

• The function instance 𝑠.funcs[𝑎] is of the form funcinst .

𝑠.funcs[𝑎] = funcinst

𝑠 ⊢ func 𝑎 : func funcinst .type

Tables

The external address (table 𝑎) is valid with the external type (table tableinst .type) if:

• The table instance 𝑠.tables[𝑎] exists.

• The table instance 𝑠.tables[𝑎] is of the form tableinst .

𝑠.tables[𝑎] = tableinst

𝑠 ⊢ table 𝑎 : table tableinst .type

Memories

The external address (mem 𝑎) is valid with the external type (mem meminst .type) if:

• The memory instance 𝑠.mems[𝑎] exists.

• The memory instance 𝑠.mems[𝑎] is of the form meminst .

𝑠.mems[𝑎] = meminst

𝑠 ⊢ mem 𝑎 : mem meminst .type

Globals

The external address (global 𝑎) is valid with the external type (global globalinst .type) if:

• The global instance 𝑠.globals[𝑎] exists.

• The global instance 𝑠.globals[𝑎] is of the form globalinst .

𝑠.globals[𝑎] = globalinst

𝑠 ⊢ global 𝑎 : global globalinst .type

124 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Tags

The external address (tag 𝑎) is valid with the external type (tag taginst .type) if:

• The tag instance 𝑠.tags[𝑎] exists.

• The tag instance 𝑠.tags[𝑎] is of the form taginst .

𝑠.tags[𝑎] = taginst

𝑠 ⊢ tag 𝑎 : tag taginst .type

Subsumption

The external address externaddr is valid with the external type xt if:

• The external address externaddr is valid with the external type xt ′.

• The external type xt ′ matches the external type xt .

𝑠 ⊢ externaddr : xt ′ {} ⊢ xt ′ ≤ xt

𝑠 ⊢ externaddr : xt

4.6 Instructions
WebAssembly computation is performed by executing individual instructions.

4.6.1 Parametric Instructions
nop

1. Do nothing.

nop →˓ 𝜖

unreachable

1. Trap.

unreachable →˓ trap

drop

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

val drop →˓ 𝜖

select (𝑡*)?

1. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2. Pop the value (i32.const 𝑐) from the stack.

3. Assert: Due to validation, a value is on the top of the stack.

4. Pop the value val2 from the stack.

5. Assert: Due to validation, a value is on the top of the stack.

6. Pop the value val1 from the stack.

7. If 𝑐 ̸= 0, then:

a. Push the value val1 to the stack.

8. Else:

4.6. Instructions 125

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

a. Push the value val2 to the stack.

val1 val2 (i32.const 𝑐) (select (𝑡
*)?) →˓ val1 if 𝑐 ̸= 0

val1 val2 (i32.const 𝑐) (select (𝑡
*)?) →˓ val2 if 𝑐 = 0

Note

In future versions of WebAssembly, select may allow more than one value per choice.

4.6.2 Control Instructions
block bt instr*

1. Let 𝑧 be the current state.

2. Let 𝑡𝑚1 →localidx*
0
𝑡𝑛2 be the destructuring of instrtype𝑧(bt).

3. Assert: Due to validation, localidx*
0 = 𝜖.

4. Assert: Due to validation, there are at least 𝑚 values on the top of the stack.

5. Pop the values val𝑚 from the stack.

6. Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the end of the block.

7. Enter the block val𝑚 instr* with the label 𝐿.

𝑧; val𝑚 (block bt instr*) →˓ (label𝑛{𝜖} val𝑚 instr*) if instrtype𝑧(bt) = 𝑡𝑚1 → 𝑡𝑛2

loop bt instr*

1. Let 𝑧 be the current state.

2. Let 𝑡𝑚1 →localidx*
0
𝑡𝑛2 be the destructuring of instrtype𝑧(bt).

3. Assert: Due to validation, localidx*
0 = 𝜖.

4. Assert: Due to validation, there are at least 𝑚 values on the top of the stack.

5. Pop the values val𝑚 from the stack.

6. Let 𝐿 be the label whose arity is 𝑚 and whose continuation is the start of the block.

7. Enter the block val𝑚 instr* with the label 𝐿.

𝑧; val𝑚 (loop bt instr*) →˓ (label𝑚{loop bt instr*} val𝑚 instr*) if instrtype𝑧(bt) = 𝑡𝑚1 → 𝑡𝑛2

if bt instr*1 instr*2

1. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2. Pop the value (i32.const 𝑐) from the stack.

3. If 𝑐 ̸= 0, then:

a. Execute the instruction (block bt instr*1).

4. Else:

a. Execute the instruction (block bt instr*2).

(i32.const 𝑐) (if bt instr*1 else instr
*
2) →˓ (block bt instr*1) if 𝑐 ̸= 0

(i32.const 𝑐) (if bt instr*1 else instr
*
2) →˓ (block bt instr*2) if 𝑐 = 0

126 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

br 𝑙

1. If the first non-value entry of the stack is a label, then:

a. Let 𝐿 be the topmost label.

b. Let 𝑛 be the arity of 𝐿

c. If 𝑙 = 0, then:

1) Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

2) Pop the values val𝑛 from the stack.

3) Pop all values val ′* from the top of the stack.

4) Pop the label 𝐿 from the stack.

5) Push the values val𝑛 to the stack.

6) Jump to the continuation of 𝐿.

d. Else:

1) Pop all values val* from the top of the stack.

2) Pop the label 𝐿 from the stack.

3) Push the values val* to the stack.

4) Execute the instruction (br 𝑙 − 1).

2. Else if the first non-value entry of the stack is a handler, then:

a. Pop all values val* from the top of the stack.

b. Pop the handler 𝐻 from the stack.

c. Push the values val* to the stack.

d. Execute the instruction (br 𝑙).

3. Else:

a. Assert: Due to validation, the first non-value entry of the stack is a prompt.

b. Pop all values val* from the top of the stack.

c. Pop the prompt 𝑃 from the stack.

d. Push the values val* to the stack.

e. Execute the instruction (br 𝑙).

(label𝑛{instr ′*} val ′* val𝑛 (br 𝑙) instr*) →˓ val𝑛 instr ′
* if 𝑙 = 0

(label𝑛{instr ′*} val* (br 𝑙) instr*) →˓ val* (br 𝑙 − 1) if 𝑙 > 0
(handler𝑛{catch*} val* (br 𝑙) instr*) →˓ val* (br 𝑙)
(prompt{addrhdl*} val* (br 𝑙) instr*) →˓ val* (br 𝑙)

br_if 𝑙

1. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2. Pop the value (i32.const 𝑐) from the stack.

3. If 𝑐 ̸= 0, then:

a. Execute the instruction (br 𝑙).

4. Else:

a. Do nothing.

(i32.const 𝑐) (br_if 𝑙) →˓ (br 𝑙) if 𝑐 ̸= 0
(i32.const 𝑐) (br_if 𝑙) →˓ 𝜖 if 𝑐 = 0

4.6. Instructions 127

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

br_table 𝑙* 𝑙′

1. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2. Pop the value (i32.const 𝑖) from the stack.

3. If 𝑖 < |𝑙*|, then:

a. Execute the instruction (br 𝑙*[𝑖]).

4. Else:

a. Execute the instruction (br 𝑙′).

(i32.const 𝑖) (br_table 𝑙* 𝑙′) →˓ (br 𝑙*[𝑖]) if 𝑖 < |𝑙*|
(i32.const 𝑖) (br_table 𝑙* 𝑙′) →˓ (br 𝑙′) if 𝑖 ≥ |𝑙*|

br_on_null 𝑙

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. If val is some ref.null heaptype , then:

a. Execute the instruction (br 𝑙).

4. Else:

a. Push the value val to the stack.
val (br_on_null 𝑙) →˓ (br 𝑙) if val = ref.null ht
val (br_on_null 𝑙) →˓ val otherwise

br_on_non_null 𝑙

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. If val is some ref.null heaptype , then:

a. Do nothing.

4. Else:

a. Push the value val to the stack.

b. Execute the instruction (br 𝑙).

val (br_on_non_null 𝑙) →˓ 𝜖 if val = ref.null ht
val (br_on_non_null 𝑙) →˓ val (br 𝑙) otherwise

br_on_cast 𝑙 rt1 rt2

1. Let 𝑓 be the topmost frame.

2. Assert: Due to validation, a reference value is on the top of the stack.

3. Pop the value ref from the stack.

4. Let rt be the type of ref .

5. Push the value ref to the stack.

6. If rt matches clos𝑓.module(rt2), then:

a. Execute the instruction (br 𝑙).

7. Else:

a. Do nothing.

128 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝑠; 𝑓 ; ref (br_on_cast 𝑙 rt1 rt2) →˓ ref (br 𝑙) if 𝑠 ⊢ ref : rt
∧ {} ⊢ rt ≤ clos𝑓.module(rt2)

𝑠; 𝑓 ; ref (br_on_cast 𝑙 rt1 rt2) →˓ ref otherwise

br_on_cast_fail 𝑙 rt1 rt2

1. Let 𝑓 be the topmost frame.

2. Assert: Due to validation, a reference value is on the top of the stack.

3. Pop the value ref from the stack.

4. Let rt be the type of ref .

5. Push the value ref to the stack.

6. If rt matches clos𝑓.module(rt2), then:

a. Do nothing.

7. Else:

a. Execute the instruction (br 𝑙).

𝑠; 𝑓 ; ref (br_on_cast_fail 𝑙 rt1 rt2) →˓ ref if 𝑠 ⊢ ref : rt
∧ {} ⊢ rt ≤ clos𝑓.module(rt2)

𝑠; 𝑓 ; ref (br_on_cast_fail 𝑙 rt1 rt2) →˓ ref (br 𝑙) otherwise

return

1. If the first non-value entry of the stack is a frame, then:

a. Let 𝑓 be the topmost frame.

b. Let 𝑛 be the arity of 𝑓

c. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

d. Pop the values val𝑛 from the stack.

e. Pop all values val ′* from the top of the stack.

f. Pop the frame 𝐹 from the stack.

g. Push the values val𝑛 to the stack.

2. Else if the first non-value entry of the stack is a label, then:

a. Pop all values val* from the top of the stack.

b. Pop the label 𝐿 from the stack.

c. Push the values val* to the stack.

d. Execute the instruction return.

3. Else:

a. If the first non-value entry of the stack is a handler, then:

1) Pop all values val* from the top of the stack.

2) Pop the handler 𝐻 from the stack.

3) Push the values val* to the stack.

4) Execute the instruction return.

b. Else:

1) Assert: Due to validation, the first non-value entry of the stack is a prompt.

2) Pop all values val* from the top of the stack.

4.6. Instructions 129

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3) Pop the prompt 𝑃 from the stack.

4) Push the values val* to the stack.

5) Execute the instruction return.

(frame𝑛{𝑓} val ′* val𝑛 return instr*) →˓ val𝑛

(label𝑛{instr ′*} val* return instr*) →˓ val* return
(handler𝑛{catch*} val* return instr*) →˓ val* return
(prompt{addrhdl*} val* return instr*) →˓ val* return

call 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, 𝑥 < |𝑧.module.funcs|.

3. Let 𝑎 be the address 𝑧.module.funcs[𝑥].

4. Assert: Due to validation, 𝑎 < |𝑧.funcs|.

5. Push the value (ref.func 𝑎) to the stack.

6. Execute the instruction (call_ref 𝑧.funcs[𝑎].type).

𝑧; (call 𝑥) →˓ (ref.func 𝑎) (call_ref 𝑧.funcs[𝑎].type) if 𝑧.module.funcs[𝑥] = 𝑎

call_ref 𝑥

Todo

(*) Prose not spliced, for the prose merges the two cases of null and non-null references.

1. Assert: due to validation, a null or function reference is on the top of the stack.

2. Pop the reference value 𝑟 from the stack.

3. If 𝑟 is ref.null ht , then:

a. Trap.

4. Assert: due to validation, 𝑟 is a function reference.

5. Let ref.func 𝑎 be the reference 𝑟.

6. Invoke the function instance at address 𝑎.

𝑧; (ref.null ht) (call_ref 𝑦) →˓ trap

Note

The formal rule for calling a non-null function reference is described below.

call_indirect 𝑥 𝑦

1. Execute the instruction (table.get 𝑥).

2. Execute the instruction (ref.cast (ref null 𝑦)).

3. Execute the instruction (call_ref 𝑦).

(call_indirect 𝑥 𝑦) →˓ (table.get 𝑥) (ref.cast (ref null 𝑦)) (call_ref 𝑦)

130 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

return_call 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, 𝑥 < |𝑧.module.funcs|.

3. Let 𝑎 be the address 𝑧.module.funcs[𝑥].

4. Assert: Due to validation, 𝑎 < |𝑧.funcs|.

5. Push the value (ref.func 𝑎) to the stack.

6. Execute the instruction (return_call_ref 𝑧.funcs[𝑎].type).

𝑧; (return_call 𝑥) →˓ (ref.func 𝑎) (return_call_ref 𝑧.funcs[𝑎].type) if 𝑧.module.funcs[𝑥] = 𝑎

return_call_ref 𝑦

1. Let 𝑧 be the current state.

2. If the first non-value entry of the stack is a label, then:

a. Pop all values val* from the top of the stack.

b. Pop the label 𝐿 from the stack.

c. Push the values val* to the stack.

d. Execute the instruction (return_call_ref 𝑦).

3. Else if the first non-value entry of the stack is a handler, then:

a. Pop all values val* from the top of the stack.

b. Pop the handler 𝐻 from the stack.

c. Push the values val* to the stack.

d. Execute the instruction (return_call_ref 𝑦).

4. Else:

a. Assert: Due to validation, the first non-value entry of the stack is a frame.

b. Assert: Due to validation, a value is on the top of the stack.

c. Pop the value val ′′ from the stack.

d. If val ′′ is some ref.null heaptype, then:

1) Trap.

e. Assert: Due to validation, val ′′ is some ref.func funcaddr .

f. Let (ref.func 𝑎) be the destructuring of val ′′.

g. Assert: Due to validation, 𝑎 < |𝑧.funcs|.

h. Assert: Due to validation, the expansion of 𝑧.funcs[𝑎].type is some func resulttype → resulttype.

i. Let (func 𝑡𝑛1 → 𝑡𝑚2) be the destructuring of the expansion of 𝑧.funcs[𝑎].type.

j. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

k. Pop the values val𝑛 from the stack.

l. Pop all values val ′* from the top of the stack.

m. Pop the frame 𝐹 from the stack.

n. Push the values val𝑛 to the stack.

o. Push the value (ref.func 𝑎) to the stack.

p. Execute the instruction (call_ref 𝑦).

4.6. Instructions 131

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝑧; (label𝑘{instr ′*} val* (return_call_ref 𝑦) instr*) →˓ val* (return_call_ref 𝑦)
𝑧; (handler𝑘{catch*} val* (return_call_ref 𝑦) instr*) →˓ val* (return_call_ref 𝑦)

𝑧; (frame𝑘{𝑓} val* (ref.null ht) (return_call_ref 𝑦) instr*) →˓ trap
𝑧; (frame𝑘{𝑓} val ′* val𝑛 (ref.func 𝑎) (return_call_ref 𝑦) instr*) →˓ val𝑛 (ref.func 𝑎) (call_ref 𝑦)

if 𝑧.funcs[𝑎].type ≈ func 𝑡𝑛1 → 𝑡𝑚2

return_call_indirect 𝑥 𝑦

1. Execute the instruction (table.get 𝑥).

2. Execute the instruction (ref.cast (ref null 𝑦)).

3. Execute the instruction (return_call_ref 𝑦).

(return_call_indirect 𝑥 𝑦) →˓ (table.get 𝑥) (ref.cast (ref null 𝑦)) (return_call_ref 𝑦)

throw 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, 𝑥 < |𝑧.tags|.

3. Assert: Due to validation, the expansion of 𝑧.tags[𝑥].type is some func resulttype → resulttype.

4. Let (func 𝑡𝑛 → resulttype0) be the destructuring of the expansion of 𝑧.tags[𝑥].type.

5. Assert: Due to validation, resulttype0 = 𝜖.

6. Let 𝑎 be the length of 𝑧.exns.

7. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

8. Pop the values val𝑛 from the stack.

9. Let exn be the exception instance {tag 𝑧.tags[𝑥], fields val𝑛}.

10. Append exn to 𝑧.exns.

11. Push the value (ref.exn 𝑎) to the stack.

12. Execute the instruction throw_ref.
𝑧; val𝑛 (throw 𝑥) →˓ 𝑧[.exns =⊕ exn]; (ref.exn 𝑎) throw_ref if 𝑧.tags[𝑥].type ≈ func 𝑡𝑛 → 𝜖

∧ 𝑎 = |𝑧.exns|
∧ exn = {tag 𝑧.tags[𝑥], fields val𝑛}

throw_ref

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val ′ from the stack.

4. If val ′ is some ref.null heaptype, then:

a. Trap.

5. If val ′ is some ref.exn exnaddr , then:

a. Let (ref.exn 𝑎) be the destructuring of val ′.

b. Let instr* be the remaining instruction sequence.

c. Pop all values val* from the top of the stack.

d. If val* ̸= 𝜖 or instr* ̸= 𝜖, then:

1) Push the value (ref.exn 𝑎) to the stack.

2) Execute the instruction throw_ref.

e. Else if the first non-value entry of the stack is a label, then:

132 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

1) Pop the label 𝐿 from the stack.

2) Push the value (ref.exn 𝑎) to the stack.

3) Execute the instruction throw_ref.

f. Else:

1) If the first non-value entry of the stack is a frame, then:

a) Pop the frame 𝐹 from the stack.

b) Push the value (ref.exn 𝑎) to the stack.

c) Execute the instruction throw_ref.

2) Else if the first non-value entry of the stack is a prompt, then:

a) Pop the prompt 𝑃 from the stack.

b) Push the value (ref.exn 𝑎) to the stack.

c) Execute the instruction throw_ref.

3) Else:

a) If not the first non-value entry of the stack is a handler, then:

1. Throw the exception val ′ as a result.

b) Else:

1. Let 𝐻 be the topmost handler.

2. Let 𝑛 be the arity of 𝐻

3. Let catch ′′* be the catch handler of 𝐻

4. If catch ′′* = 𝜖, then:

a. Pop the handler 𝐻 from the stack.

b. Push the value (ref.exn 𝑎) to the stack.

c. Execute the instruction throw_ref.

5. Else if 𝑎 ≥ |𝑧.exns|, then:

a. Let catch0 catch
′* be catch ′′*.

b. If catch0 is some catch_all labelidx , then:

1) Let (catch_all 𝑙) be the destructuring of catch0.

2) Pop the handler 𝐻 from the stack.

3) Execute the instruction (br 𝑙).

c. Else if catch0 is not some catch_all_ref labelidx , then:

1) Let catch catch ′* be catch ′′*.

2) Pop the handler 𝐻 from the stack.

3) Let 𝐻 be the handler whose arity is 𝑛 and whose catch handler is catch ′*.

4) Push the handler 𝐻 .

5) Push the value (ref.exn 𝑎) to the stack.

6) Execute the instruction throw_ref.

d. Else:

1) Let (catch_all_ref 𝑙) be the destructuring of catch0.

2) Pop the handler 𝐻 from the stack.

4.6. Instructions 133

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3) Push the value (ref.exn 𝑎) to the stack.

4) Execute the instruction (br 𝑙).

6. Else:

a. Let val* be 𝑧.exns[𝑎].fields.

b. Let catch0 catch
′* be catch ′′*.

c. If catch0 is some catch tagidx labelidx , then:

1) Let (catch 𝑥 𝑙) be the destructuring of catch0.

2) If 𝑥 < |𝑧.tags| and 𝑧.exns[𝑎].tag = 𝑧.tags[𝑥], then:

a) Pop the handler 𝐻 from the stack.

b) Push the values val* to the stack.

c) Execute the instruction (br 𝑙).

3) Else:

a) Let catch catch ′* be catch ′′*.

b) Pop the handler 𝐻 from the stack.

c) Let 𝐻 be the handler whose arity is 𝑛 and whose catch handler is catch ′*.

d) Push the handler 𝐻 .

e) Push the value (ref.exn 𝑎) to the stack.

f) Execute the instruction throw_ref.

d. Else if catch0 is some catch_ref tagidx labelidx , then:

1) Let (catch_ref 𝑥 𝑙) be the destructuring of catch0.

2) If 𝑥 ≥ |𝑧.tags| or 𝑧.exns[𝑎].tag ̸= 𝑧.tags[𝑥], then:

a) Let catch catch ′* be catch ′′*.

b) Pop the handler 𝐻 from the stack.

c) Let 𝐻 be the handler whose arity is 𝑛 and whose catch handler is catch ′*.

d) Push the handler 𝐻 .

e) Push the value (ref.exn 𝑎) to the stack.

f) Execute the instruction throw_ref.

3) Else:

a) Pop the handler 𝐻 from the stack.

b) Push the values val* to the stack.

c) Push the value (ref.exn 𝑎) to the stack.

d) Execute the instruction (br 𝑙).

e. Else:

1) If catch0 is some catch_all labelidx , then:

a) Let (catch_all 𝑙) be the destructuring of catch0.

b) Pop the handler 𝐻 from the stack.

c) Execute the instruction (br 𝑙).

2) Else if catch0 is not some catch_all_ref labelidx , then:

a) Let catch catch ′* be catch ′′*.

134 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

b) Pop the handler 𝐻 from the stack.

c) Let 𝐻 be the handler whose arity is 𝑛 and whose catch handler is catch ′*.

d) Push the handler 𝐻 .

e) Push the value (ref.exn 𝑎) to the stack.

f) Execute the instruction throw_ref.

3) Else:

a) Let (catch_all_ref 𝑙) be the destructuring of catch0.

b) Pop the handler 𝐻 from the stack.

c) Push the value (ref.exn 𝑎) to the stack.

d) Execute the instruction (br 𝑙).

6. Else:

a. Assert: Due to validation, not the first non-value entry of the stack is a label.

b. Assert: Due to validation, not the first non-value entry of the stack is a frame.

c. Assert: Due to validation, not the first non-value entry of the stack is a prompt.

d. Assert: Due to validation, not the first non-value entry of the stack is a handler.

e. Throw the exception val ′ as a result.

𝑧; (ref.null ht) throw_ref →˓ trap

𝑧; val* (ref.exn 𝑎) throw_ref instr* →˓ (ref.exn 𝑎) throw_ref if val* ̸= 𝜖 ∨ instr* ̸= 𝜖

𝑧; (label𝑛{instr ′*} (ref.exn 𝑎) throw_ref) →˓ (ref.exn 𝑎) throw_ref
𝑧; (frame𝑛{𝑓} (ref.exn 𝑎) throw_ref) →˓ (ref.exn 𝑎) throw_ref

𝑧; (prompt{addrhdl*} (ref.exn 𝑎) throw_ref) →˓ (ref.exn 𝑎) throw_ref
𝑧; (handler𝑛{𝜖} (ref.exn 𝑎) throw_ref) →˓ (ref.exn 𝑎) throw_ref

𝑧; (handler𝑛{(catch 𝑥 𝑙) catch ′*} (ref.exn 𝑎) throw_ref) →˓ val* (br 𝑙) if 𝑧.exns[𝑎].tag = 𝑧.tags[𝑥]
∧ val* = 𝑧.exns[𝑎].fields

𝑧; (handler𝑛{(catch_ref 𝑥 𝑙) catch ′*} (ref.exn 𝑎) throw_ref) →˓ val* (ref.exn 𝑎) (br 𝑙) if 𝑧.exns[𝑎].tag = 𝑧.tags[𝑥]
∧ val* = 𝑧.exns[𝑎].fields

𝑧; (handler𝑛{(catch_all 𝑙) catch ′*} (ref.exn 𝑎) throw_ref) →˓ (br 𝑙)

𝑧; (handler𝑛{(catch_all_ref 𝑙) catch ′*} (ref.exn 𝑎) throw_ref) →˓ (ref.exn 𝑎) (br 𝑙)

𝑧; (handler𝑛{catch catch ′*} (ref.exn 𝑎) throw_ref) →˓ (handler𝑛{catch ′*} (ref.exn 𝑎) throw_ref) otherwise

try_table bt catch* instr*

1. Let 𝑧 be the current state.

2. Let 𝑡𝑚1 →localidx*
0
𝑡𝑛2 be the destructuring of instrtype𝑧(bt).

3. Assert: Due to validation, localidx*
0 = 𝜖.

4. Assert: Due to validation, there are at least 𝑚 values on the top of the stack.

5. Pop the values val𝑚 from the stack.

6. Let 𝐻 be the handler whose arity is 𝑛 and whose catch handler is catch*.

7. Push the handler 𝐻 .

8. Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the end of the block.

9. Enter the block val𝑚 instr* with the label 𝐿.

𝑧; val𝑚 (try_table bt catch* instr*) →˓ (handler𝑛{catch*} (label𝑛{𝜖} val𝑚 instr*)) if instrtype𝑧(bt) = 𝑡𝑚1 → 𝑡𝑛2

4.6. Instructions 135

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

cont.new 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val from the stack.

4. If val is some ref.null heaptype , then:

a. Trap.

5. Assert: Due to validation, val is some ref.func funcaddr .

6. Let (ref.func 𝑎) be the destructuring of val .

7. Let ca be the length of 𝑧.conts.

8. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some cont typeuse.

9. Let (cont dt) be the destructuring of the expansion of 𝑧.types[𝑥].

10. Assert: Due to validation, the expansion of dt is some func resulttype → resulttype.

11. Let instr* be (ref.func 𝑎) (call_ref dt).

12. Push the value (ref.cont ca) to the stack.

13. Append (vals [_] instr*) to 𝑧.conts.

𝑧; (ref.null ht) (cont.new 𝑥) →˓ 𝑧; trap

𝑧; (ref.func 𝑎) (cont.new 𝑦) →˓ 𝑧[.conts =⊕ vals 𝜖 [_] instr*]; (ref.cont ca) if 𝑧.types[𝑦] ≈ cont dt
∧ dt ≈ func 𝑡*1 → 𝑡*2
∧ instr* = (ref.func 𝑎) (call_ref dt)
∧ ca = |𝑧.conts|

cont.bind 𝑥 𝑦

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val ′ from the stack.

4. If val ′ is some ref.null heaptype, then:

a. Trap.

5. Assert: Due to validation, val ′ is some ref.cont contaddr .

6. Let (ref.cont 𝑎) be the destructuring of val ′.

7. Assert: Due to validation, 𝑎 < |𝑧.conts|.

8. If 𝑧.conts[𝑎] is not defined, then:

a. Trap.

9. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some cont typeuse.

10. Let (cont dt) be the destructuring of the expansion of 𝑧.types[𝑥].

11. Assert: Due to validation, the expansion of 𝑧.types[𝑦] is some cont typeuse.

12. Let (cont dt ′) be the destructuring of the expansion of 𝑧.types[𝑦].

13. Let ca be the length of 𝑧.conts.

14. Assert: Due to validation, 𝑧.conts[𝑎] is defined.

15. Let cont be 𝑧.conts[𝑎].

16. Assert: Due to validation, the expansion of dt ′ is some func resulttype → resulttype.

136 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

17. Let (func 𝑡′*1 → 𝑡′
*
2) be the destructuring of the expansion of dt ′.

18. Assert: Due to validation, the expansion of dt is some func resulttype → resulttype.

19. Let (func 𝑡*1 → 𝑡*2) be the destructuring of the expansion of dt .

20. Let 𝑛 be |𝑡*1| − |𝑡′*1|.

21. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

22. Pop the values val𝑛 from the stack.

23. Let 𝑧′ be the state 𝑧[.conts =⊕ contfill(cont , val𝑛, 𝜖)].

24. Push the value (ref.cont ca) to the stack.

25. Replace 𝑧′.conts[𝑎] with 𝜖.

𝑧; (ref.null ht) (cont.bind 𝑥 𝑦) →˓ 𝑧; trap

𝑧; (ref.cont 𝑎) (cont.bind 𝑥 𝑦) →˓ 𝑧; trap if 𝑧.conts[𝑎] = 𝜖

𝑧; val𝑛 (ref.cont 𝑎) (cont.bind 𝑥 𝑦) →˓ withcont(𝑧
′, 𝑎, 𝜖); (ref.cont ca) if 𝑧.types[𝑥] ≈ cont dt

∧ dt ≈ func 𝑡*1 → 𝑡*2
∧ 𝑧.types[𝑦] ≈ cont dt ′

∧ dt ′ ≈ func 𝑡′
*
1 → 𝑡′

*
2

∧ 𝑛 = |𝑡*1| − |𝑡′*1|
∧ ca = |𝑧.conts|
∧ 𝑧.conts[𝑎] = cont
∧ 𝑧′ = 𝑧[.conts =⊕ contfill(cont , val𝑛, 𝜖)]

resume kx hdl*

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val ′ from the stack.

4. If val ′ is some ref.null heaptype, then:

a. Trap.

5. Assert: Due to validation, val ′ is some ref.cont contaddr .

6. Let (ref.cont 𝑎) be the destructuring of val ′.

7. Assert: Due to validation, 𝑎 < |𝑧.conts|.

8. If 𝑧.conts[𝑎] is not defined, then:

a. Trap.

9. Assert: Due to validation, the expansion of 𝑧.types[kx] is some cont typeuse.

10. Let (cont dt) be the destructuring of the expansion of 𝑧.types[kx].

11. Let addrhdl* be the runtime effect handler sequence 𝜖.

12. For each hdl in hdl*, do:

a. Let addrhdl be the runtime effect handler hdlinst(𝑧, hdl).

b. Append addrhdl to addrhdl*.

13. Assert: Due to validation, 𝑧.conts[𝑎] is defined.

14. Let cont be 𝑧.conts[𝑎].

15. Assert: Due to validation, |addrhdl*| = |hdl*|.

16. Assert: Due to validation, the expansion of dt is some func resulttype → resulttype.

17. Let (func 𝑡𝑛1 → 𝑡*2) be the destructuring of the expansion of dt .

4.6. Instructions 137

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

18. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

19. Pop the values val𝑛 from the stack.

20. Let cont ′ be the continuation instance contfill(cont , val𝑛, 𝜖).

21. Replace 𝑧.conts[𝑎] with 𝜖.

22. Let 𝑃 be the prompt whose effect handler is addrhdl*.

23. Enter the block (resuming cont ′) prompt with the prompt 𝑃 .

𝑧; (ref.null ht) (resume kx hdl*) →˓ 𝑧; trap

𝑧; (ref.cont 𝑎) (resume kx hdl*) →˓ 𝑧; trap if 𝑧.conts[𝑎] = 𝜖

𝑧; val𝑛 (ref.cont 𝑎) (resume kx hdl*) →˓ withcont(𝑧, 𝑎, 𝜖); (prompt{addrhdl*} (resuming cont ′)) if 𝑧.types[kx] ≈ cont dt
∧ dt ≈ func 𝑡𝑛1 → 𝑡*2
∧ cont = 𝑧.conts[𝑎]
∧ cont ′ = contfill(cont , val𝑛, 𝜖)
∧ ((addrhdl = hdlinst(𝑧, hdl)))*

resume_throw kx ax hdl*

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val ′ from the stack.

4. If val ′ is some ref.null heaptype, then:

a. Trap.

5. Assert: Due to validation, val ′ is some ref.cont contaddr .

6. Let (ref.cont 𝑎) be the destructuring of val ′.

7. Assert: Due to validation, 𝑎 < |𝑧.conts|.

8. If 𝑧.conts[𝑎] is not defined, then:

a. Trap.

9. Assert: Due to validation, ax < |𝑧.tags|.

10. Assert: Due to validation, the expansion of 𝑧.tags[ax].type is some func resulttype → resulttype.

11. Let (func 𝑡𝑚 → resulttype0) be the destructuring of the expansion of 𝑧.tags[ax].type.

12. Assert: Due to validation, resulttype0 = 𝜖.

13. Let addrhdl* be the runtime effect handler sequence 𝜖.

14. For each hdl in hdl*, do:

a. Let addrhdl be the runtime effect handler hdlinst(𝑧, hdl).

b. Append addrhdl to addrhdl*.

15. Let 𝑎′ be the length of 𝑧.exns.

16. Assert: Due to validation, 𝑧.conts[𝑎] is defined.

17. Let cont be 𝑧.conts[𝑎].

18. Assert: Due to validation, |addrhdl*| = |hdl*|.

19. Let cont ′ be the continuation instance contfill(cont , (ref.exn 𝑎′), throw_ref).

20. Assert: Due to validation, there are at least 𝑚 values on the top of the stack.

21. Pop the values val𝑚 from the stack.

22. Let exn be the exception instance {tag 𝑧.tags[ax], fields val𝑚}.

138 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

23. Let 𝑧′ be the state 𝑧[.exns =⊕ exn].

24. Replace 𝑧′.conts[𝑎] with 𝜖.

25. Let 𝑃 be the prompt whose effect handler is addrhdl*.

26. Enter the block (resuming cont ′) prompt with the prompt 𝑃 .

𝑧; (ref.null ht) (resume_throw kx ax hdl*) →˓ 𝑧; trap

𝑧; (ref.cont 𝑎) (resume_throw kx ax hdl*) →˓ 𝑧; trap if 𝑧.conts[𝑎] = 𝜖

𝑧; val𝑚 (ref.cont 𝑎) (resume_throw kx ax hdl*) →˓ withcont(𝑧
′, 𝑎, 𝜖); (prompt{addrhdl*} (resuming cont ′)) if 𝑧.conts[𝑎] = cont

∧ 𝑧.tags[ax].type ≈ func 𝑡𝑚 → 𝜖
∧ 𝑎′ = |𝑧.exns|
∧ exn = {tag 𝑧.tags[ax], fields val𝑚}
∧ 𝑧′ = 𝑧[.exns =⊕ exn]
∧ ((addrhdl = hdlinst(𝑧, hdl)))*

∧ cont ′ = contfill(cont , (ref.exn 𝑎′), throw_ref)

suspend 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, 𝑥 < |𝑧.tags|.

3. Let tagaddr be the tag address 𝑧.tags[𝑥].

4. Assert: Due to validation, tagaddr < |𝑧.tags|.

5. Assert: Due to validation, the expansion of 𝑧.tags[tagaddr].type is some func resulttype → resulttype.

6. Let (func 𝑡𝑛1 → 𝑡*2) be the destructuring of the expansion of 𝑧.tags[tagaddr].type.

7. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

8. Pop the values val𝑛 from the stack.

9. Let instr ′* be the remaining instruction sequence.

10. Pop all values val ′* from the top of the stack.

11. Execute the instruction (suspending tagaddr (suspend val𝑛) (vals val ′
*
[_] instr ′*)).

𝑧; val ′
*
val𝑛 (suspend 𝑥) instr ′

* →˓ (suspending tagaddr (suspend val𝑛) (vals val ′
*
[_] instr ′*)) if tagaddr = 𝑧.tags[𝑥]

∧ 𝑧.tags[tagaddr].type ≈ func 𝑡𝑛1 → 𝑡*2

switch 𝑥 xe

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val ′′ from the stack.

4. If val ′′ is some ref.null heaptype, then:

a. Trap.

5. Assert: Due to validation, val ′′ is some ref.cont contaddr .

6. Let (ref.cont 𝑎) be the destructuring of val ′′.

7. Assert: Due to validation, 𝑎 < |𝑧.conts|.

8. If 𝑧.conts[𝑎] is not defined, then:

a. Trap.

9. Assert: Due to validation, xe < |𝑧.tags|.

10. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some cont typeuse.

4.6. Instructions 139

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

11. Let (cont dt) be the destructuring of the expansion of 𝑧.types[𝑥].

12. Assert: Due to validation, 𝑧.conts[𝑎] is defined.

13. Let cont be 𝑧.conts[𝑎].

14. Let tagaddr be the tag address 𝑧.tags[xe].

15. Assert: Due to validation, the expansion of dt is some func resulttype → resulttype.

16. Let (func resulttype0 → te*1) be the destructuring of the expansion of dt .

17. Assert: Due to validation, |resulttype0| ≥ 1.

18. Let 𝑡*1 valtype1 be resulttype0.

19. Assert: Due to validation, valtype1 is some ref null? heaptype.

20. Let (ref NULL?
2 dt1) be the destructuring of valtype1.

21. Assert: Due to validation, NULL?
2 is defined.

22. Assert: Due to validation, the expansion of dt1 is some cont typeuse.

23. Let (cont dt ′1) be the destructuring of the expansion of dt1.

24. Let 𝑛 be the length of 𝑡*1.

25. Assert: Due to validation, the expansion of dt ′1 is some func resulttype → resulttype.

26. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

27. Pop the values val𝑛 from the stack.

28. Let cont ′ be the continuation instance contfill(cont , val𝑛, 𝜖).

29. Let instr ′* be the remaining instruction sequence.

30. Pop all values val ′* from the top of the stack.

31. Replace 𝑧.conts[𝑎] with 𝜖.

32. Execute the instruction (suspending tagaddr (switch cont ′) (vals val ′
*
[_] instr ′*)).

𝑧; (ref.null ht) (switch 𝑥 xe) →˓ 𝑧; trap

𝑧; (ref.cont 𝑎) (switch 𝑥 xe) →˓ 𝑧; trap if 𝑧.conts[𝑎] = 𝜖

𝑧; val ′
*
val𝑛 (ref.cont 𝑎) (switch 𝑥 xe) instr ′

* →˓ withcont(𝑧, 𝑎, 𝜖); (suspending tagaddr (switch cont ′) (vals val ′
*
[_] instr ′*)) if 𝑧.conts[𝑎] = cont

∧ tagaddr = 𝑧.tags[xe]
∧ 𝑧.types[𝑥] ≈ cont dt
∧ dt ≈ func 𝑡*1 (ref nul dt1) → te*1
∧ dt1 ≈ cont dt ′1
∧ dt ′1 ≈ func 𝑡𝑚2 → te*2
∧ 𝑛 = |𝑡*1|
∧ cont ′ = contfill(cont , val𝑛, 𝜖)

4.6.3 Blocks
The following auxiliary rules define the semantics of executing an instruction sequence that forms a block.

Entering instr* with label 𝐿 and values val*

1. Push 𝐿 to the stack.

2. Push the values val* to the stack.

3. Jump to the start of the instruction sequence instr*.

140 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

No formal reduction rule is needed for entering an instruction sequence, because the label 𝐿 is embedded in
the administrative instruction that structured control instructions reduce to directly.

Exiting instr* with label 𝐿

When the end of a block is reached without a jump, exception, or trap aborting it, then the following steps are
performed.

1. Pop all values val* from the top of the stack.

2. Assert: due to validation, the label 𝐿 is now on the top of the stack.

3. Pop the label from the stack.

4. Push val* back to the stack.

5. Jump to the position after the end of the structured control instruction associated with the label 𝐿.

(label𝑛{instr*} val*) →˓ val*

Note

This semantics also applies to the instruction sequence contained in a loop instruction. Therefore, execution of
a loop falls off the end, unless a backwards branch is performed explicitly.

4.6.4 Exception Handling
The following auxiliary rules define the semantics of entering and exiting try_table blocks.

Entering instr* with label 𝐿 and exception handler 𝐻

1. Push 𝐻 to the stack.

2. Push 𝐿 onto the stack.

3. Jump to the start of the instruction sequence instr*.

Note

No formal reduction rule is needed for entering an exception handler because it is an administrative instruction
that the try_table instruction reduces to directly.

Exiting an exception handler

When the end of a try_table block is reached without a jump, exception, or trap, then the following steps are
performed.

1. Let 𝑚 be the number of values on the top of the stack.

2. Pop the values val𝑚 from the stack.

3. Assert: due to validation, a handler and a label are now on the top of the stack.

4. Pop the label from the stack.

5. Pop the handler 𝐻 from the stack.

6. Push val𝑚 back to the stack.

7. Jump to the position after the end of the administrative instruction associated with the handler 𝐻 .

4.6. Instructions 141

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(handler𝑛{catch*} val*) →˓ val*

4.6.5 Effect Handling
TODO(lyl): describe these admininstrs

prompt

1. Pop all values val* from the top of the stack.

2. Assert: Due to validation, the first non-value entry of the stack is a prompt.

3. Pop the prompt 𝑃 from the stack.

4. Push the values val* to the stack.

(prompt{addrhdl*} val*) →˓ val*

suspending tagaddr resumption cont

1. Let 𝑧 be the current state.

2. If the first non-value entry of the stack is a label, then:

a. Let 𝐿 be the topmost label.

b. Let 𝑛 be the arity of 𝐿

c. Pop the label 𝐿 from the stack.

d. Let instr ′* be the remaining instruction sequence.

e. Pop all values val ′* from the top of the stack.

f. Let cont ′ be the continuation instance (frame val ′
*
(label𝑛 { instr* }) cont instr ′*).

g. Execute the instruction (suspending tagaddr resumption cont ′).

3. Else if the first non-value entry of the stack is a frame, then:

a. Let frame be the topmost frame.

b. Let 𝑛 be the arity of frame

c. Pop the frame 𝐹 from the stack.

d. Let instr ′* be the remaining instruction sequence.

e. Pop all values val ′* from the top of the stack.

f. Let cont ′ be the continuation instance (frame val ′
*
(frame𝑛 { frame }) cont instr ′*).

g. Execute the instruction (suspending tagaddr resumption cont ′).

4. Else:

a. If the first non-value entry of the stack is a handler, then:

1) Let 𝐻 be the topmost handler.

2) Let 𝑛 be the arity of 𝐻

3) Let catch* be the catch handler of 𝐻

4) Pop the handler 𝐻 from the stack.

5) Let instr ′* be the remaining instruction sequence.

6) Pop all values val ′* from the top of the stack.

7) Let cont ′ be the continuation instance (frame val ′
*
(handler𝑛 { catch* }) cont instr ′*).

142 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

8) Execute the instruction (suspending tagaddr resumption cont ′).

b. Else:

1) Assert: Due to validation, the first non-value entry of the stack is a prompt.

2) Let 𝑃 be the topmost prompt.

3) Let addrhdl* be the effect handler of 𝑃

4) If tagaddr < |𝑧.tags|, then:

a) If resumption is some suspend val*, then:

1. Let (suspend val𝑛) be the destructuring of resumption .

2. Let 𝑎 be the length of 𝑧.conts.

3. If gethandlersuspend(addrhdl*, tagaddr) is not defined, then:

a. Let (suspend val*) be the destructuring of resumption .

b. Pop the prompt 𝑃 from the stack.

c. Let instr ′* be the remaining instruction sequence.

d. Pop all values val ′* from the top of the stack.

e. Let cont ′ be the continuation instance (frame val ′* (prompt { addrhdl* }) cont instr ′*).

f. Execute the instruction (suspending tagaddr (suspend val*) cont ′).

4. Else:

a. Let 𝑙 be gethandlersuspend(addrhdl*, tagaddr).

b. Assert: Due to validation, the expansion of 𝑧.tags[tagaddr].type is some
func resulttype → resulttype.

c. Let (func 𝑡𝑛1 → 𝑡*2) be the destructuring of the expansion of 𝑧.tags[tagaddr].type.

d. Pop the prompt 𝑃 from the stack.

e. Append cont to 𝑧.conts.

f. Push the values val𝑛 to the stack.

g. Push the value (ref.cont 𝑎) to the stack.

h. Execute the instruction (br 𝑙).

b) Else:

1. If gethandlerswitch(addrhdl*, tagaddr), then:

a. If resumption is some switch continst , then:

1) Let (switch continst) be the destructuring of resumption .

2) Let 𝑎 be the length of 𝑧.conts.

3) Let cont ′ be the continuation instance contfill(continst , (ref.cont 𝑎), 𝜖).

4) Pop the prompt 𝑃 from the stack.

5) Append cont to 𝑧.conts.

6) Let 𝑃 be the prompt whose effect handler is addrhdl*.

7) Enter the block (resuming cont ′) prompt with the prompt 𝑃 .

2. Else if resumption is some switch continst , then:

a. Let (switch continst) be the destructuring of resumption .

b. Pop the prompt 𝑃 from the stack.

4.6. Instructions 143

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

c. Let instr ′* be the remaining instruction sequence.

d. Pop all values val ′* from the top of the stack.

e. Let cont ′ be the continuation instance (frame val ′* (prompt { addrhdl* }) cont instr ′*).

f. Execute the instruction (suspending tagaddr (switch continst) cont ′).

3. Do nothing.

4. If gethandlersuspend(addrhdl*, tagaddr) is not defined, then:

a. Do nothing.

5. Else:

a. Do nothing.

6. Do nothing.

5) Else if gethandlersuspend(addrhdl*, tagaddr) is not defined, then:

a) If resumption is some suspend val*, then:

1. Let (suspend val*) be the destructuring of resumption .

2. Pop the prompt 𝑃 from the stack.

3. Let instr ′* be the remaining instruction sequence.

4. Pop all values val ′* from the top of the stack.

5. Let cont ′ be the continuation instance (frame val ′
*
(prompt { addrhdl* }) cont instr ′*).

6. Execute the instruction (suspending tagaddr (suspend val*) cont ′).

b) Else if gethandlerswitch(addrhdl*, tagaddr), then:

1. Assert: Due to validation, resumption is some switch continst .

2. Let (switch continst) be the destructuring of resumption .

3. Let 𝑎 be the length of 𝑧.conts.

4. Let cont ′ be the continuation instance contfill(continst , (ref.cont 𝑎), 𝜖).

5. Pop the prompt 𝑃 from the stack.

6. Append cont to 𝑧.conts.

7. Let 𝑃 be the prompt whose effect handler is addrhdl*.

8. Enter the block (resuming cont ′) prompt with the prompt 𝑃 .

c) Else:

1. Assert: Due to validation, resumption is some switch continst .

2. Let (switch continst) be the destructuring of resumption .

3. Pop the prompt 𝑃 from the stack.

4. Let instr ′* be the remaining instruction sequence.

5. Pop all values val ′* from the top of the stack.

6. Let cont ′ be the continuation instance (frame val ′
*
(prompt { addrhdl* }) cont instr ′*).

7. Execute the instruction (suspending tagaddr (switch continst) cont ′).

6) Else:

a) If gethandlerswitch(addrhdl*, tagaddr), then:

1. Assert: Due to validation, resumption is some switch continst .

2. Let (switch continst) be the destructuring of resumption .

144 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3. Let 𝑎 be the length of 𝑧.conts.

4. Let cont ′ be the continuation instance contfill(continst , (ref.cont 𝑎), 𝜖).

5. Pop the prompt 𝑃 from the stack.

6. Append cont to 𝑧.conts.

7. Let 𝑃 be the prompt whose effect handler is addrhdl*.

8. Enter the block (resuming cont ′) prompt with the prompt 𝑃 .

b) Else:

1. Assert: Due to validation, resumption is some switch continst .

2. Let (switch continst) be the destructuring of resumption .

3. Pop the prompt 𝑃 from the stack.

4. Let instr ′* be the remaining instruction sequence.

5. Pop all values val ′* from the top of the stack.

6. Let cont ′ be the continuation instance (frame val ′
*
(prompt { addrhdl* }) cont instr ′*).

7. Execute the instruction (suspending tagaddr (switch continst) cont ′).

𝑧; val ′
*
(label𝑛{instr*} (suspending tagaddr resumption cont)) instr ′

* →˓ 𝑧; (suspending tagaddr resumption cont ′) if cont ′ = frame val ′
*
(label𝑛 {instr*}) cont instr ′*

𝑧; val ′
*
(frame𝑛{frame} (suspending tagaddr resumption cont)) instr ′

* →˓ 𝑧; (suspending tagaddr resumption cont ′) if cont ′ = frame val ′
*
(frame𝑛 {frame}) cont instr ′*

𝑧; val ′
*
(handler𝑛{catch*} (suspending tagaddr resumption cont)) instr ′

* →˓ 𝑧; (suspending tagaddr resumption cont ′) if cont ′ = frame val ′* (handler𝑛 {catch*}) cont instr ′*

𝑧; (prompt{addrhdl*} (suspending tagaddr (suspend val𝑛) cont)) →˓ 𝑧[.conts =⊕ cont]; val𝑛 (ref.cont 𝑎) (br 𝑙) if gethandlersuspend(addrhdl*, tagaddr) = 𝑙
∧ 𝑧.tags[tagaddr].type ≈ func 𝑡𝑛1 → 𝑡*2
∧ 𝑎 = |𝑧.conts|

𝑧; val ′
*
(prompt{addrhdl*} (suspending tagaddr (suspend val*) cont)) instr ′

* →˓ 𝑧; (suspending tagaddr (suspend val*) cont ′) if gethandlersuspend(addrhdl*, tagaddr) = 𝜖
∧ cont ′ = frame val ′

*
(prompt {addrhdl*}) cont instr ′*

𝑧; (prompt{addrhdl*} (suspending tagaddr (switch continst) cont)) →˓ 𝑧[.conts =⊕ cont]; (prompt{addrhdl*} (resuming cont ′)) if gethandlerswitch(addrhdl*, tagaddr)
∧ cont ′ = contfill(continst , (ref.cont 𝑎), 𝜖)
∧ 𝑎 = |𝑧.conts|

𝑧; val ′
*
(prompt{addrhdl*} (suspending tagaddr (switch continst) cont)) instr ′

* →˓ 𝑧; (suspending tagaddr (switch continst) cont ′) if ¬gethandlerswitch(addrhdl*, tagaddr)
∧ cont ′ = frame val ′

*
(prompt {addrhdl*}) cont instr ′*

resuming continst

1. If continst is some vals val* [_] instr*, then:

a. Let (vals val* [_] instr*) be the destructuring of continst .

b. Push the values val* to the stack.

c. Execute the sequence instr*.

2. If continst is some frame val* gframe continst instr*, then:

a. Let (frame val ′
*
gframe0 cont instr

′*) be the destructuring of continst .

b. If gframe0 is some label𝑛 {instr*}, then:

1) Let (label𝑛 { instr* }) be the destructuring of gframe0.

2) Push the values val ′* to the stack.

3) Prepend instr ′
* to the remaining instruction sequence.

4) Let 𝐿 be the label whose arity is 𝑛 and whose continuation is the start of the block.

5) Enter the block (resuming cont) with the label 𝐿.

c. If gframe0 is some frame𝑛 {frame}, then:

1) Let (frame𝑛 { frame }) be the destructuring of gframe0.

4.6. Instructions 145

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2) Push the values val ′* to the stack.

3) Prepend instr ′
* to the remaining instruction sequence.

4) Let frame be the frame frame whose arity is 𝑛.

5) Enter the block (resuming cont) frame with the frame frame.

d. If gframe0 is some handler𝑛 {catch*}, then:

1) Let (handler𝑛 { catch* }) be the destructuring of gframe0.

2) Push the values val ′* to the stack.

3) Prepend instr ′
* to the remaining instruction sequence.

4) Let 𝐻 be the handler whose arity is 𝑛 and whose catch handler is catch*.

5) Enter the block (resuming cont) handler with the handler 𝐻 .

e. If gframe0 is some prompt {addrhdl*}, then:

1) Let (prompt { addrhdl* }) be the destructuring of gframe0.

2) Push the values val ′* to the stack.

3) Prepend instr ′
* to the remaining instruction sequence.

4) Let 𝑃 be the prompt whose effect handler is addrhdl*.

5) Enter the block (resuming cont) prompt with the prompt 𝑃 .

(resuming (vals val* [_] instr*)) →˓ val* instr*

(resuming (frame val ′
*
(label𝑛 {instr*}) cont instr ′*)) →˓ val ′

*
(label𝑛{instr*} (resuming cont)) instr ′

*

(resuming (frame val ′
*
(frame𝑛 {frame}) cont instr ′*)) →˓ val ′

*
(frame𝑛{frame} (resuming cont)) instr ′

*

(resuming (frame val ′* (handler𝑛 {catch*}) cont instr ′*)) →˓ val ′
*
(handler𝑛{catch*} (resuming cont)) instr ′

*

(resuming (frame val ′
*
(prompt {addrhdl*}) cont instr ′*)) →˓ val ′

*
(prompt{addrhdl*} (resuming cont)) instr ′

*

4.6.6 Function Calls
The following auxiliary rules define the semantics of invoking a function instance through one of the call instruc-
tions and returning from it.

Invocation of function reference (ref.func 𝑎)

1. Assert: due to validation, 𝑆.funcs[𝑎] exists.

2. Let 𝑓 be the function instance, 𝑆.funcs[𝑎].

3. Let func [𝑡𝑛1] → [𝑡𝑚2] be the composite type expand(f .type).

4. Let func 𝑥 local* instr* be the function 𝑓.code.

5. Assert: due to validation, 𝑛 values are on the top of the stack.

6. Pop the values val𝑛 from the stack.

7. Let 𝐹 be the frame {module 𝐹.module, locals val𝑛 (default𝑡)
*}.

8. Push the activation of 𝑓 with arity 𝑚 to the stack.

9. Let 𝐿 be the label whose arity is 𝑚 and whose continuation is the end of the function.

10. Enter the instruction sequence instr* with label 𝐿 and no values.

𝑧; val𝑛 (ref.func 𝑎) (call_ref 𝑦) →˓ (frame𝑚{𝑓} (label𝑚{𝜖} instr*))
if 𝑧.funcs[𝑎] = fi
∧ fi .type ≈ func 𝑡𝑛1 → 𝑡𝑚2
∧ fi .code = func 𝑥 (local 𝑡)* (instr*)
∧ 𝑓 = {locals val𝑛 (default𝑡)

*, module fi .module}

146 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

For non-defaultable types, the respective local is left uninitialized by these rules.

Returning from a function

When the end of a function is reached without a jump (including through return), or an exception or trap aborting
it, then the following steps are performed.

1. Let 𝐹 be the current frame.

2. Let 𝑛 be the arity of the activation of 𝐹 .

3. Assert: due to validation, there are 𝑛 values on the top of the stack.

4. Pop the results val𝑛 from the stack.

5. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

6. Pop the frame from the stack.

7. Push val𝑛 back to the stack.

8. Jump to the instruction after the original call.

(frame𝑛{𝑓} val𝑛) →˓ val𝑛

Host Functions

Invoking a host function has non-deterministic behavior. It may either terminate with a trap, an exception, or return
regularly. However, in the latter case, it must consume and produce the right number and types of WebAssembly
values on the stack, according to its function type.

A host function may also modify the store. However, all store modifications must result in an extension of the
original store, i.e., they must only modify mutable contents and must not have instances removed. Furthermore,
the resulting store must be valid, i.e., all data and code in it is well-typed.

𝑆; val𝑛 (invoke 𝑎) →˓ 𝑆′; result
(if 𝑆.funcs[𝑎] = {type deftype, hostfunc hf }
∧ deftype ≈ func [𝑡𝑛1] → [𝑡𝑚2]
∧ (𝑆′; result) ∈ hf (𝑆; val𝑛))

𝑆; val𝑛 (invoke 𝑎) →˓ 𝑆; val𝑛 (invoke 𝑎)
(if 𝑆.funcs[𝑎] = {type deftype, hostfunc hf }
∧ deftype ≈ func [𝑡𝑛1] → [𝑡𝑚2]
∧ ⊥ ∈ hf (𝑆; val𝑛))

Here, hf (𝑆; val𝑛) denotes the implementation-defined execution of host function hf in current store 𝑆 with argu-
ments val𝑛. It yields a set of possible outcomes, where each element is either a pair of a modified store 𝑆′ and
a result or the special value ⊥ indicating divergence. A host function is non-deterministic if there is at least one
argument for which the set of outcomes is not singular.

For a WebAssembly implementation to be sound in the presence of host functions, every host function instance
must be valid, which means that it adheres to suitable pre- and post-conditions: under a valid store 𝑆, and given
arguments val𝑛 matching the ascribed parameter types 𝑡𝑛1 , executing the host function must yield a non-empty set
of possible outcomes each of which is either divergence or consists of a valid store 𝑆′ that is an extension of 𝑆 and
a result matching the ascribed return types 𝑡𝑚2 . All these notions are made precise in the Appendix.

Note

A host function can call back into WebAssembly by invoking a function exported from a module. However, the
effects of any such call are subsumed by the non-deterministic behavior allowed for the host function.

4.6. Instructions 147

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.6.7 Variable Instructions
local.get 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, 𝑧.locals[𝑥] is defined.

3. Let val be 𝑧.locals[𝑥].

4. Push the value val to the stack.

𝑧; (local.get 𝑥) →˓ val if 𝑧.locals[𝑥] = val

local.set 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val from the stack.

4. Replace 𝑧.locals[𝑥] with val .

𝑧; val (local.set 𝑥) →˓ 𝑧[.locals[𝑥] = val]; 𝜖

local.tee 𝑥

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. Push the value val to the stack.

4. Push the value val to the stack.

5. Execute the instruction (local.set 𝑥).

val (local.tee 𝑥) →˓ val val (local.set 𝑥)

global.get 𝑥

1. Let 𝑧 be the current state.

2. Let val be the value 𝑧.globals[𝑥].value.

3. Push the value val to the stack.

𝑧; (global.get 𝑥) →˓ val if 𝑧.globals[𝑥].value = val

global.set 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val from the stack.

4. Replace 𝑧.globals[𝑥].value with val .

𝑧; val (global.set 𝑥) →˓ 𝑧[.globals[𝑥].value = val]; 𝜖

148 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.6.8 Table Instructions
table.get 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑖) from the stack.

4. If 𝑖 ≥ |𝑧.tables[𝑥].elem|, then:

a. Trap.

5. Push the value 𝑧.tables[𝑥].elem[𝑖] to the stack.

𝑧; (at .const 𝑖) (table.get 𝑥) →˓ trap if 𝑖 ≥ |𝑧.tables[𝑥].elem|
𝑧; (at .const 𝑖) (table.get 𝑥) →˓ 𝑧.tables[𝑥].elem[𝑖] if 𝑖 < |𝑧.tables[𝑥].elem|

table.set 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a reference value is on the top of the stack.

3. Pop the value ref from the stack.

4. Assert: Due to validation, a number value is on the top of the stack.

5. Pop the value (at .const 𝑖) from the stack.

6. If 𝑖 ≥ |𝑧.tables[𝑥].elem|, then:

a. Trap.

7. Replace 𝑧.tables[𝑥].refs[𝑖] with ref .

𝑧; (at .const 𝑖) ref (table.set 𝑥) →˓ 𝑧; trap if 𝑖 ≥ |𝑧.tables[𝑥].elem|
𝑧; (at .const 𝑖) ref (table.set 𝑥) →˓ 𝑧[.tables[𝑥].elem[𝑖] = ref]; 𝜖 if 𝑖 < |𝑧.tables[𝑥].elem|

table.size 𝑥

1. Let 𝑧 be the current state.

2. Let (at lim rt) be the destructuring of 𝑧.tables[𝑥].type.

3. Let 𝑛 be the length of 𝑧.tables[𝑥].elem.

4. Push the value (at .const 𝑛) to the stack.

𝑧; (table.size 𝑥) →˓ (at .const 𝑛) if |𝑧.tables[𝑥].elem| = 𝑛
∧ 𝑧.tables[𝑥].type = at lim rt

table.grow 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑛) from the stack.

4. Assert: Due to validation, a reference value is on the top of the stack.

5. Pop the value ref from the stack.

6. Either:

a. Let ti be the table instance growtable(𝑧.tables[𝑥], 𝑛, ref).

b. Push the value (at .const |𝑧.tables[𝑥].elem|) to the stack.

c. Replace 𝑧.tables[𝑥] with ti .

4.6. Instructions 149

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7. Or:

a. Push the value (at .const signed−1
|at|(−1)) to the stack.

𝑧; ref (at .const 𝑛) (table.grow 𝑥) →˓ 𝑧[.tables[𝑥] = ti]; (at .const |𝑧.tables[𝑥].elem|)
if ti = growtable(𝑧.tables[𝑥], 𝑛, ref)

𝑧; ref (at .const 𝑛) (table.grow 𝑥) →˓ 𝑧; (at .const signed−1
|at|(−1))

Note

The table.grow instruction is non-deterministic. It may either succeed, returning the old table size sz , or fail,
returning −1. Failure must occur if the referenced table instance has a maximum size defined that would be
exceeded. However, failure can occur in other cases as well. In practice, the choice depends on the resources
available to the embedder.

table.fill 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑛) from the stack.

4. Assert: Due to validation, a value is on the top of the stack.

5. Pop the value val from the stack.

6. Assert: Due to validation, a value of number type at is on the top of the stack.

7. Pop the value (numtype0.const 𝑖) from the stack.

8. If 𝑖+ 𝑛 > |𝑧.tables[𝑥].elem|, then:

a. Trap.

9. If 𝑛 = 0, then:

a. Do nothing.

10. Else:

a. Push the value (at .const 𝑖) to the stack.

b. Push the value val to the stack.

c. Execute the instruction (table.set 𝑥).

d. Push the value (at .const 𝑖+ 1) to the stack.

e. Push the value val to the stack.

f. Push the value (at .const 𝑛− 1) to the stack.

g. Execute the instruction (table.fill 𝑥).

𝑧; (at .const 𝑖) val (at .const 𝑛) (table.fill 𝑥) →˓ trap if 𝑖+ 𝑛 > |𝑧.tables[𝑥].elem|
𝑧; (at .const 𝑖) val (at .const 𝑛) (table.fill 𝑥) →˓ 𝜖 otherwise, if 𝑛 = 0
𝑧; (at .const 𝑖) val (at .const 𝑛) (table.fill 𝑥) →˓

(at .const 𝑖) val (table.set 𝑥)
(at .const 𝑖+ 1) val (at .const 𝑛− 1) (table.fill 𝑥)

otherwise

table.copy 𝑥1 𝑥2

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑛) from the stack.

150 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4. Assert: Due to validation, a number value is on the top of the stack.

5. Pop the value (at2.const 𝑖2) from the stack.

6. Assert: Due to validation, a number value is on the top of the stack.

7. Pop the value (at1.const 𝑖1) from the stack.

8. If 𝑖1 + 𝑛 > |𝑧.tables[𝑥1].elem| or 𝑖2 + 𝑛 > |𝑧.tables[𝑥2].elem|, then:

a. Trap.

9. If 𝑛 = 0, then:

a. Do nothing.

10. Else:

a. If 𝑖1 ≤ 𝑖2, then:

1) Push the value (at1.const 𝑖1) to the stack.

2) Push the value (at2.const 𝑖2) to the stack.

3) Execute the instruction (table.get 𝑥2).

4) Execute the instruction (table.set 𝑥1).

5) Push the value (at1.const 𝑖1 + 1) to the stack.

6) Push the value (at2.const 𝑖2 + 1) to the stack.

b. Else:

1) Push the value (at1.const 𝑖1 + 𝑛− 1) to the stack.

2) Push the value (at2.const 𝑖2 + 𝑛− 1) to the stack.

3) Execute the instruction (table.get 𝑥2).

4) Execute the instruction (table.set 𝑥1).

5) Push the value (at1.const 𝑖1) to the stack.

6) Push the value (at2.const 𝑖2) to the stack.

c. Push the value (at .const 𝑛− 1) to the stack.

d. Execute the instruction (table.copy 𝑥1 𝑥2).

𝑧; (at1.const 𝑖1) (at2.const 𝑖2) (at
′.const 𝑛) (table.copy 𝑥1 𝑥2) →˓ trap

if 𝑖1 + 𝑛 > |𝑧.tables[𝑥1].elem| ∨ 𝑖2 + 𝑛 > |𝑧.tables[𝑥2].elem|
𝑧; (at1.const 𝑖1) (at2.const 𝑖2) (at

′.const 𝑛) (table.copy 𝑥 𝑦) →˓ 𝜖 otherwise, if 𝑛 = 0
𝑧; (at1.const 𝑖1) (at2.const 𝑖2) (at

′.const 𝑛) (table.copy 𝑥 𝑦) →˓
(at1.const 𝑖1) (at2.const 𝑖2) (table.get 𝑦) (table.set 𝑥)
(at1.const 𝑖1 + 1) (at2.const 𝑖2 + 1) (at ′.const 𝑛− 1) (table.copy 𝑥 𝑦)

otherwise, if 𝑖1 ≤ 𝑖2

𝑧; (at1.const 𝑖1) (at2.const 𝑖2) (at
′.const 𝑛) (table.copy 𝑥 𝑦) →˓

(at1.const 𝑖1 + 𝑛− 1) (at2.const 𝑖2 + 𝑛− 1) (table.get 𝑦) (table.set 𝑥)
(at1.const 𝑖1) (at2.const 𝑖2) (at

′.const 𝑛− 1) (table.copy 𝑥 𝑦)
otherwise

table.init 𝑥 𝑦

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, a value of number type i32 is on the top of the stack.

5. Pop the value (i32.const 𝑗) from the stack.

6. Assert: Due to validation, a number value is on the top of the stack.

4.6. Instructions 151

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7. Pop the value (at .const 𝑖) from the stack.

8. If 𝑖+ 𝑛 > |𝑧.tables[𝑥].elem| or 𝑗 + 𝑛 > |𝑧.elems[𝑦].elem|, then:

a. Trap.

9. If 𝑛 = 0, then:

a. Do nothing.

10. Else:

a. Assert: Due to validation, 𝑗 < |𝑧.elems[𝑦].elem|.

b. Push the value (at .const 𝑖) to the stack.

c. Push the value 𝑧.elems[𝑦].elem[𝑗] to the stack.

d. Execute the instruction (table.set 𝑥).

e. Push the value (at .const 𝑖+ 1) to the stack.

f. Push the value (i32.const 𝑗 + 1) to the stack.

g. Push the value (i32.const 𝑛− 1) to the stack.

h. Execute the instruction (table.init 𝑥 𝑦).

𝑧; (at .const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (table.init 𝑥 𝑦) →˓ trap
if 𝑖+ 𝑛 > |𝑧.tables[𝑥].elem| ∨ 𝑗 + 𝑛 > |𝑧.elems[𝑦].elem|

𝑧; (at .const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (table.init 𝑥 𝑦) →˓ 𝜖 otherwise, if 𝑛 = 0
𝑧; (at .const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (table.init 𝑥 𝑦) →˓
(at .const 𝑖) 𝑧.elems[𝑦].elem[𝑗] (table.set 𝑥)
(at .const 𝑖+ 1) (i32.const 𝑗 + 1) (i32.const 𝑛− 1) (table.init 𝑥 𝑦)

otherwise

elem.drop 𝑥

1. Let 𝑧 be the current state.

2. Replace 𝑧.elems[𝑥].refs with 𝜖.

𝑧; (elem.drop 𝑥) →˓ 𝑧[.elems[𝑥].elem = 𝜖]; 𝜖

4.6.9 Memory Instructions

Note

The alignment memarg .align in load and store instructions does not affect the semantics. It is a hint that the
offset ea at which the memory is accessed is intended to satisfy the property ea mod 2memarg.align = 0. A
WebAssembly implementation can use this hint to optimize for the intended use. Unaligned access violating
that property is still allowed and must succeed regardless of the annotation. However, it may be substantially
slower on some hardware.

nt .loadloadop? 𝑥 ao

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑖) from the stack.

4. If loadop? is not defined, then:

a. If 𝑖+ ao.offset+ |nt |/8 > |𝑧.mems[𝑥].bytes|, then:

1) Trap.

152 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

b. Let 𝑐 be the result for which bytesnt(𝑐) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : |nt |/8].

c. Push the value (nt .const 𝑐) to the stack.

5. Else:

a. Assert: Due to validation, nt is i𝑁.

b. Let loadop0 be loadop?.

c. Let 𝑛_sx be the destructuring of loadop0.

d. If 𝑖+ ao.offset+ 𝑛/8 > |𝑧.mems[𝑥].bytes|, then:

1) Trap.

e. Let 𝑐 be the result for which bytesi𝑛(𝑐) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑛/8].

f. Push the value (nt .const extendsx𝑛,|nt|(𝑐)) to the stack.

𝑧; (at .const 𝑖) (nt .load 𝑥 ao) →˓ trap
if 𝑖+ ao.offset+ |nt |/8 > |𝑧.mems[𝑥].bytes|

𝑧; (at .const 𝑖) (nt .load 𝑥 ao) →˓ (nt .const 𝑐)
if bytesnt(𝑐) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : |nt |/8]

𝑧; (at .const 𝑖) (i𝑁.load𝑛_sx 𝑥 ao) →˓ trap
if 𝑖+ ao.offset+ 𝑛/8 > |𝑧.mems[𝑥].bytes|

𝑧; (at .const 𝑖) (i𝑁.load𝑛_sx 𝑥 ao) →˓ (i𝑁.const extendsx𝑛,|i𝑁 |(𝑐))

if bytesi𝑛(𝑐) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑛/8]

v128.load𝑀x𝐾_sx 𝑥 ao

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑖) from the stack.

4. If 𝑖+ ao.offset+𝑀 ·𝐾/8 > |𝑧.mems[𝑥].bytes|, then:

a. Trap.

5. Let 𝑗𝐾 be the result for which (bytesi𝑀 (𝑗𝐾) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset+ 𝑘 ·𝑀/8 : 𝑀/8])𝑘<𝐾 .

6. Let i𝑁 be the result for which 𝑁 =𝑀 · 2.

7. Let 𝑐 be lanes−1
i𝑁x𝐾(extendsx𝑀,𝑁 (𝑗)

𝐾
).

8. Push the value (v128.const 𝑐) to the stack.

𝑧; (at .const 𝑖) (v128.load𝑀x𝐾_sx 𝑥 ao) →˓ trap if 𝑖+ ao.offset+𝑀 ·𝐾/8 > |𝑧.mems[𝑥].bytes|
𝑧; (at .const 𝑖) (v128.load𝑀x𝐾_sx 𝑥 ao) →˓ (v128.const 𝑐)

if (bytesi𝑀 (𝑗) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset+ 𝑘 ·𝑀/8 : 𝑀/8])𝑘<𝐾

∧ 𝑐 = lanes−1
i𝑁x𝐾(extendsx𝑀,𝑁 (𝑗)

𝐾
) ∧𝑁 = 𝑀 · 2

v128.load𝑁_splat 𝑥 ao

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑖) from the stack.

4. If 𝑖+ ao.offset+𝑁/8 > |𝑧.mems[𝑥].bytes|, then:

a. Trap.

5. Let 𝑀 be 128/𝑁 .

6. Let i𝑁 be the result for which |i𝑁| = 𝑁 .

7. Let 𝑗 be the result for which bytesi𝑁 (𝑗) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑁/8].

4.6. Instructions 153

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

8. Let 𝑐 be lanes−1
i𝑁x𝑀 (𝑗𝑀).

9. Push the value (v128.const 𝑐) to the stack.

𝑧; (at .const 𝑖) (v128.load𝑁_splat 𝑥 ao) →˓ trap if 𝑖+ ao.offset+𝑁/8 > |𝑧.mems[𝑥].bytes|
𝑧; (at .const 𝑖) (v128.load𝑁_splat 𝑥 ao) →˓ (v128.const 𝑐)

if bytesi𝑁 (𝑗) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑁/8]
∧ 𝑁 = |i𝑁|
∧𝑀 = 128/𝑁

∧ 𝑐 = lanes−1
i𝑁x𝑀 (𝑗𝑀)

v128.load𝑁_zero 𝑥 ao

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑖) from the stack.

4. If 𝑖+ ao.offset+𝑁/8 > |𝑧.mems[𝑥].bytes|, then:

a. Trap.

5. Let 𝑗 be the result for which bytesi𝑁 (𝑗) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑁/8].

6. Let 𝑐 be extendu𝑁,128(𝑗).

7. Push the value (v128.const 𝑐) to the stack.

𝑧; (at .const 𝑖) (v128.load𝑁_zero 𝑥 ao) →˓ trap if 𝑖+ ao.offset+𝑁/8 > |𝑧.mems[𝑥].bytes|
𝑧; (at .const 𝑖) (v128.load𝑁_zero 𝑥 ao) →˓ (v128.const 𝑐)

if bytesi𝑁 (𝑗) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑁/8]
∧ 𝑐 = extendu𝑁,128(𝑗)

v128.load𝑁_lane 𝑥 ao 𝑗

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

3. Pop the value (v128.const 𝑐1) from the stack.

4. Assert: Due to validation, a number value is on the top of the stack.

5. Pop the value (at .const 𝑖) from the stack.

6. If 𝑖+ ao.offset+𝑁/8 > |𝑧.mems[𝑥].bytes|, then:

a. Trap.

7. Let 𝑀 be |v128|/𝑁 .

8. Let i𝑁 be the result for which |i𝑁| = 𝑁 .

9. Let 𝑘 be the result for which bytesi𝑁 (𝑘) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑁/8].

10. Let 𝑐 be lanes−1
i𝑁x𝑀 (lanesi𝑁x𝑀 (𝑐1)[[𝑗] = 𝑘]).

11. Push the value (v128.const 𝑐) to the stack.

𝑧; (at .const 𝑖) (v128.const 𝑐1) (v128.load𝑁_lane 𝑥 ao 𝑗) →˓ trap if 𝑖+ ao.offset+𝑁/8 > |𝑧.mems[𝑥].bytes|
𝑧; (at .const 𝑖) (v128.const 𝑐1) (v128.load𝑁_lane 𝑥 ao 𝑗) →˓ (v128.const 𝑐)

if bytesi𝑁 (𝑘) = 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑁/8]
∧ 𝑁 = |i𝑁|
∧𝑀 = |v128|/𝑁
∧ 𝑐 = lanes−1

i𝑁x𝑀 (lanesi𝑁x𝑀 (𝑐1)[[𝑗] = 𝑘])

154 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

nt .storestoreop? 𝑥 ao

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (nt ′.const 𝑐) from the stack.

4. Assert: Due to validation, a value is on the top of the stack.

5. Pop the value (at .const 𝑖) from the stack.

6. Assert: Due to validation, nt = nt ′.

7. If storeop? is not defined, then:

a. If 𝑖+ ao.offset+ |nt ′|/8 > |𝑧.mems[𝑥].bytes|, then:

1) Trap.

b. Let 𝑏* be bytesnt′(𝑐).

c. Replace 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : |nt ′|/8] with 𝑏*.

8. Else:

a. Assert: Due to validation, nt ′ is i𝑁.

b. Let 𝑛 be storeop?.

c. If 𝑖+ ao.offset+ 𝑛/8 > |𝑧.mems[𝑥].bytes|, then:

1) Trap.

d. Let 𝑏* be bytesi𝑛(wrap|nt′|,𝑛(𝑐)).

e. Replace 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑛/8] with 𝑏*.

𝑧; (at .const 𝑖) (nt .const 𝑐) (nt .store 𝑥 ao) →˓ 𝑧; trap
if 𝑖+ ao.offset+ |nt |/8 > |𝑧.mems[𝑥].bytes|

𝑧; (at .const 𝑖) (nt .const 𝑐) (nt .store 𝑥 ao) →˓ 𝑧[.mems[𝑥].bytes[𝑖+ ao.offset : |nt |/8] = 𝑏*]; 𝜖
if 𝑏* = bytesnt(𝑐)

𝑧; (at .const 𝑖) (i𝑁.const 𝑐) (i𝑁.store𝑛 𝑥 ao) →˓ 𝑧; trap
if 𝑖+ ao.offset+ 𝑛/8 > |𝑧.mems[𝑥].bytes|

𝑧; (at .const 𝑖) (i𝑁.const 𝑐) (i𝑁.store𝑛 𝑥 ao) →˓ 𝑧[.mems[𝑥].bytes[𝑖+ ao.offset : 𝑛/8] = 𝑏*]; 𝜖
if 𝑏* = bytesi𝑛(wrap|i𝑁 |,𝑛(𝑐))

𝑧; (at .const 𝑖) (v128.const 𝑐) (v128.store 𝑥 ao) →˓ 𝑧; trap if 𝑖+ ao.offset+ |v128|/8 > |𝑧.mems[𝑥].bytes|
𝑧; (at .const 𝑖) (v128.const 𝑐) (v128.store 𝑥 ao) →˓ 𝑧[.mems[𝑥].bytes[𝑖+ ao.offset : |v128|/8] = 𝑏*]; 𝜖 if 𝑏* = bytesv128(𝑐)

v128.store𝑁_lane 𝑥 ao 𝑗

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

3. Pop the value (v128.const 𝑐) from the stack.

4. Assert: Due to validation, a number value is on the top of the stack.

5. Pop the value (at .const 𝑖) from the stack.

6. If 𝑖+ ao.offset+𝑁 > |𝑧.mems[𝑥].bytes|, then:

a. Trap.

7. Let 𝑀 be 128/𝑁 .

8. Let i𝑁 be the result for which |i𝑁| = 𝑁 .

9. Assert: Due to validation, 𝑗 < |lanesi𝑁x𝑀 (𝑐)|.

10. Let 𝑏* be bytesi𝑁 (lanesi𝑁x𝑀 (𝑐)[𝑗]).

4.6. Instructions 155

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

11. Replace 𝑧.mems[𝑥].bytes[𝑖+ ao.offset : 𝑁/8] with 𝑏*.

𝑧; (at .const 𝑖) (v128.const 𝑐) (v128.store𝑁_lane 𝑥 ao 𝑗) →˓ 𝑧; trap if 𝑖+ ao.offset+𝑁 > |𝑧.mems[𝑥].bytes|
𝑧; (at .const 𝑖) (v128.const 𝑐) (v128.store𝑁_lane 𝑥 ao 𝑗) →˓ 𝑧[.mems[𝑥].bytes[𝑖+ ao.offset : 𝑁/8] = 𝑏*]; 𝜖 if 𝑁 = |i𝑁|

∧𝑀 = 128/𝑁
∧ 𝑏* = bytesi𝑁 (lanesi𝑁x𝑀 (𝑐)[𝑗])

memory.size 𝑥

1. Let 𝑧 be the current state.

2. Let (at lim page) be the destructuring of 𝑧.mems[𝑥].type.

3. Let 𝑛 · 64Ki be the length of 𝑧.mems[𝑥].bytes.

4. Push the value (at .const 𝑛) to the stack.

𝑧; (memory.size 𝑥) →˓ (at .const 𝑛) if 𝑛 · 64Ki = |𝑧.mems[𝑥].bytes|
∧ 𝑧.mems[𝑥].type = at lim page

memory.grow 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑛) from the stack.

4. Either:

a. Let mi be the memory instance growmem(𝑧.mems[𝑥], 𝑛).

b. Push the value (at .const |𝑧.mems[𝑥].bytes|/(64Ki)) to the stack.

c. Replace 𝑧.mems[𝑥] with mi .

5. Or:

a. Push the value (at .const signed−1
|at|(−1)) to the stack.

𝑧; (at .const 𝑛) (memory.grow 𝑥) →˓ 𝑧[.mems[𝑥] = mi]; (at .const |𝑧.mems[𝑥].bytes|/64Ki)
if mi = growmem(𝑧.mems[𝑥], 𝑛)

𝑧; (at .const 𝑛) (memory.grow 𝑥) →˓ 𝑧; (at .const signed−1
|at|(−1))

Note

The memory.grow instruction is non-deterministic. It may either succeed, returning the old memory size sz ,
or fail, returning −1. Failure must occur if the referenced memory instance has a maximum size defined that
would be exceeded. However, failure can occur in other cases as well. In practice, the choice depends on the
resources available to the embedder.

memory.fill 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑛) from the stack.

4. Assert: Due to validation, a value is on the top of the stack.

5. Pop the value val from the stack.

6. Assert: Due to validation, a value of number type at is on the top of the stack.

7. Pop the value (numtype0.const 𝑖) from the stack.

156 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

8. If 𝑖+ 𝑛 > |𝑧.mems[𝑥].bytes|, then:

a. Trap.

9. If 𝑛 = 0, then:

a. Do nothing.

10. Else:

a. Push the value (at .const 𝑖) to the stack.

b. Push the value val to the stack.

c. Execute the instruction (i32.store8 𝑥).

d. Push the value (at .const 𝑖+ 1) to the stack.

e. Push the value val to the stack.

f. Push the value (at .const 𝑛− 1) to the stack.

g. Execute the instruction (memory.fill 𝑥).

𝑧; (at .const 𝑖) val (at .const 𝑛) (memory.fill 𝑥) →˓ trap if 𝑖+ 𝑛 > |𝑧.mems[𝑥].bytes|
𝑧; (at .const 𝑖) val (at .const 𝑛) (memory.fill 𝑥) →˓ 𝜖 otherwise, if 𝑛 = 0
𝑧; (at .const 𝑖) val (at .const 𝑛) (memory.fill 𝑥) →˓
(at .const 𝑖) val (i32.store8 𝑥)
(at .const 𝑖+ 1) val (at .const 𝑛− 1) (memory.fill 𝑥)

otherwise

memory.copy 𝑥1 𝑥2

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a number value is on the top of the stack.

3. Pop the value (at .const 𝑛) from the stack.

4. Assert: Due to validation, a number value is on the top of the stack.

5. Pop the value (at2.const 𝑖2) from the stack.

6. Assert: Due to validation, a number value is on the top of the stack.

7. Pop the value (at1.const 𝑖1) from the stack.

8. If 𝑖1 + 𝑛 > |𝑧.mems[𝑥1].bytes| or 𝑖2 + 𝑛 > |𝑧.mems[𝑥2].bytes|, then:

a. Trap.

9. If 𝑛 = 0, then:

a. Do nothing.

10. Else:

a. If 𝑖1 ≤ 𝑖2, then:

1) Push the value (at1.const 𝑖1) to the stack.

2) Push the value (at2.const 𝑖2) to the stack.

3) Execute the instruction (i32.load8_u 𝑥2).

4) Execute the instruction (i32.store8 𝑥1).

5) Push the value (at1.const 𝑖1 + 1) to the stack.

6) Push the value (at2.const 𝑖2 + 1) to the stack.

b. Else:

1) Push the value (at1.const 𝑖1 + 𝑛− 1) to the stack.

2) Push the value (at2.const 𝑖2 + 𝑛− 1) to the stack.

4.6. Instructions 157

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

3) Execute the instruction (i32.load8_u 𝑥2).

4) Execute the instruction (i32.store8 𝑥1).

5) Push the value (at1.const 𝑖1) to the stack.

6) Push the value (at2.const 𝑖2) to the stack.

c. Push the value (at .const 𝑛− 1) to the stack.

d. Execute the instruction (memory.copy 𝑥1 𝑥2).

𝑧; (at1.const 𝑖1) (at2.const 𝑖2) (at
′.const 𝑛) (memory.copy 𝑥1 𝑥2) →˓ trap

if 𝑖1 + 𝑛 > |𝑧.mems[𝑥1].bytes| ∨ 𝑖2 + 𝑛 > |𝑧.mems[𝑥2].bytes|
𝑧; (at1.const 𝑖1) (at2.const 𝑖2) (at

′.const 𝑛) (memory.copy 𝑥1 𝑥2) →˓ 𝜖 otherwise, if 𝑛 = 0
𝑧; (at1.const 𝑖1) (at2.const 𝑖2) (at

′.const 𝑛) (memory.copy 𝑥1 𝑥2) →˓
(at1.const 𝑖1) (at2.const 𝑖2) (i32.load8_u 𝑥2) (i32.store8 𝑥1)
(at1.const 𝑖1 + 1) (at2.const 𝑖2 + 1) (at ′.const 𝑛− 1) (memory.copy 𝑥1 𝑥2)

otherwise, if 𝑖1 ≤ 𝑖2

𝑧; (at1.const 𝑖1) (at2.const 𝑖2) (at
′.const 𝑛) (memory.copy 𝑥1 𝑥2) →˓

(at1.const 𝑖1 + 𝑛− 1) (at2.const 𝑖2 + 𝑛− 1) (i32.load8_u 𝑥2) (i32.store8 𝑥1)
(at1.const 𝑖1) (at2.const 𝑖2) (at

′.const 𝑛− 1) (memory.copy 𝑥1 𝑥2)
otherwise

memory.init 𝑥 𝑦

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, a value of number type i32 is on the top of the stack.

5. Pop the value (i32.const 𝑗) from the stack.

6. Assert: Due to validation, a number value is on the top of the stack.

7. Pop the value (at .const 𝑖) from the stack.

8. If 𝑖+ 𝑛 > |𝑧.mems[𝑥].bytes| or 𝑗 + 𝑛 > |𝑧.datas[𝑦].bytes|, then:

a. Trap.

9. If 𝑛 = 0, then:

a. Do nothing.

10. Else:

a. Assert: Due to validation, 𝑗 < |𝑧.datas[𝑦].bytes|.

b. Push the value (at .const 𝑖) to the stack.

c. Push the value (i32.const 𝑧.datas[𝑦].bytes[𝑗]) to the stack.

d. Execute the instruction (i32.store8 𝑥).

e. Push the value (at .const 𝑖+ 1) to the stack.

f. Push the value (i32.const 𝑗 + 1) to the stack.

g. Push the value (i32.const 𝑛− 1) to the stack.

h. Execute the instruction (memory.init 𝑥 𝑦).

𝑧; (at .const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (memory.init 𝑥 𝑦) →˓ trap
if 𝑖+ 𝑛 > |𝑧.mems[𝑥].bytes| ∨ 𝑗 + 𝑛 > |𝑧.datas[𝑦].bytes|

𝑧; (at .const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (memory.init 𝑥 𝑦) →˓ 𝜖 otherwise, if 𝑛 = 0
𝑧; (at .const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (memory.init 𝑥 𝑦) →˓
(at .const 𝑖) (i32.const 𝑧.datas[𝑦].bytes[𝑗]) (i32.store8 𝑥)
(at .const 𝑖+ 1) (i32.const 𝑗 + 1) (i32.const 𝑛− 1) (memory.init 𝑥 𝑦)

otherwise

158 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

data.drop 𝑥

1. Let 𝑧 be the current state.

2. Replace 𝑧.datas[𝑥].bytes with 𝜖.

𝑧; (data.drop 𝑥) →˓ 𝑧[.datas[𝑥].bytes = 𝜖]; 𝜖

4.6.10 Reference Instructions
ref.null 𝑥

1. Let 𝐹 be the current frame.

2. Assert: due to validation, the defined type 𝐹.module.types[𝑥] exists.

3. Let deftype be the defined type 𝐹.module.types[𝑥].

4. Push the value ref.null deftype to the stack.

𝑧; (ref.null 𝑥) →˓ (ref.null 𝑧.types[𝑥])

Note

No formal reduction rule is required for the case ref.null absheaptype, since the instruction form is already a
value.

ref.func 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, 𝑥 < |𝑧.module.funcs|.

3. Push the value (ref.func 𝑧.module.funcs[𝑥]) to the stack.

𝑧; (ref.func 𝑥) →˓ (ref.func 𝑧.module.funcs[𝑥])

ref.is_null

1. Assert: Due to validation, a reference value is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is some ref.null heaptype, then:

a. Push the value (i32.const 1) to the stack.

4. Else:

a. Push the value (i32.const 0) to the stack.

ref ref.is_null →˓ (i32.const 1) if ref = (ref.null ht)
ref ref.is_null →˓ (i32.const 0) otherwise

ref.as_non_null

1. Assert: Due to validation, a reference value is on the top of the stack.

2. Pop the value ref from the stack.

3. If ref is some ref.null heaptype, then:

a. Trap.

4. Push the value ref to the stack.

4.6. Instructions 159

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ref ref.as_non_null →˓ trap if ref = (ref.null ht)
ref ref.as_non_null →˓ ref otherwise

ref.eq

1. Assert: Due to validation, a reference value is on the top of the stack.

2. Pop the value ref 2 from the stack.

3. Assert: Due to validation, a reference value is on the top of the stack.

4. Pop the value ref 1 from the stack.

5. If ref 1 is some ref.null heaptype and ref 2 is some ref.null heaptype, then:

a. Push the value (i32.const 1) to the stack.

6. Else if ref 1 = ref 2, then:

a. Push the value (i32.const 1) to the stack.

7. Else:

a. Push the value (i32.const 0) to the stack.

ref 1 ref 2 ref.eq →˓ (i32.const 1) if ref 1 = (ref.null ht1) ∧ ref 2 = (ref.null ht2)
ref 1 ref 2 ref.eq →˓ (i32.const 1) otherwise, if ref 1 = ref 2
ref 1 ref 2 ref.eq →˓ (i32.const 0) otherwise

ref.test rt

1. Let 𝑓 be the topmost frame.

2. Assert: Due to validation, a reference value is on the top of the stack.

3. Pop the value ref from the stack.

4. Let rt ′ be the type of ref .

5. If rt ′ matches clos𝑓.module(rt), then:

a. Push the value (i32.const 1) to the stack.

6. Else:

a. Push the value (i32.const 0) to the stack.

𝑠; 𝑓 ; ref (ref.test rt) →˓ (i32.const 1) if 𝑠 ⊢ ref : rt ′

∧ {} ⊢ rt ′ ≤ clos𝑓.module(rt)
𝑠; 𝑓 ; ref (ref.test rt) →˓ (i32.const 0) otherwise

ref.cast rt

1. Let 𝑓 be the topmost frame.

2. Assert: Due to validation, a reference value is on the top of the stack.

3. Pop the value ref from the stack.

4. Let rt ′ be the type of ref .

5. If rt ′ does not match clos𝑓.module(rt), then:

a. Trap.

6. Push the value ref to the stack.

𝑠; 𝑓 ; ref (ref.cast rt) →˓ ref if 𝑠 ⊢ ref : rt ′

∧ {} ⊢ rt ′ ≤ clos𝑓.module(rt)
𝑠; 𝑓 ; ref (ref.cast rt) →˓ trap otherwise

160 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

ref.i31

1. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2. Pop the value (i32.const 𝑖) from the stack.

3. Push the value (ref.i31 wrap32,31(𝑖)) to the stack.

(i32.const 𝑖) ref.i31 →˓ (ref.i31 wrap32,31(𝑖))

i31.get_sx

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. If val is some ref.null heaptype , then:

a. Trap.

4. Assert: Due to validation, val is some ref.i31 u31 .

5. Let (ref.i31 𝑖) be the destructuring of val .

6. Push the value (i32.const extendsx31,32(𝑖)) to the stack.

(ref.null ht) (i31.get_sx) →˓ trap
(ref.i31 𝑖) (i31.get_sx) →˓ (i32.const extendsx31,32(𝑖))

struct.new 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some struct list(fieldtype).

3. Let (struct list0) be the destructuring of the expansion of 𝑧.types[𝑥].

4. Let (mut? zt)𝑛 be list0.

5. Let 𝑎 be the length of 𝑧.structs.

6. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

7. Pop the values val𝑛 from the stack.

8. Let si be the structure instance {type 𝑧.types[𝑥], fields packzt(val)𝑛}.

9. Push the value (ref.struct 𝑎) to the stack.

10. Append si to 𝑧.structs.

𝑧; val𝑛 (struct.new 𝑥) →˓ 𝑧[.structs =⊕ si]; (ref.struct 𝑎) if 𝑧.types[𝑥] ≈ struct (mut? zt)𝑛

∧ 𝑎 = |𝑧.structs|
∧ si = {type 𝑧.types[𝑥], fields (packzt(val))𝑛}

struct.new_default 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some struct list(fieldtype).

3. Let (struct list0) be the destructuring of the expansion of 𝑧.types[𝑥].

4. Let (mut? zt)* be list0.

5. Assert: Due to validation, for all zt in zt*, defaultunpack(zt) is defined.

6. Let val* be the value sequence 𝜖.

7. For each zt in zt*, do:

a. Let val be defaultunpack(zt).

4.6. Instructions 161

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

b. Append val to val*.

8. Assert: Due to validation, |val*| = |zt*|.

9. Push the values val* to the stack.

10. Execute the instruction (struct.new 𝑥).

𝑧; (struct.new_default 𝑥) →˓ val* (struct.new 𝑥) if 𝑧.types[𝑥] ≈ struct (mut? zt)*

∧ (defaultunpack(zt) = val)*

struct.get_sx ? 𝑥 𝑖

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val from the stack.

4. If val is some ref.null heaptype , then:

a. Trap.

5. Assert: Due to validation, val is some ref.struct structaddr .

6. Let (ref.struct 𝑎) be the destructuring of val .

7. Assert: Due to validation, 𝑖 < |𝑧.structs[𝑎].fields|.

8. Assert: Due to validation, 𝑎 < |𝑧.structs|.

9. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some struct list(fieldtype).

10. Let (struct list0) be the destructuring of the expansion of 𝑧.types[𝑥].

11. Let (mut? zt)* be list0.

12. Assert: Due to validation, 𝑖 < |zt*|.

13. Push the value unpacksx
?

zt*[𝑖](𝑧.structs[𝑎].fields[𝑖]) to the stack.

𝑧; (ref.null ht) (struct.get_sx ? 𝑥 𝑖) →˓ trap

𝑧; (ref.struct 𝑎) (struct.get_sx ? 𝑥 𝑖) →˓ unpacksx
?

zt*[𝑖](𝑧.structs[𝑎].fields[𝑖]) if 𝑧.types[𝑥] ≈ struct (mut? zt)*

struct.set 𝑥 𝑖

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val from the stack.

4. Assert: Due to validation, a value is on the top of the stack.

5. Pop the value val ′ from the stack.

6. If val ′ is some ref.null heaptype, then:

a. Trap.

7. Assert: Due to validation, val ′ is some ref.struct structaddr .

8. Let (ref.struct 𝑎) be the destructuring of val ′.

9. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some struct list(fieldtype).

10. Let (struct list0) be the destructuring of the expansion of 𝑧.types[𝑥].

11. Let (mut? zt)* be list0.

12. Assert: Due to validation, 𝑖 < |zt*|.

13. Replace 𝑧.structs[𝑎].fields[𝑖] with packzt*[𝑖](val).

162 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝑧; (ref.null ht) val (struct.set 𝑥 𝑖) →˓ 𝑧; trap
𝑧; (ref.struct 𝑎) val (struct.set 𝑥 𝑖) →˓ 𝑧[.structs[𝑎].fields[𝑖] = packzt*[𝑖](val)]; 𝜖 if 𝑧.types[𝑥] ≈ struct (mut? zt)*

array.new 𝑥

1. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2. Pop the value (i32.const 𝑛) from the stack.

3. Assert: Due to validation, a value is on the top of the stack.

4. Pop the value val from the stack.

5. Push the values val𝑛 to the stack.

6. Execute the instruction (array.new_fixed 𝑥 𝑛).

val (i32.const 𝑛) (array.new 𝑥) →˓ val𝑛 (array.new_fixed 𝑥 𝑛)

array.new_default 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some array fieldtype.

5. Let (array fieldtype0) be the destructuring of the expansion of 𝑧.types[𝑥].

6. Let (mut? zt) be the destructuring of fieldtype0.

7. Assert: Due to validation, defaultunpack(zt) is defined.

8. Let val be defaultunpack(zt).

9. Push the values val𝑛 to the stack.

10. Execute the instruction (array.new_fixed 𝑥 𝑛).

𝑧; (i32.const 𝑛) (array.new_default 𝑥) →˓ val𝑛 (array.new_fixed 𝑥 𝑛) if 𝑧.types[𝑥] ≈ array (mut? zt)
∧ defaultunpack(zt) = val

array.new_fixed 𝑥 𝑛

1. Let 𝑧 be the current state.

2. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some array fieldtype.

3. Let (array fieldtype0) be the destructuring of the expansion of 𝑧.types[𝑥].

4. Let (mut? zt) be the destructuring of fieldtype0.

5. Let 𝑎 be the length of 𝑧.arrays.

6. Assert: Due to validation, there are at least 𝑛 values on the top of the stack.

7. Pop the values val𝑛 from the stack.

8. Let ai be the array instance {type 𝑧.types[𝑥], fields packzt(val)𝑛}.

9. Push the value (ref.array 𝑎) to the stack.

10. Append ai to 𝑧.arrays.

𝑧; val𝑛 (array.new_fixed 𝑥 𝑛) →˓ 𝑧[.arrays =⊕ ai]; (ref.array 𝑎)
if 𝑧.types[𝑥] ≈ array (mut? zt)
∧ 𝑎 = |𝑧.arrays| ∧ ai = {type 𝑧.types[𝑥], fields (packzt(val))𝑛}

4.6. Instructions 163

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

array.new_data 𝑥 𝑦

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, a value of number type i32 is on the top of the stack.

5. Pop the value (i32.const 𝑖) from the stack.

6. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some array fieldtype.

7. Let (array fieldtype0) be the destructuring of the expansion of 𝑧.types[𝑥].

8. Let (mut? zt) be the destructuring of fieldtype0.

9. If 𝑖+ 𝑛 · |zt |/8 > |𝑧.datas[𝑦].bytes|, then:

a. Trap.

10. Let byte*
* be the result for which each byte* has length |zt |/8, and the concatenation of byte*

* is
𝑧.datas[𝑦].bytes[𝑖 : 𝑛 · |zt |/8].

11. Let 𝑐𝑛 be the result for which (byteszt(𝑐
𝑛) = byte*)*.

12. Push the values unpack(zt).const unpackzt(𝑐)𝑛 to the stack.

13. Execute the instruction (array.new_fixed 𝑥 𝑛).

𝑧; (i32.const 𝑖) (i32.const 𝑛) (array.new_data 𝑥 𝑦) →˓ trap
if 𝑧.types[𝑥] ≈ array (mut? zt)
∧ 𝑖+ 𝑛 · |zt |/8 > |𝑧.datas[𝑦].bytes|

𝑧; (i32.const 𝑖) (i32.const 𝑛) (array.new_data 𝑥 𝑦) →˓ (unpack(zt).const unpackzt(𝑐))
𝑛 (array.new_fixed 𝑥 𝑛)

if 𝑧.types[𝑥] ≈ array (mut? zt)
∧
⨁︀

byteszt(𝑐)
𝑛 = 𝑧.datas[𝑦].bytes[𝑖 : 𝑛 · |zt |/8]

array.new_elem 𝑥 𝑦

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, a value of number type i32 is on the top of the stack.

5. Pop the value (i32.const 𝑖) from the stack.

6. If 𝑖+ 𝑛 > |𝑧.elems[𝑦].elem|, then:

a. Trap.

7. Let ref 𝑛 be 𝑧.elems[𝑦].elem[𝑖 : 𝑛].

8. Push the values ref 𝑛 to the stack.

9. Execute the instruction (array.new_fixed 𝑥 𝑛).

𝑧; (i32.const 𝑖) (i32.const 𝑛) (array.new_elem 𝑥 𝑦) →˓ trap if 𝑖+ 𝑛 > |𝑧.elems[𝑦].elem|
𝑧; (i32.const 𝑖) (i32.const 𝑛) (array.new_elem 𝑥 𝑦) →˓ ref 𝑛 (array.new_fixed 𝑥 𝑛)

if ref 𝑛 = 𝑧.elems[𝑦].elem[𝑖 : 𝑛]

array.get_sx ? 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑖) from the stack.

164 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4. Assert: Due to validation, a value is on the top of the stack.

5. Pop the value val from the stack.

6. If val is some ref.null heaptype , then:

a. Trap.

7. Assert: Due to validation, val is some ref.array arrayaddr .

8. Let (ref.array 𝑎) be the destructuring of val .

9. If 𝑎 < |𝑧.arrays| and 𝑖 ≥ |𝑧.arrays[𝑎].fields|, then:

a. Trap.

10. If 𝑖 < |𝑧.arrays[𝑎].fields| and 𝑎 < |𝑧.arrays|, then:

a. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some array fieldtype.

b. Let (array fieldtype0) be the destructuring of the expansion of 𝑧.types[𝑥].

c. Let (mut? zt) be the destructuring of fieldtype0.

d. Push the value unpacksx
?

zt (𝑧.arrays[𝑎].fields[𝑖]) to the stack.

𝑧; (ref.null ht) (i32.const 𝑖) (array.get_sx ? 𝑥) →˓ trap
𝑧; (ref.array 𝑎) (i32.const 𝑖) (array.get_sx ? 𝑥) →˓ trap if 𝑖 ≥ |𝑧.arrays[𝑎].fields|
𝑧; (ref.array 𝑎) (i32.const 𝑖) (array.get_sx ? 𝑥) →˓ unpacksx

?

zt (𝑧.arrays[𝑎].fields[𝑖])
if 𝑧.types[𝑥] ≈ array (mut? zt)

array.set 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val from the stack.

4. Assert: Due to validation, a value of number type i32 is on the top of the stack.

5. Pop the value (i32.const 𝑖) from the stack.

6. Assert: Due to validation, a value is on the top of the stack.

7. Pop the value val ′ from the stack.

8. If val ′ is some ref.null heaptype, then:

a. Trap.

9. Assert: Due to validation, val ′ is some ref.array arrayaddr .

10. Let (ref.array 𝑎) be the destructuring of val ′.

11. If 𝑎 < |𝑧.arrays| and 𝑖 ≥ |𝑧.arrays[𝑎].fields|, then:

a. Trap.

12. Assert: Due to validation, the expansion of 𝑧.types[𝑥] is some array fieldtype.

13. Let (array fieldtype0) be the destructuring of the expansion of 𝑧.types[𝑥].

14. Let (mut? zt) be the destructuring of fieldtype0.

15. Replace 𝑧.arrays[𝑎].fields[𝑖] with packzt(val).

𝑧; (ref.null ht) (i32.const 𝑖) val (array.set 𝑥) →˓ 𝑧; trap
𝑧; (ref.array 𝑎) (i32.const 𝑖) val (array.set 𝑥) →˓ 𝑧; trap if 𝑖 ≥ |𝑧.arrays[𝑎].fields|
𝑧; (ref.array 𝑎) (i32.const 𝑖) val (array.set 𝑥) →˓ 𝑧[.arrays[𝑎].fields[𝑖] = packzt(val)]; 𝜖

if 𝑧.types[𝑥] ≈ array (mut? zt)

4.6. Instructions 165

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

array.len

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value is on the top of the stack.

3. Pop the value val from the stack.

4. If val is some ref.null heaptype , then:

a. Trap.

5. Assert: Due to validation, val is some ref.array arrayaddr .

6. Let (ref.array 𝑎) be the destructuring of val .

7. Assert: Due to validation, 𝑎 < |𝑧.arrays|.

8. Push the value (i32.const |𝑧.arrays[𝑎].fields|) to the stack.

𝑧; (ref.null ht) array.len →˓ trap
𝑧; (ref.array 𝑎) array.len →˓ (i32.const |𝑧.arrays[𝑎].fields|)

array.fill 𝑥

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, a value is on the top of the stack.

5. Pop the value val from the stack.

6. Assert: Due to validation, a value of number type i32 is on the top of the stack.

7. Pop the value (i32.const 𝑖) from the stack.

8. Assert: Due to validation, a value is on the top of the stack.

9. Pop the value val ′ from the stack.

10. If val ′ is some ref.null heaptype, then:

a. Trap.

11. Assert: Due to validation, val ′ is some ref.array arrayaddr .

12. Let (ref.array 𝑎) be the destructuring of val ′.

13. If 𝑎 ≥ |𝑧.arrays|, then:

a. Do nothing.

14. Else if 𝑖+ 𝑛 > |𝑧.arrays[𝑎].fields|, then:

a. Trap.

15. If 𝑛 = 0, then:

a. Do nothing.

16. Else:

a. Push the value (ref.array 𝑎) to the stack.

b. Push the value (i32.const 𝑖) to the stack.

c. Push the value val to the stack.

d. Execute the instruction (array.set 𝑥).

e. Push the value (ref.array 𝑎) to the stack.

f. Push the value (i32.const 𝑖+ 1) to the stack.

166 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

g. Push the value val to the stack.

h. Push the value (i32.const 𝑛− 1) to the stack.

i. Execute the instruction (array.fill 𝑥).

𝑧; (ref.null ht) (i32.const 𝑖) val (i32.const 𝑛) (array.fill 𝑥) →˓ trap
𝑧; (ref.array 𝑎) (i32.const 𝑖) val (i32.const 𝑛) (array.fill 𝑥) →˓ trap if 𝑖+ 𝑛 > |𝑧.arrays[𝑎].fields|
𝑧; (ref.array 𝑎) (i32.const 𝑖) val (i32.const 𝑛) (array.fill 𝑥) →˓ 𝜖 otherwise, if 𝑛 = 0
𝑧; (ref.array 𝑎) (i32.const 𝑖) val (i32.const 𝑛) (array.fill 𝑥) →˓
(ref.array 𝑎) (i32.const 𝑖) val (array.set 𝑥)
(ref.array 𝑎) (i32.const 𝑖+ 1) val (i32.const 𝑛− 1) (array.fill 𝑥)

otherwise

array.copy 𝑥1 𝑥2

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, a value of number type i32 is on the top of the stack.

5. Pop the value (i32.const 𝑖2) from the stack.

6. Assert: Due to validation, a value is on the top of the stack.

7. Pop the value val from the stack.

8. Assert: Due to validation, a value of number type i32 is on the top of the stack.

9. Pop the value (i32.const 𝑖1) from the stack.

10. Assert: Due to validation, a value is on the top of the stack.

11. Pop the value val ′ from the stack.

12. If val ′ is some ref.null heaptype and val is reference value, then:

a. Trap.

13. If val is some ref.null heaptype and val ′ is reference value, then:

a. Trap.

14. If val ′ is some ref.array arrayaddr , then:

a. Let (ref.array 𝑎1) be the destructuring of val ′.

b. If val is some ref.array arrayaddr , then:

1) If 𝑎1 < |𝑧.arrays| and 𝑖1 + 𝑛 > |𝑧.arrays[𝑎1].fields|, then:

a) Trap.

2) Let (ref.array 𝑎2) be the destructuring of val .

3) If 𝑎2 ≥ |𝑧.arrays|, then:

a) Do nothing.

4) Else if 𝑖2 + 𝑛 > |𝑧.arrays[𝑎2].fields|, then:

a) Trap.

5) If 𝑛 = 0, then:

a) Do nothing.

6) Else:

a) Assert: Due to validation, the expansion of 𝑧.types[𝑥2] is some array fieldtype.

b) Let (array fieldtype0) be the destructuring of the expansion of 𝑧.types[𝑥2].

4.6. Instructions 167

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

c) Let (mut? zt2) be the destructuring of fieldtype0.

d) Let sx ? be sx (zt2).

e) Push the value (ref.array 𝑎1) to the stack.

f) If 𝑖1 ≤ 𝑖2, then:

1. Push the value (i32.const 𝑖1) to the stack.

2. Push the value (ref.array 𝑎2) to the stack.

3. Push the value (i32.const 𝑖2) to the stack.

4. Execute the instruction (array.get_sx ? 𝑥2).

5. Execute the instruction (array.set 𝑥1).

6. Push the value (ref.array 𝑎1) to the stack.

7. Push the value (i32.const 𝑖1 + 1) to the stack.

8. Push the value (ref.array 𝑎2) to the stack.

9. Push the value (i32.const 𝑖2 + 1) to the stack.

g) Else:

1. Push the value (i32.const 𝑖1 + 𝑛− 1) to the stack.

2. Push the value (ref.array 𝑎2) to the stack.

3. Push the value (i32.const 𝑖2 + 𝑛− 1) to the stack.

4. Execute the instruction (array.get_sx ? 𝑥2).

5. Execute the instruction (array.set 𝑥1).

6. Push the value (ref.array 𝑎1) to the stack.

7. Push the value (i32.const 𝑖1) to the stack.

8. Push the value (ref.array 𝑎2) to the stack.

9. Push the value (i32.const 𝑖2) to the stack.

h) Push the value (i32.const 𝑛− 1) to the stack.

i) Execute the instruction (array.copy 𝑥1 𝑥2).

168 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝑧; (ref.null ht1) (i32.const 𝑖1) ref (i32.const 𝑖2) (i32.const 𝑛) (array.copy 𝑥1 𝑥2) →˓ trap
𝑧; ref (i32.const 𝑖1) (ref.null ht2) (i32.const 𝑖2) (i32.const 𝑛) (array.copy 𝑥1 𝑥2) →˓ trap

𝑧; (ref.array 𝑎1) (i32.const 𝑖1) (ref.array 𝑎2) (i32.const 𝑖2) (i32.const 𝑛) (array.copy 𝑥1 𝑥2) →˓ trap
if 𝑖1 + 𝑛 > |𝑧.arrays[𝑎1].fields|

𝑧; (ref.array 𝑎1) (i32.const 𝑖1) (ref.array 𝑎2) (i32.const 𝑖2) (i32.const 𝑛) (array.copy 𝑥1 𝑥2) →˓ trap
if 𝑖2 + 𝑛 > |𝑧.arrays[𝑎2].fields|

𝑧; (ref.array 𝑎1) (i32.const 𝑖1) (ref.array 𝑎2) (i32.const 𝑖2) (i32.const 𝑛) (array.copy 𝑥1 𝑥2) →˓ 𝜖
otherwise, if 𝑛 = 0

𝑧; (ref.array 𝑎1) (i32.const 𝑖1) (ref.array 𝑎2) (i32.const 𝑖2) (i32.const 𝑛) (array.copy 𝑥1 𝑥2) →˓
(ref.array 𝑎1) (i32.const 𝑖1)
(ref.array 𝑎2) (i32.const 𝑖2)
(array.get_sx ? 𝑥2) (array.set 𝑥1)
(ref.array 𝑎1) (i32.const 𝑖1 + 1) (ref.array 𝑎2) (i32.const 𝑖2 + 1) (i32.const 𝑛− 1) (array.copy 𝑥1 𝑥2)

otherwise, if 𝑧.types[𝑥2] ≈ array (mut? zt2)
∧ 𝑖1 ≤ 𝑖2 ∧ sx ? = sx (zt2)

𝑧; (ref.array 𝑎1) (i32.const 𝑖1) (ref.array 𝑎2) (i32.const 𝑖2) (i32.const 𝑛) (array.copy 𝑥1 𝑥2) →˓
(ref.array 𝑎1) (i32.const 𝑖1 + 𝑛− 1)
(ref.array 𝑎2) (i32.const 𝑖2 + 𝑛− 1)
(array.get_sx ? 𝑥2) (array.set 𝑥1)
(ref.array 𝑎1) (i32.const 𝑖1) (ref.array 𝑎2) (i32.const 𝑖2) (i32.const 𝑛− 1) (array.copy 𝑥1 𝑥2)

otherwise, if 𝑧.types[𝑥2] ≈ array (mut? zt2)
∧ sx ? = sx (zt2)

Where:

sx (consttype) = 𝜖
sx (packtype) = s

array.init_data 𝑥 𝑦

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, a value of number type i32 is on the top of the stack.

5. Pop the value (i32.const 𝑗) from the stack.

6. Assert: Due to validation, a value of number type i32 is on the top of the stack.

7. Pop the value (i32.const 𝑖) from the stack.

8. Assert: Due to validation, a value is on the top of the stack.

9. Pop the value val from the stack.

10. If val is some ref.null heaptype , then:

a. Trap.

11. Assert: Due to validation, val is some ref.array arrayaddr .

12. Let (ref.array 𝑎) be the destructuring of val .

13. If 𝑎 < |𝑧.arrays| and 𝑖+ 𝑛 > |𝑧.arrays[𝑎].fields|, then:

a. Trap.

14. If the expansion of 𝑧.types[𝑥] is some array fieldtype, then:

a. Let (array fieldtype0) be the destructuring of the expansion of 𝑧.types[𝑥].

b. Let (mut? zt) be the destructuring of fieldtype0.

c. If 𝑗 + 𝑛 · |zt |/8 > |𝑧.datas[𝑦].bytes|, then:

4.6. Instructions 169

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

1) Trap.

d. If 𝑛 = 0, then:

1) Do nothing.

e. Else:

1) Let 𝑐 be the result for which byteszt(𝑐) = 𝑧.datas[𝑦].bytes[𝑗 : |zt |/8].

2) Push the value (ref.array 𝑎) to the stack.

3) Push the value (i32.const 𝑖) to the stack.

4) Push the value unpack(zt).const unpackzt(𝑐) to the stack.

5) Execute the instruction (array.set 𝑥).

6) Push the value (ref.array 𝑎) to the stack.

7) Push the value (i32.const 𝑖+ 1) to the stack.

8) Push the value (i32.const 𝑗 + |zt |/8) to the stack.

9) Push the value (i32.const 𝑛− 1) to the stack.

10) Execute the instruction (array.init_data 𝑥 𝑦).

15. Else if 𝑛 = 0, then:

a. Do nothing.

𝑧; (ref.null ht) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_data 𝑥 𝑦) →˓ trap
𝑧; (ref.array 𝑎) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_data 𝑥 𝑦) →˓ trap

if 𝑖+ 𝑛 > |𝑧.arrays[𝑎].fields|
𝑧; (ref.array 𝑎) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_data 𝑥 𝑦) →˓ trap

if 𝑧.types[𝑥] ≈ array (mut? zt)
∧ 𝑗 + 𝑛 · |zt |/8 > |𝑧.datas[𝑦].bytes|

𝑧; (ref.array 𝑎) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_data 𝑥 𝑦) →˓ 𝜖
otherwise, if 𝑛 = 0

𝑧; (ref.array 𝑎) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_data 𝑥 𝑦) →˓
(ref.array 𝑎) (i32.const 𝑖) (unpack(zt).const unpackzt(𝑐)) (array.set 𝑥)
(ref.array 𝑎) (i32.const 𝑖+ 1) (i32.const 𝑗 + |zt |/8) (i32.const 𝑛− 1) (array.init_data 𝑥 𝑦)

otherwise, if 𝑧.types[𝑥] ≈ array (mut? zt)
∧ byteszt(𝑐) = 𝑧.datas[𝑦].bytes[𝑗 : |zt |/8]

array.init_elem 𝑥 𝑦

1. Let 𝑧 be the current state.

2. Assert: Due to validation, a value of number type i32 is on the top of the stack.

3. Pop the value (i32.const 𝑛) from the stack.

4. Assert: Due to validation, a value of number type i32 is on the top of the stack.

5. Pop the value (i32.const 𝑗) from the stack.

6. Assert: Due to validation, a value of number type i32 is on the top of the stack.

7. Pop the value (i32.const 𝑖) from the stack.

8. Assert: Due to validation, a value is on the top of the stack.

9. Pop the value val from the stack.

10. If val is some ref.null heaptype , then:

a. Trap.

11. Assert: Due to validation, val is some ref.array arrayaddr .

170 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

12. Let (ref.array 𝑎) be the destructuring of val .

13. If 𝑎 < |𝑧.arrays| and 𝑖+ 𝑛 > |𝑧.arrays[𝑎].fields|, then:

a. Trap.

14. If 𝑗 + 𝑛 > |𝑧.elems[𝑦].elem|, then:

a. Trap.

15. If 𝑛 = 0, then:

a. Do nothing.

16. Else if 𝑗 < |𝑧.elems[𝑦].elem|, then:

a. Let ref be the reference value 𝑧.elems[𝑦].elem[𝑗].

b. Push the value (ref.array 𝑎) to the stack.

c. Push the value (i32.const 𝑖) to the stack.

d. Push the value ref to the stack.

e. Execute the instruction (array.set 𝑥).

f. Push the value (ref.array 𝑎) to the stack.

g. Push the value (i32.const 𝑖+ 1) to the stack.

h. Push the value (i32.const 𝑗 + 1) to the stack.

i. Push the value (i32.const 𝑛− 1) to the stack.

j. Execute the instruction (array.init_elem 𝑥 𝑦).

𝑧; (ref.null ht) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_elem 𝑥 𝑦) →˓ trap
𝑧; (ref.array 𝑎) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_elem 𝑥 𝑦) →˓ trap

if 𝑖+ 𝑛 > |𝑧.arrays[𝑎].fields|
𝑧; (ref.array 𝑎) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_elem 𝑥 𝑦) →˓ trap

if 𝑗 + 𝑛 > |𝑧.elems[𝑦].elem|
𝑧; (ref.array 𝑎) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_elem 𝑥 𝑦) →˓ 𝜖

otherwise, if 𝑛 = 0
𝑧; (ref.array 𝑎) (i32.const 𝑖) (i32.const 𝑗) (i32.const 𝑛) (array.init_elem 𝑥 𝑦) →˓
(ref.array 𝑎) (i32.const 𝑖) ref (array.set 𝑥)
(ref.array 𝑎) (i32.const 𝑖+ 1) (i32.const 𝑗 + 1) (i32.const 𝑛− 1) (array.init_elem 𝑥 𝑦)

otherwise, if ref = 𝑧.elems[𝑦].elem[𝑗]

any.convert_extern

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. If val is some ref.null heaptype , then:

a. Push the value (ref.null any) to the stack.

4. If val is some ref.extern addrref , then:

a. Let (ref.extern addrref) be the destructuring of val .

b. Push the value addrref to the stack.

(ref.null ht) any.convert_extern →˓ (ref.null any)
(ref.extern addrref) any.convert_extern →˓ addrref

4.6. Instructions 171

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

extern.convert_any

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value val from the stack.

3. If val is some ref.null heaptype , then:

a. Push the value (ref.null extern) to the stack.

4. If val is address value, then:

a. Push the value (ref.extern val) to the stack.

(ref.null ht) extern.convert_any →˓ (ref.null extern)
addrref extern.convert_any →˓ (ref.extern addrref)

4.6.11 Numeric Instructions
Numeric instructions are defined in terms of the generic numeric operators. The mapping of numeric instructions
to their underlying operators is expressed by the following definition:

op i𝑁 (𝑖1, . . . , 𝑖𝑘) = iop𝑁 (𝑖1, . . . , 𝑖𝑘)
opf𝑁 (𝑧1, . . . , 𝑧𝑘) = fop𝑁 (𝑧1, . . . , 𝑧𝑘)

And for conversion operators:

cvtopsx?

𝑡1,𝑡2(𝑐) = cvtopsx?

|𝑡1|,|𝑡2|(𝑐)

Where the underlying operators are partial, the corresponding instruction will trap when the result is not defined.
Where the underlying operators are non-deterministic, because they may return one of multiple possible NaN
values, so are the corresponding instructions.

Note

For example, the result of instruction i32.add applied to operands 𝑖1, 𝑖2 invokes addi32(𝑖1, 𝑖2), which maps to the
generic iadd32(𝑖1, 𝑖2) via the above definition. Similarly, i64.trunc_f32_s applied to 𝑧 invokes truncsf32,i64(𝑧),
which maps to the generic truncs32,64(𝑧).

nt .const 𝑐

1. Push the value (nt .const 𝑐) to the stack.

Note

No formal reduction rule is required for this instruction, since const instructions already are values.

nt .unop

1. Assert: Due to validation, a value of number type nt is on the top of the stack.

2. Pop the value (numtype0.const 𝑐1) from the stack.

3. If unopnt(𝑐1) is empty, then:

a. Trap.

4. Let 𝑐 be an element of unopnt(𝑐1).

5. Push the value (nt .const 𝑐) to the stack.

(nt .const 𝑐1) (nt .unop) →˓ (nt .const 𝑐) if 𝑐 ∈ unopnt(𝑐1)
(nt .const 𝑐1) (nt .unop) →˓ trap if unopnt(𝑐1) = 𝜖

172 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

nt .binop

1. Assert: Due to validation, a value of number type nt is on the top of the stack.

2. Pop the value (numtype0.const 𝑐2) from the stack.

3. Assert: Due to validation, a number value is on the top of the stack.

4. Pop the value (numtype0.const 𝑐1) from the stack.

5. If binopnt(𝑐1, 𝑐2) is empty, then:

a. Trap.

6. Let 𝑐 be an element of binopnt(𝑐1, 𝑐2).

7. Push the value (nt .const 𝑐) to the stack.

(nt .const 𝑐1) (nt .const 𝑐2) (nt .binop) →˓ (nt .const 𝑐) if 𝑐 ∈ binopnt(𝑐1, 𝑐2)
(nt .const 𝑐1) (nt .const 𝑐2) (nt .binop) →˓ trap if binopnt(𝑐1, 𝑐2) = 𝜖

nt .testop

1. Assert: Due to validation, a value of number type nt is on the top of the stack.

2. Pop the value (numtype0.const 𝑐1) from the stack.

3. Let 𝑐 be testopnt(𝑐1).

4. Push the value (i32.const 𝑐) to the stack.

(nt .const 𝑐1) (nt .testop) →˓ (i32.const 𝑐) if 𝑐 = testopnt(𝑐1)

nt .relop

1. Assert: Due to validation, a value of number type nt is on the top of the stack.

2. Pop the value (numtype0.const 𝑐2) from the stack.

3. Assert: Due to validation, a number value is on the top of the stack.

4. Pop the value (numtype0.const 𝑐1) from the stack.

5. Let 𝑐 be relopnt(𝑐1, 𝑐2).

6. Push the value (i32.const 𝑐) to the stack.

(nt .const 𝑐1) (nt .const 𝑐2) (nt .relop) →˓ (i32.const 𝑐) if 𝑐 = relopnt(𝑐1, 𝑐2)

nt2.cvtop_nt1
1. Assert: Due to validation, a value of number type nt1 is on the top of the stack.

2. Pop the value (numtype0.const 𝑐1) from the stack.

3. If cvtopnt1,nt2(𝑐1) is empty, then:

a. Trap.

4. Let 𝑐 be an element of cvtopnt1,nt2(𝑐1).

5. Push the value (nt2.const 𝑐) to the stack.

(nt1.const 𝑐1) (nt2.cvtop_nt1) →˓ (nt2.const 𝑐) if 𝑐 ∈ cvtopnt1,nt2(𝑐1)
(nt1.const 𝑐1) (nt2.cvtop_nt1) →˓ trap if cvtopnt1,nt2(𝑐1) = 𝜖

4.6. Instructions 173

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

4.6.12 Vector Instructions
Vector instructions that operate bitwise are handled as integer operations of respective bit width.

opv𝑁 (𝑖1, . . . , 𝑖𝑘) = iop𝑁 (𝑖1, . . . , 𝑖𝑘)

Most other vector instructions are defined in terms of numeric operators that are applied lane-wise according to
the given shape.

op𝑡x𝑁 (𝑛1, . . . , 𝑛𝑘) = lanes−1
𝑡x𝑁 (op𝑡(𝑖1, . . . , 𝑖𝑘)

*) (if 𝑖*1 = lanes𝑡x𝑁 (𝑛1) ∧ · · · ∧ 𝑖*𝑘 = lanes𝑡x𝑁 (𝑛𝑘)

Note

For example, the result of instruction i32x4.add applied to operands 𝑣1, 𝑣2 invokes addi32x4(𝑣1, 𝑣2), which
maps to lanes−1

i32x4(addi32(𝑖1, 𝑖2)
*), where 𝑖*1 and 𝑖*2 are sequences resulting from invoking lanesi32x4(𝑣1) and

lanesi32x4(𝑣2) respectively.

For non-deterministic operators this definition is generalized to sets:

op𝑡x𝑁 (𝑛1, . . . , 𝑛𝑘) = {lanes−1
𝑡x𝑁 (𝑖*) | 𝑖* ∈ ×(op𝑡(𝑖1, . . . , 𝑖𝑘)

*) ∧ 𝑖*1 = lanes𝑡x𝑁 (𝑛1) ∧ · · · ∧ 𝑖*𝑘 = lanes𝑡x𝑁 (𝑛𝑘)}

where ×{𝑥*}𝑁 transforms a sequence of 𝑁 sets of values into a set of sequences of 𝑁 values by computing the
set product:

×(𝑆1 . . . 𝑆𝑁) = {𝑥1 . . . 𝑥𝑁 | 𝑥1 ∈ 𝑆1 ∧ · · · ∧ 𝑥𝑁 ∈ 𝑆𝑁}

The remaining vector operators use individual definitions.

v128.const 𝑐

1. Push the value (v128.const 𝑐) to the stack.

Note

No formal reduction rule is required for this instruction, since const instructions are already values.

v128.vvunop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐1) from the stack.

3. Assert: Due to validation, |vvunopv128(𝑐1)| > 0.

4. Let 𝑐 be an element of vvunopv128(𝑐1).

5. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.vvunop) →˓ (v128.const 𝑐) if 𝑐 ∈ vvunopv128(𝑐1)

v128.vvbinop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐2) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐1) from the stack.

5. Assert: Due to validation, |vvbinopv128(𝑐1, 𝑐2)| > 0.

174 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Let 𝑐 be an element of vvbinopv128(𝑐1, 𝑐2).

7. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (v128.vvbinop) →˓ (v128.const 𝑐) if 𝑐 ∈ vvbinopv128(𝑐1, 𝑐2)

v128.vvternop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐3) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐2) from the stack.

5. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

6. Pop the value (v128.const 𝑐1) from the stack.

7. Assert: Due to validation, |vvternopv128(𝑐1, 𝑐2, 𝑐3)| > 0.

8. Let 𝑐 be an element of vvternopv128(𝑐1, 𝑐2, 𝑐3).

9. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (v128.const 𝑐3) (v128.vvternop) →˓ (v128.const 𝑐)
if 𝑐 ∈ vvternopv128(𝑐1, 𝑐2, 𝑐3)

v128.any_true

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐1) from the stack.

3. Let 𝑐 be ine|v128|(𝑐1, 0).

4. Push the value (i32.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.any_true) →˓ (i32.const 𝑐) if 𝑐 = ine|v128|(𝑐1, 0)

sh.vunop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐1) from the stack.

3. If vunopsh(𝑐1) is empty, then:

a. Trap.

4. Let 𝑐 be an element of vunopsh(𝑐1).

5. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (sh.vunop) →˓ (v128.const 𝑐) if 𝑐 ∈ vunopsh(𝑐1)
(v128.const 𝑐1) (sh.vunop) →˓ trap if vunopsh(𝑐1) = 𝜖

sh.vbinop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐2) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐1) from the stack.

5. If vbinopsh(𝑐1, 𝑐2) is empty, then:

a. Trap.

4.6. Instructions 175

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Let 𝑐 be an element of vbinopsh(𝑐1, 𝑐2).

7. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (sh.vbinop) →˓ (v128.const 𝑐) if 𝑐 ∈ vbinopsh(𝑐1, 𝑐2)
(v128.const 𝑐1) (v128.const 𝑐2) (sh.vbinop) →˓ trap if vbinopsh(𝑐1, 𝑐2) = 𝜖

sh.vternop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐3) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐2) from the stack.

5. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

6. Pop the value (v128.const 𝑐1) from the stack.

7. If vternopsh(𝑐1, 𝑐2, 𝑐3) is empty, then:

a. Trap.

8. Let 𝑐 be an element of vternopsh(𝑐1, 𝑐2, 𝑐3).

9. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (v128.const 𝑐3) (sh.vternop) →˓ (v128.const 𝑐) if 𝑐 ∈ vternopsh(𝑐1, 𝑐2, 𝑐3)
(v128.const 𝑐1) (v128.const 𝑐2) (v128.const 𝑐3) (sh.vternop) →˓ trap if vternopsh(𝑐1, 𝑐2, 𝑐3) = 𝜖

sh.vtestop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐1) from the stack.

3. Let 𝑖 be vtestopsh(𝑐1).

4. Push the value (i32.const 𝑖) to the stack.

(v128.const 𝑐1) (sh.vtestop) →˓ (i32.const 𝑖) if 𝑖 = vtestopsh(𝑐1)

sh.vrelop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐2) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐1) from the stack.

5. Let 𝑐 be vrelopsh(𝑐1, 𝑐2).

6. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (sh.vrelop) →˓ (v128.const 𝑐) if 𝑐 = vrelopsh(𝑐1, 𝑐2)

sh.vshiftop

1. Assert: Due to validation, a value of number type i32 is on the top of the stack.

2. Pop the value (i32.const 𝑖) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐1) from the stack.

5. Let 𝑐 be vshiftopsh(𝑐1, 𝑖).

176 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (i32.const 𝑖) (sh.vshiftop) →˓ (v128.const 𝑐) if 𝑐 = vshiftopsh(𝑐1, 𝑖)

sh.bitmask

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐1) from the stack.

3. Let 𝑐 be bitmasksh(𝑐1).

4. Push the value (i32.const 𝑐) to the stack.

(v128.const 𝑐1) (sh.bitmask) →˓ (i32.const 𝑐) if 𝑐 = bitmasksh(𝑐1)

sh.swizzlop

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐2) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐1) from the stack.

5. Let 𝑐 be swizzlopsh(𝑐1, 𝑐2).

6. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (sh.swizzlop) →˓ (v128.const 𝑐) if 𝑐 = swizzlopsh(𝑐1, 𝑐2)

sh.shuffle 𝑖*

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐2) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐1) from the stack.

5. Let 𝑐 be shufflesh(𝑖
*, 𝑐1, 𝑐2).

6. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (sh.shuffle 𝑖*) →˓ (v128.const 𝑐) if 𝑐 = shufflesh(𝑖
*, 𝑐1, 𝑐2)

i𝑁x𝑀.splat

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value (numtype0.const 𝑐1) from the stack.

3. Assert: Due to validation, numtype0 = unpack(i𝑁).

4. Let 𝑐 be lanes−1
i𝑁x𝑀 (packi𝑁 (𝑐1)

𝑀).

5. Push the value (v128.const 𝑐) to the stack.

(unpack(i𝑁).const 𝑐1) (i𝑁x𝑀.splat) →˓ (v128.const 𝑐) if 𝑐 = lanes−1
i𝑁x𝑀 (packi𝑁 (𝑐1)

𝑀)

4.6. Instructions 177

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

lanetypex𝑀.extract_lane_sx ′? 𝑖

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐1) from the stack.

3. If sx ′? is not defined, then:

a. Assert: Due to validation, lanetype is number type.

b. Assert: Due to validation, 𝑖 < |laneslanetypex𝑀 (𝑐1)|.

c. Let 𝑐2 be laneslanetypex𝑀 (𝑐1)[𝑖].

d. Push the value (lanetype.const 𝑐2) to the stack.

4. Else:

a. Assert: Due to validation, lanetype is packed type.

b. Let sx be sx ′?.

c. Assert: Due to validation, 𝑖 < |laneslanetypex𝑀 (𝑐1)|.

d. Let 𝑐2 be extendsx|lanetype|,32(laneslanetypex𝑀 (𝑐1)[𝑖]).

e. Push the value (i32.const 𝑐2) to the stack.

(v128.const 𝑐1) (ntx𝑀.extract_lane 𝑖) →˓ (nt .const 𝑐2) if 𝑐2 = lanesntx𝑀 (𝑐1)[𝑖]
(v128.const 𝑐1) (ptx𝑀.extract_lane_sx 𝑖) →˓ (i32.const 𝑐2) if 𝑐2 = extendsx|pt|,32(lanesptx𝑀 (𝑐1)[𝑖])

i𝑁x𝑀.replace_lane 𝑖

1. Assert: Due to validation, a value is on the top of the stack.

2. Pop the value (numtype0.const 𝑐2) from the stack.

3. Assert: Due to validation, numtype0 = unpack(i𝑁).

4. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

5. Pop the value (v128.const 𝑐1) from the stack.

6. Let 𝑐 be lanes−1
i𝑁x𝑀 (lanesi𝑁x𝑀 (𝑐1)[[𝑖] = packi𝑁 (𝑐2)]).

7. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (unpack(i𝑁).const 𝑐2) (i𝑁x𝑀.replace_lane 𝑖) →˓ (v128.const 𝑐)
if 𝑐 = lanes−1

i𝑁x𝑀 (lanesi𝑁x𝑀 (𝑐1)[[𝑖] = packi𝑁 (𝑐2)])

sh2.vextunop_sh1

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐1) from the stack.

3. Let 𝑐 be vextunopsh1,sh2
(𝑐1).

4. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (sh2.vextunop_sh1) →˓ (v128.const 𝑐) if vextunopsh1,sh2
(𝑐1) = 𝑐

sh2.vextbinop_sh1

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐2) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐1) from the stack.

5. Let 𝑐 be vextbinopsh1,sh2
(𝑐1, 𝑐2).

178 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (sh2.vextbinop_sh1) →˓ (v128.const 𝑐) if vextbinopsh1,sh2(𝑐1, 𝑐2) = 𝑐

sh2.vextternop_sh1

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐3) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐2) from the stack.

5. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

6. Pop the value (v128.const 𝑐1) from the stack.

7. Let 𝑐 be vextternopsh1,sh2
(𝑐1, 𝑐2, 𝑐3).

8. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (v128.const 𝑐3) (sh2.vextternop_sh1) →˓ (v128.const 𝑐) if vextternopsh1,sh2(𝑐1, 𝑐2, 𝑐3) = 𝑐

sh2.narrow_sh1_sx

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐2) from the stack.

3. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

4. Pop the value (v128.const 𝑐1) from the stack.

5. Let 𝑐 be narrowsx
sh1,sh2

(𝑐1, 𝑐2).

6. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (v128.const 𝑐2) (sh2.narrow_sh1_sx) →˓ (v128.const 𝑐) if 𝑐 = narrowsx
sh1,sh2

(𝑐1, 𝑐2)

sh2.vcvtop_sh1

1. Assert: Due to validation, a value of vector type v128 is on the top of the stack.

2. Pop the value (v128.const 𝑐1) from the stack.

3. Let 𝑐 be vcvtopsh1,sh2
(vcvtop, 𝑐1).

4. Push the value (v128.const 𝑐) to the stack.

(v128.const 𝑐1) (sh2.vcvtop_sh1) →˓ (v128.const 𝑐) if 𝑐 = vcvtopsh1,sh2
(vcvtop, 𝑐1)

4.6.13 Expressions
An expression is evaluated relative to a current frame pointing to its containing module instance.

eval_expr instr*

1. Execute the sequence instr*.

2. Pop the value val from the stack.

3. Return val .

𝑧; instr* →˓* 𝑧′; val* if 𝑧; instr* →˓* 𝑧′; val*

4.6. Instructions 179

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

Evaluation iterates this reduction rule until reaching a value. Expressions constituting function bodies are
executed during function invocation.

4.7 Modules
For modules, the execution semantics primarily defines instantiation, which allocates instances for a module and
its contained definitions, initializes memories and tables from contained data and element segments, and invokes
the start function if present. It also includes invocation of exported functions.

4.7.1 Allocation
New instances of tags, globals, memories, tables, functions, data segments, and element segments are allocated in
a store 𝑠, as defined by the following auxiliary functions.

Tags

alloctag(𝑠, tagtype)

1. Let taginst be the tag instance {type tagtype}.

2. Let 𝑎 be the length of 𝑠.tags.

3. Append taginst to 𝑠.tags.

4. Return 𝑎.
alloctag(𝑠, tagtype) = (𝑠⊕ {tags taginst}, |𝑠.tags|)

if taginst = {type tagtype}

Globals

allocglobal(𝑠, globaltype, val)

1. Let globalinst be the global instance {type globaltype, value val}.

2. Let 𝑎 be the length of 𝑠.globals.

3. Append globalinst to 𝑠.globals.

4. Return 𝑎.
allocglobal(𝑠, globaltype, val) = (𝑠⊕ {globals globalinst}, |𝑠.globals|)

if globalinst = {type globaltype, value val}

Memories

allocmem(𝑠, at [𝑖 .. 𝑗] page)

1. Let meminst be the memory instance {type (at [𝑖 .. 𝑗] page), bytes 0x00𝑖·64Ki}.

2. Let 𝑎 be the length of 𝑠.mems.

3. Append meminst to 𝑠.mems.

4. Return 𝑎.
allocmem(𝑠, at [𝑖 .. 𝑗] page) = (𝑠⊕ {mems meminst}, |𝑠.mems|)

if meminst = {type (at [𝑖 .. 𝑗] page), bytes (0x00)𝑖·64Ki}

180 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Tables

alloctable(𝑠, at [𝑖 .. 𝑗] rt , ref)

1. Let tableinst be the table instance {type (at [𝑖 .. 𝑗] rt), elem ref 𝑖}.

2. Let 𝑎 be the length of 𝑠.tables.

3. Append tableinst to 𝑠.tables.

4. Return 𝑎.
alloctable(𝑠, at [𝑖 .. 𝑗] rt , ref) = (𝑠⊕ {tables tableinst}, |𝑠.tables|)

if tableinst = {type (at [𝑖 .. 𝑗] rt), elem ref 𝑖}

Functions

allocfunc(𝑠, deftype, code,moduleinst)

1. Let funcinst be the function instance {type deftype, module moduleinst , code code}.

2. Let 𝑎 be the length of 𝑠.funcs.

3. Append funcinst to 𝑠.funcs.

4. Return 𝑎.
allocfunc(𝑠, deftype, code,moduleinst) = (𝑠⊕ {funcs funcinst}, |𝑠.funcs|)

if funcinst = {type deftype, module moduleinst , code code}

Data segments

allocdata(𝑠, ok, byte*)

1. Let datainst be the data instance {bytes byte*}.

2. Let 𝑎 be the length of 𝑠.datas.

3. Append datainst to 𝑠.datas.

4. Return 𝑎.
allocdata(𝑠, ok, byte*) = (𝑠⊕ {datas datainst}, |𝑠.datas|)

if datainst = {bytes byte*}

Element segments

allocelem(𝑠, elemtype, ref *)

1. Let eleminst be the element instance {type elemtype, elem ref *}.

2. Let 𝑎 be the length of 𝑠.elems.

3. Append eleminst to 𝑠.elems.

4. Return 𝑎.
allocelem(𝑠, elemtype, ref *) = (𝑠⊕ {elems eleminst}, |𝑠.elems|)

if eleminst = {type elemtype, elem ref *}

4.7. Modules 181

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Growing memories

growmem(meminst , 𝑛)

1. Let {type (at [𝑖 .. 𝑗] page), bytes 𝑏*} be the destructuring of meminst .

2. If |𝑏*|/(64Ki) + 𝑛 > 𝑗, then:

a. Fail.

3. Let 𝑖′ be |𝑏*|/(64Ki) + 𝑛.

4. Let meminst ′ be the memory instance {type (at [𝑖′ .. 𝑗] page), bytes 𝑏* 0x00𝑛·64Ki}.

5. Return meminst ′.
growmem(meminst , 𝑛) = meminst ′ if meminst = {type (at [𝑖 .. 𝑗] page), bytes 𝑏*}

∧ meminst ′ = {type (at [𝑖′ .. 𝑗] page), bytes 𝑏* (0x00)𝑛·64Ki}
∧ 𝑖′ = |𝑏*|/(64Ki) + 𝑛 ≤ 𝑗

Growing tables

growtable(tableinst , 𝑛, 𝑟)

1. Let {type (at [𝑖 .. 𝑗] rt), elem 𝑟′
*} be the destructuring of tableinst .

2. If |𝑟′*|+ 𝑛 > 𝑗, then:

a. Fail.

3. Let 𝑖′ be |𝑟′*|+ 𝑛.

4. Let tableinst ′ be the table instance {type (at [𝑖′ .. 𝑗] rt), elem 𝑟′
*
𝑟𝑛}.

5. Return tableinst ′.
growtable(tableinst , 𝑛, 𝑟) = tableinst ′ if tableinst = {type (at [𝑖 .. 𝑗] rt), elem 𝑟′

*}
∧ tableinst ′ = {type (at [𝑖′ .. 𝑗] rt), elem 𝑟′

*
𝑟𝑛}

∧ 𝑖′ = |𝑟′*|+ 𝑛 ≤ 𝑗

Modules

allocmodule(𝑠,module, externaddr*, val*g , ref
*
t , ref

*
e
*
)

1. Let (module type* import* tag* global* mem* table* func* data* elem* start? export*) be the destruc-
turing of module.

2. Let aa*
i be tags(externaddr*).

3. Let ga*
i be globals(externaddr*).

4. Let fa*
i be funcs(externaddr*).

5. Let ma*
i be mems(externaddr*).

6. Let ta*
i be tables(externaddr*).

7. Let fa* be |𝑠.funcs|+ 𝑖f for all 𝑖f from 0 to |func*| − 1.

8. Let tagtype* be the tag type sequence 𝜖.

9. For each tag in tag*, do:

a. Let (tag tagtype) be the destructuring of tag .

b. Append tagtype to tagtype*.

10. Let byte** be the byte sequence sequence 𝜖.

11. For each data in data*, do:

a. Let (data byte* datamode) be the destructuring of data .

182 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

b. Append byte* to byte*
*.

12. Let globaltype* be the global type sequence 𝜖.

13. For each global in global*, do:

a. Let (global globaltype exprg) be the destructuring of global .

b. Append globaltype to globaltype*.

14. Let tabletype* be the table type sequence 𝜖.

15. For each table in table*, do:

a. Let (table tabletype expr t) be the destructuring of table.

b. Append tabletype to tabletype*.

16. Let memtype* be the memory type sequence 𝜖.

17. For each mem in mem*, do:

a. Let (memory memtype) be the destructuring of mem .

b. Append memtype to memtype*.

18. Let dt* be alloctype*(type*).

19. Let elemtype* be the reference type sequence 𝜖.

20. For each elem in elem*, do:

a. Let (elem elemtype expr*e elemmode) be the destructuring of elem .

b. Append elemtype to elemtype*.

21. Let expr*f be the expression sequence 𝜖.

22. Let local** be the local sequence sequence 𝜖.

23. Let 𝑥* be the type index sequence 𝜖.

24. For each func in func*, do:

a. Let (func 𝑥 local* expr f) be the destructuring of func.

b. Append expr f to expr*f .

c. Append local* to local*
*.

d. Append 𝑥 to 𝑥*.

25. Let aa* be 𝜖.

26. For each tagtype in tagtype*, do:

a. Let aa be the tag address alloctag(𝑠, tagtype[:= dt*]).

b. Append aa to aa*.

27. Let ga* be 𝜖.

28. For each globaltype in globaltype* and valg in val*g , do:

a. Let ga be the global address allocglobal(𝑠, globaltype[:= dt*], valg).

b. Append ga to ga*.

29. Let ma* be 𝜖.

30. For each memtype in memtype*, do:

a. Let ma be the memory address allocmem(𝑠,memtype[:= dt*]).

b. Append ma to ma*.

31. Let ta* be 𝜖.

4.7. Modules 183

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

32. For each tabletype in tabletype* and ref t in ref *t , do:

a. Let ta be the table address alloctable(𝑠, tabletype[:= dt*], ref t).

b. Append ta to ta*.

33. Let xi* be 𝜖.

34. For each export in export*, do:

a. Let xi be the export instance allocexport(moduleinst , export).

b. Append xi to xi*.

35. Let da* be 𝜖.

36. For each byte* in byte*
*, do:

a. Let da be the data address allocdata(𝑠, ok, byte*).

b. Append da to da*.

37. Let ea* be 𝜖.

38. For each elemtype in elemtype* and ref *e in ref *e
*, do:

a. Let ea be the elem address allocelem(𝑠, elemtype[:= dt*], ref *e).

b. Append ea to ea*.

39. Letmoduleinst be the module instance {types dt*, tags aa*
i aa

, globals ga
i ga

, mems ma
i ma*, tables ta*

i ta
, funcs fa

i fa
, datas da, elems ea*, exports xi*}.

40. Let funcaddr*0 be 𝜖.

41. For each expr f in expr*f and local* in local*
* and 𝑥 in 𝑥*, do:

a. Let funcaddr0 be the function address allocfunc(𝑠, dt*[𝑥], func 𝑥 local* expr f ,moduleinst).

b. Append funcaddr0 to funcaddr*0.

42. Assert: Due to validation, funcaddr*0 = fa*.

43. Return moduleinst .

184 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

allocmodule(𝑠,module, externaddr*, val*g , ref
*
t , (ref

*
e)

*) = (𝑠7,moduleinst)
if module = module type* import* tag* global* mem* table* func* data* elem* start? export*

∧ tag* = (tag tagtype)*

∧ global* = (global globaltype exprg)
*

∧ mem* = (memory memtype)*

∧ table* = (table tabletype expr t)
*

∧ func* = (func 𝑥 local* expr f)
*

∧ data* = (data byte* datamode)*

∧ elem* = (elem elemtype expr*e elemmode)*

∧ aa*
i = tags(externaddr*)

∧ ga*
i = globals(externaddr*)

∧ ma*
i = mems(externaddr*)

∧ ta*
i = tables(externaddr*)

∧ fa*
i = funcs(externaddr*)

∧ dt* = alloctype*(type*)

∧ fa* = (|𝑠.funcs|+ 𝑖f)
𝑖f<|func*|

∧ (𝑠1, aa
) = alloctag(𝑠, tagtype[:= dt*]

*
)

∧ (𝑠2, ga
) = allocglobal(𝑠1, globaltype[:= dt*]

*
, val*g)

∧ (𝑠3,ma*) = allocmem*(𝑠2,memtype[:= dt*]
*
)

∧ (𝑠4, ta
) = alloctable(𝑠3, tabletype[:= dt*]

*
, ref *t)

∧ (𝑠5, da
) = allocdata(𝑠4, ok

|data*|, (byte*)*)
∧ (𝑠6, ea

) = allocelem(𝑠5, elemtype[:= dt*]
*
, (ref *e)

*)

∧ (𝑠7, fa
) = allocfunc(𝑠6, dt

[𝑥], (func 𝑥 local* expr f)
*,moduleinst |func

*|)
∧ xi* = allocexport*({tags aa*

i aa
, globals ga

i ga
, mems ma

i ma*, tables ta*
i ta

, funcs fa
i fa

}, export)
∧ moduleinst = {types dt*,

tags aa*
i aa

, globals ga
i ga

*,
mems ma*

i ma*,
tables ta*

i ta
, funcs fa

i fa
, datas da,

elems ea*, exports xi*}

Here, the notation allocx* is shorthand for multiple allocations of object kind 𝑋 , defined as follows:

allocX*(𝑠, 𝜖, 𝜖) = (𝑠, 𝜖)
allocX*(𝑠,𝑋 𝑋 ′*, 𝑌 𝑌 ′*) = (𝑠2, 𝑎 𝑎′

*
) if (𝑠1, 𝑎) = allocX(𝑋,𝑌, 𝑠,𝑋, 𝑌)

∧ (𝑠2, 𝑎
′*) = allocX*(𝑠1, 𝑋

′*, 𝑌 ′*)

For types, however, allocation is defined in terms of rolling and substitution of all preceding types to produce a list
of closed defined types:

alloctype*(type ′′
*
)

1. If type ′′* = 𝜖, then:

a. Return 𝜖.

2. Let type ′* type be type ′′*.

3. Let (type rectype) be the destructuring of type.

4. Let deftype ′* be alloctype*(type ′*).

5. Let 𝑥 be the length of deftype ′*.

6. Let deftype* be roll*𝑥(rectype)[:= deftype ′
*
].

7. Return deftype ′
*
deftype*.

alloctype*(𝜖) = 𝜖
alloctype*(type ′

*
type) = deftype ′

*
deftype* if deftype ′* = alloctype*(type ′

*
)

∧ type = type rectype
∧ deftype* = roll*𝑥(rectype)[:= deftype ′

*
]

∧ 𝑥 = |deftype ′*|

Finally, export instances are produced with the help of the following definition:

4.7. Modules 185

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

allocexport(moduleinst , export name externidx)

1. If externidx is some tag tagidx , then:

a. Let (tag 𝑥) be the destructuring of externidx .

b. Return {name name, addr (tag moduleinst .tags[𝑥])}.

2. If externidx is some global globalidx , then:

a. Let (global 𝑥) be the destructuring of externidx .

b. Return {name name, addr (global moduleinst .globals[𝑥])}.

3. If externidx is some memory memidx , then:

a. Let (memory 𝑥) be the destructuring of externidx .

b. Return {name name, addr (mem moduleinst .mems[𝑥])}.

4. If externidx is some table tableidx , then:

a. Let (table 𝑥) be the destructuring of externidx .

b. Return {name name, addr (table moduleinst .tables[𝑥])}.

5. Assert: Due to validation, externidx is some func funcidx .

6. Let (func 𝑥) be the destructuring of externidx .

7. Return {name name, addr (func moduleinst .funcs[𝑥])}.

allocexport(moduleinst , export name (tag 𝑥)) = {name name, addr (tag moduleinst .tags[𝑥])}
allocexport(moduleinst , export name (global 𝑥)) = {name name, addr (global moduleinst .globals[𝑥])}
allocexport(moduleinst , export name (memory 𝑥)) = {name name, addr (mem moduleinst .mems[𝑥])}
allocexport(moduleinst , export name (table 𝑥)) = {name name, addr (table moduleinst .tables[𝑥])}
allocexport(moduleinst , export name (func 𝑥)) = {name name, addr (func moduleinst .funcs[𝑥])}

Note

The definition of module allocation is mutually recursive with the allocation of its associated functions, because
the resulting module instance is passed to the allocators as an argument, in order to form the necessary closures.
In an implementation, this recursion is easily unraveled by mutating one or the other in a secondary step.

4.7.2 Instantiation
Given a store 𝑠, a module is instantiated with a list of external addresses externaddr* supplying the required
imports as follows.

Instantiation checks that the module is valid and the provided imports match the declared types, and may fail with
an error otherwise. Instantiation can also result in an exception or trap when initializing a table or memory from
an active segment or when executing the start function. It is up to the embedder to define how such conditions are
reported.

instantiate(𝑠,module, externaddr*)

1. If module is not valid, then:

a. Fail.

2. Let xt*i → xt*e be the destructuring of the type of module.

3. Let (module type* import* tag* global* mem* table* func* data* elem* start? export*) be the destruc-
turing of module.

4. If |externaddr*| ̸= |xt*i |, then:

a. Fail.

186 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5. For all externaddr in externaddr*, and corresponding xt i in xt*i :

a. If externaddr is not valid with type xt i, then:

1) Fail.

6. Let instr*d be the concatenation of rundata𝑖d(data
*[𝑖d])

𝑖d<|data*|.

7. Let instr*e be the concatenation of runelem𝑖e(elem
*[𝑖e])

𝑖e<|elem*|.

8. Letmoduleinst0 be the module instance {types alloctype*(type*), globals globals(externaddr*), funcs funcs(externaddr*) (|𝑠.funcs|+ 𝑖f)
𝑖f<|func*|}.

9. Let expr*t be the expression sequence 𝜖.

10. For each table in table*, do:

a. Let (table tabletype expr t) be the destructuring of table.

b. Append expr t to expr*t .

11. Let expr*g be the expression sequence 𝜖.

12. Let globaltype* be the global type sequence 𝜖.

13. For each global in global*, do:

a. Let (global globaltype exprg) be the destructuring of global .

b. Append exprg to expr*g .

c. Append globaltype to globaltype*.

14. Let expr*e
* be the expression sequence sequence 𝜖.

15. For each elem in elem*, do:

a. Let (elem reftype expr*e elemmode) be the destructuring of elem .

b. Append expr*e to expr*e
*.

16. Let 𝑧 be the state (𝑠, {module moduleinst0}).

17. Let 𝐹 be the frame 𝑧.frame.

18. Push the frame 𝐹 .

19. Let val*g be evalglobal*(𝑧, globaltype*, expr*g).

20. Pop the frame 𝑓 from the stack.

21. Let 𝑓 be the frame 𝑓 .

22. Push the frame 𝑓 .

23. Let ref *t be the reference value sequence 𝜖.

24. For each expr t in expr*t , do:

a. Let ref t be the result of evaluating expr t with state 𝑧.

b. Append ref t to ref *t .

25. Pop the frame 𝑓 from the stack.

26. Let 𝑓 be the frame 𝑓 .

27. Push the frame 𝑓 .

28. Let ref *e
* be the reference value sequence sequence 𝜖.

29. For each expr*e in expr*e
*, do:

a. Let ref *e be the reference value sequence 𝜖.

b. For each expr e in expr*e , do:

1) Let ref e be the result of evaluating expr e with state 𝑧.

4.7. Modules 187

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

2) Append ref e to ref *e .

c. Append ref *e to ref *e
*.

30. Pop the frame 𝑓 from the stack.

31. Let moduleinst be allocmodule(𝑠,module, externaddr*, val*g , ref
*
t , ref

*
e
*
).

32. Let 𝐹 be the frame {module moduleinst}.

33. Push the frame 𝐹 .

34. Execute the sequence instr*e .

35. Execute the sequence instr*d .

36. If start? is defined, then:

a. Let (start 𝑥) be start?.

b. Let instr s be the instruction (call 𝑥).

c. Execute the instruction instr s.

37. Pop the frame 𝐹 from the stack.

38. Return moduleinst .
instantiate(𝑠,module, externaddr*) = 𝑠′; {module moduleinst}; instr*e instr*d instr?s

if ⊢module : xt*i → xt*e
∧ (𝑠 ⊢ externaddr : xt i)

*

∧ module = module type* import* tag* global* mem* table* func* data* elem* start? export*

∧ global* = (global globaltype exprg)
*

∧ table* = (table tabletype expr t)
*

∧ data* = (data byte* datamode)*

∧ elem* = (elem reftype expr*e elemmode)*

∧ start? = (start 𝑥)?

∧ moduleinst0 = {types alloctype*(type*),
globals globals(externaddr*),
funcs funcs(externaddr*) (|𝑠.funcs|+ 𝑖f)

𝑖f<|func*|}
∧ 𝑧 = 𝑠; {module moduleinst0}
∧ (𝑧′, val*g) = evalglobal*(𝑧, globaltype*, expr*g)
∧ (𝑧′; expr t →˓* 𝑧′; ref t)

*

∧ (𝑧′; expr e →˓* 𝑧′; ref e)
**

∧ (𝑠′,moduleinst) = allocmodule(𝑠,module, externaddr*, val*g , ref
*
t , (ref

*
e)

*)

∧ instr*d =
⨁︀

rundata𝑖d(data
*[𝑖d])

𝑖d<|data*|

∧ instr*e =
⨁︀

runelem𝑖e(elem
*[𝑖e])

𝑖e<|elem*|

∧ instr?s = (call 𝑥)?

where:

evalglobal*(𝑧, globaltype*, expr ′′
*
)

1. If expr ′′* = 𝜖, then:

a. Assert: Due to validation, globaltype* = 𝜖.

b. Return 𝜖.

2. Else:

a. Let expr expr ′
* be expr ′′*.

b. Assert: Due to validation, |globaltype*| ≥ 1.

c. Let gt gt ′* be globaltype*.

d. Let (𝑠, 𝑓) be the destructuring of 𝑧.

188 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

e. Let val be the result of evaluating expr with state 𝑧.

f. Let 𝑎 be allocglobal(𝑠, gt , val).

g. Append 𝑎 to 𝑓.module.globals.

h. Let val ′* be evalglobal*((𝑠, 𝑓), gt ′*, expr ′*).

i. Return val val ′
*.

evalglobal*(𝑧, 𝜖, 𝜖) = (𝑧, 𝜖)
evalglobal*(𝑧, gt gt ′

*
, expr expr ′

*
) = (𝑧′, val val ′

*
)

if 𝑧; expr →˓* 𝑧; val
∧ 𝑧 = 𝑠; 𝑓
∧ (𝑠′, 𝑎) = allocglobal(𝑠, gt , val)
∧ (𝑧′, val ′

*
) = evalglobal*((𝑠′; 𝑓 [.module.globals =⊕ 𝑎]), gt ′

*
, expr ′

*
)

rundata𝑥(data 𝑏𝑛 datamode)

1. If datamode = passive, then:

a. Return 𝜖.

2. Assert: Due to validation, datamode is some active memidx expr .

3. Let (active 𝑦 instr*) be the destructuring of datamode.

4. Return instr* (i32.const 0) (i32.const 𝑛) (memory.init 𝑦 𝑥) (data.drop 𝑥).

runelem𝑥(elem rt 𝑒𝑛 elemmode)

1. If elemmode = passive, then:

a. Return 𝜖.

2. If elemmode = declare, then:

a. Return (elem.drop 𝑥).

3. Assert: Due to validation, elemmode is some active tableidx expr .

4. Let (active 𝑦 instr*) be the destructuring of elemmode.

5. Return instr* (i32.const 0) (i32.const 𝑛) (table.init 𝑦 𝑥) (elem.drop 𝑥).

rundata𝑥(data 𝑏
𝑛 (passive)) = 𝜖

rundata𝑥(data 𝑏
𝑛 (active 𝑦 instr*)) =

instr* (i32.const 0) (i32.const 𝑛) (memory.init 𝑦 𝑥) (data.drop 𝑥)

runelem𝑥(elem rt 𝑒𝑛 (passive)) = 𝜖
runelem𝑥(elem rt 𝑒𝑛 (declare)) = (elem.drop 𝑥)
runelem𝑥(elem rt 𝑒𝑛 (active 𝑦 instr*)) =
instr* (i32.const 0) (i32.const 𝑛) (table.init 𝑦 𝑥) (elem.drop 𝑥)

Note

Checking import types assumes that the module instance has already been allocated to compute the respective
closed defined types. However, this forward reference merely is a way to simplify the specification. In practice,
implementations will likely allocate or canonicalize types beforehand, when compiling a module, in a stage
before instantiation and before imports are checked.

Similarly, module allocation and the evaluation of global and table initializers as well as element segments
are mutually recursive because the global initialization values val*g , ref t, and element segment contents ref *e

*

are passed to the module allocator while depending on the module instance moduleinst and store 𝑠′ returned
by allocation. Again, this recursion is just a specification device. In practice, the initialization values can be
determined beforehand by staging module allocation such that first, the module’s own function instances are
pre-allocated in the store, then the initializer expressions are evaluated in order, allocating globals on the way,

4.7. Modules 189

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

then the rest of the module instance is allocated, and finally the new function instances’ module fields are set to
that module instance. This is possible because validation ensures that initialization expressions cannot actually
call a function, only take their reference.

All failure conditions are checked before any observable mutation of the store takes place. Store mutation is
not atomic; it happens in individual steps that may be interleaved with other threads.

Evaluation of constant expressions does not affect the store.

4.7.3 Invocation
invoke(𝑠, funcaddr , val*)

1. Assert: Due to validation, the expansion of 𝑠.funcs[funcaddr].type is some func resulttype → resulttype.

2. Let (func 𝑡*1 → 𝑡*2) be the destructuring of the expansion of 𝑠.funcs[funcaddr].type.

3. If |𝑡*1| ̸= |val*|, then:

a. Fail.

4. For all 𝑡1 in 𝑡*1, and corresponding val in val*:

a. If val is not valid with type 𝑡1, then:

1) Fail.

5. Let 𝑘 be the length of 𝑡*2.

6. Let 𝐹 be the frame {module {}} whose arity is 𝑘.

7. Push the frame 𝐹 .

8. Push the values val* to the stack.

9. Push the value (ref.func funcaddr) to the stack.

10. Execute the instruction (call_ref 𝑠.funcs[funcaddr].type).

11. Pop the values val ′𝑘 from the stack.

12. Pop the frame 𝐹 from the stack.

13. Return val ′
𝑘.

Once a module has been instantiated, any exported function can be invoked externally via its function address
funcaddr in the store 𝑠 and an appropriate list val* of argument values.

Invocation may fail with an error if the arguments do not fit the function type. Invocation can also result in an
exception or trap. It is up to the embedder to define how such conditions are reported.

Note

If the embedder API performs type checks itself, either statically or dynamically, before performing an invoca-
tion, then no failure other than traps or exceptions can occur.

The following steps are performed:

1. Assert: 𝑆.funcs[funcaddr] exists.

2. Let funcinst be the function instance 𝑆.funcs[funcaddr].

3. Let func [𝑡𝑛1] → [𝑡𝑚2] be the composite type expand(funcinst .type).

4. If the length |val*| of the provided argument values is different from the number 𝑛 of expected arguments,
then:

a. Fail.

190 Chapter 4. Execution

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5. For each value type 𝑡𝑖 in 𝑡𝑛1 and corresponding value 𝑣𝑎𝑙𝑖 in val*, do:

a. If val 𝑖 is not valid with value type 𝑡𝑖, then:

i. Fail.

6. Let 𝐹 be the dummy frame {module {}, locals 𝜖}.

7. Push the frame 𝐹 to the stack.

8. Push the values val* to the stack.

9. Invoke the function instance at address funcaddr .

Once the function has returned, the following steps are executed:

1. Assert: due to validation, 𝑚 values are on the top of the stack.

2. Pop val𝑚res from the stack.

3. Assert: due to validation, the frame 𝐹 is now on the top of the stack.

4. Pop the frame 𝐹 from the stack.

The values val𝑚res are returned as the results of the invocation.

invoke(𝑠, funcaddr , val*) = 𝑠; {module {}}; val* (ref.func funcaddr) (call_ref 𝑠.funcs[funcaddr].type)
if 𝑠.funcs[funcaddr].type ≈ func 𝑡*1 → 𝑡*2
∧ (𝑠 ⊢ val : 𝑡1)

*

4.7. Modules 191

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

192 Chapter 4. Execution

CHAPTER 5

Binary Format

5.1 Conventions
The binary format for WebAssembly modules is a dense linear encoding of their abstract syntax.28

The format is defined by an attribute grammar whose only terminal symbols are bytes. A byte sequence is a
well-formed encoding of a module if and only if it is generated by the grammar.

Each production of this grammar has exactly one synthesized attribute: the abstract syntax that the respective byte
sequence encodes. Thus, the attribute grammar implicitly defines a decoding function (i.e., a parsing function for
the binary format).

Except for a few exceptions, the binary grammar closely mirrors the grammar of the abstract syntax.

Note

Some phrases of abstract syntax have multiple possible encodings in the binary format. For example, numbers
may be encoded as if they had optional leading zeros. Implementations of decoders must support all possible
alternatives; implementations of encoders can pick any allowed encoding.

The recommended extension for files containing WebAssembly modules in binary format is “.wasm” and the rec-
ommended Media Type27 is “application/wasm”.

5.1.1 Grammar
The following conventions are adopted in defining grammar rules for the binary format. They mirror the conven-
tions used for abstract syntax. In order to distinguish symbols of the binary syntax from symbols of the abstract
syntax, typewriter font is adopted for the former.

• Terminal symbols are bytes expressed in hexadecimal notation: 0x0F.

• Nonterminal symbols are written in typewriter font: valtype, instr.

• 𝐵𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝐵.

• 𝐵* is a possibly empty sequence of iterations of 𝐵. (This is a shorthand for 𝐵𝑛 used where 𝑛 is not relevant.)
28 Additional encoding layers – for example, introducing compression – may be defined on top of the basic representation defined here.

However, such layers are outside the scope of the current specification.
27 https://www.iana.org/assignments/media-types/media-types.xhtml

193

https://www.iana.org/assignments/media-types/media-types.xhtml

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• 𝐵? is an optional occurrence of 𝐵. (This is a shorthand for 𝐵𝑛 where 𝑛 ≤ 1.)

• 𝑥:𝐵 denotes the same language as the nonterminal𝐵, but also binds the variable 𝑥 to the attribute synthesized
for 𝐵. A pattern may also be used instead of a variable, e.g., 7:𝐵.

• Productions are written sym ::= 𝐵1 ⇒ 𝐴1 | . . . | 𝐵𝑛 ⇒ 𝐴𝑛, where each 𝐴𝑖 is the attribute that is syn-
thesized for sym in the given case, usually from attribute variables bound in 𝐵𝑖.

• Large productions may be split into multiple definitions, indicated by ending the first one with explicit el-
lipses, sym ::= 𝐵1 | . . ., and starting continuations with ellipses, sym ::= . . . | 𝐵2.

• Some productions are augmented by side conditions in parentheses, which restrict the applicability of the
production. They provide a shorthand for a combinatorial expansion of the production into many separate
cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production (in the syntax or
in an attribute), then all those occurrences must have the same instantiation. (This is a shorthand for a side
condition requiring multiple different variables to be equal.)

Note

For example, the binary grammar for number types is given as follows:

numtype ::= 0x7C ⇒ f64
| 0x7D ⇒ f32
| 0x7E ⇒ i64
| 0x7F ⇒ i32

Consequently, the byte 0x7F encodes the type i32, 0x7E encodes the type i64, and so forth. No other byte value
is allowed as the encoding of a number type.

The binary grammar for limits is defined as follows:

limits𝑁 ::= 0x00 𝑛:u64 ⇒ (i32, [𝑛 .. 2𝑁 − 1])
| 0x01 𝑛:u64 𝑚:u64 ⇒ (i32, [𝑛 ..𝑚])
| 0x04 𝑛:u64 ⇒ (i64, [𝑛 .. 2𝑁 − 1])
| 0x05 𝑛:u64 𝑚:u64 ⇒ (i64, [𝑛 ..𝑚])

That is, a limits pair is encoded as either the byte 0x00 followed by the encoding of a u64 value, or the byte 0x01
followed by two such encodings. The variables 𝑛 and 𝑚 name the attributes of the respective u64 nonterminals,
which in this case are the actual unsigned integers those decode into. The attribute of the complete production
then is the abstract syntax for the limit, expressed in terms of the former values.

The variable 𝑁 is a parameter to the grammer symbol that can be instantiated differently at each use site. In
this example, it controls the value range of the limits.

5.1.2 Auxiliary Notation
When dealing with binary encodings the following notation is also used:

• 𝜖 denotes the empty byte sequence.

• ||B|| is the length of the byte sequence generated from the production B in a derivation.

5.1.3 Lists
Lists are encoded with their u32 length followed by the encoding of their element sequence.

list(X) ::= 𝑛:u32 (el :X)𝑛 ⇒ el𝑛

194 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.2 Values

5.2.1 Bytes
Bytes encode themselves.

byte ::= 0x00 | . . . | 0xFF

5.2.2 Integers
All integers are encoded using the LEB12829 variable-length integer encoding, in either unsigned or signed variant.

Unsigned integers are encoded in unsigned LEB12830 format. As an additional constraint, the total number of
bytes encoding a u𝑁 value must not exceed ceil(𝑁/7) bytes.

u𝑁 ::= 𝑛:byte ⇒ 𝑛 if 𝑛 < 27 ∧ 𝑛 < 2𝑁

| 𝑛:byte 𝑚:u(𝑁 − 7) ⇒ 27 ·𝑚+ (𝑛− 27) if 𝑛 ≥ 27 ∧𝑁 > 7

Signed integers are encoded in signed LEB12831 format, which uses a two’s complement representation. As an
additional constraint, the total number of bytes encoding an s𝑁 value must not exceed ceil(𝑁/7) bytes.

s𝑁 ::= 𝑛:byte ⇒ 𝑛 if 𝑛 < 26 ∧ 𝑛 < 2𝑁−1

| 𝑛:byte ⇒ 𝑛− 27 if 26 ≤ 𝑛 < 27 ∧ 𝑛 ≥ 27 − 2𝑁−1

| 𝑛:byte 𝑖:u(𝑁 − 7) ⇒ 27 · 𝑖+ (𝑛− 27) if 𝑛 ≥ 27 ∧𝑁 > 7

Uninterpreted integers are encoded as signed integers.

i𝑁 ::= 𝑖:s𝑁 ⇒ signed−1
𝑁 (𝑖)

Note

The side conditions 𝑁 > 7 in the productions for non-terminal bytes of the u𝑁 and s𝑁 encodings restrict the
encoding’s length. However, “trailing zeros” are still allowed within these bounds. For example, 0x03 and
0x83 0x00 are both well-formed encodings for the value 3 as a u8 . Similarly, either of 0x7E and 0xFE 0x7F

and 0xFE 0xFF 0x7F are well-formed encodings of the value −2 as an s16 .

The side conditions on the value 𝑛 of terminal bytes further enforce that any unused bits in these bytes must be 0
for positive values and 1 for negative ones. For example, 0x83 0x10 is malformed as a u8 encoding. Similarly,
both 0x83 0x3E and 0xFF 0x7B are malformed as s8 encodings.

5.2.3 Floating-Point
Floating-point values are encoded directly by their IEEE 75432 (Section 3.4) bit pattern in little endian33 byte order:

f𝑁 ::= 𝑏*:byte𝑁/8 ⇒ bytes−1
f𝑁 (𝑏*)

29 https://en.wikipedia.org/wiki/LEB128
30 https://en.wikipedia.org/wiki/LEB128#Unsigned_LEB128
31 https://en.wikipedia.org/wiki/LEB128#Signed_LEB128
32 https://ieeexplore.ieee.org/document/8766229
33 https://en.wikipedia.org/wiki/Endianness#Little-endian

5.2. Values 195

https://en.wikipedia.org/wiki/LEB128
https://en.wikipedia.org/wiki/LEB128#Unsigned_LEB128
https://en.wikipedia.org/wiki/LEB128#Signed_LEB128
https://ieeexplore.ieee.org/document/8766229
https://en.wikipedia.org/wiki/Endianness#Little-endian

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.2.4 Names
Names are encoded as a list of bytes containing the Unicode34 (Section 3.9) UTF-8 encoding of the name’s character
sequence.

name ::= 𝑏*:list(byte) ⇒ name if utf8(name) = 𝑏*

The auxiliary utf8 function expressing this encoding is defined as follows:

utf8(ch*) =
⨁︀

utf8(ch)*

utf8(ch) = 𝑏 if ch < U+80
∧ ch = 𝑏

utf8(ch) = 𝑏1 𝑏2 if U+80 ≤ ch < U+0800
∧ ch = 26 · (𝑏1 − 0xC0) + cont(𝑏2)

utf8(ch) = 𝑏1 𝑏2 𝑏3 if U+0800 ≤ ch < U+D800 ∨U+E000 ≤ ch < U+10000
∧ ch = 212 · (𝑏1 − 0xE0) + 26 · cont(𝑏2) + cont(𝑏3)

utf8(ch) = 𝑏1 𝑏2 𝑏3 𝑏4 if U+10000 ≤ ch < U+11000
∧ ch = 218 · (𝑏1 − 0xF0) + 212 · cont(𝑏2) + 26 · cont(𝑏3) + cont(𝑏4)

where cont(𝑏) = 𝑏− 0x80 if (0x80 < 𝑏 < 0xC0)

Note

Unlike in some other formats, name strings are not 0-terminated.

5.3 Types

Note

In some places, possible types include both type constructors or types denoted by type indices. Thus, the
binary format for type constructors corresponds to the encodings of small negative s𝑁 values, such that they
can unambiguously occur in the same place as (positive) type indices.

5.3.1 Number Types
Number types are encoded by a single byte.

numtype ::= 0x7C ⇒ f64
| 0x7D ⇒ f32
| 0x7E ⇒ i64
| 0x7F ⇒ i32

5.3.2 Vector Types
Vector types are also encoded by a single byte.

vectype ::= 0x7B ⇒ v128

34 https://www.unicode.org/versions/latest/

196 Chapter 5. Binary Format

https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.3.3 Heap Types
Heap types are encoded as either a single byte, or as a type index encoded as a positive signed integer.

absheaptype ::= 0x68 ⇒ cont
| 0x69 ⇒ exn
| 0x6A ⇒ array
| 0x6B ⇒ struct
| 0x6C ⇒ i31
| 0x6D ⇒ eq
| 0x6E ⇒ any
| 0x6F ⇒ extern
| 0x70 ⇒ func
| 0x71 ⇒ none
| 0x72 ⇒ noextern
| 0x73 ⇒ nofunc
| 0x74 ⇒ noexn
| 0x75 ⇒ nocont

heaptype ::= ht :absheaptype ⇒ ht
| 𝑥:s33 ⇒ 𝑥 if 𝑥 ≥ 0

Note

The heap type bot cannot occur in a module.

5.3.4 Reference Types
Reference types are either encoded by a single byte followed by a heap type, or, as a short form, directly as an
abstract heap type.

reftype ::= 0x63 ht :heaptype ⇒ ref null ht
| 0x64 ht :heaptype ⇒ ref ht
| ht :absheaptype ⇒ ref null ht

5.3.5 Value Types
Value types are encoded with their respective encoding as a number type, vector type, or reference type.

valtype ::= nt :numtype ⇒ nt
| vt :vectype ⇒ vt
| rt :reftype ⇒ rt

Note

The value type bot cannot occur in a module.

Value types can occur in contexts where type indices are also allowed, such as in the case of block types. Thus,
the binary format for types corresponds to the signed LEB12835 encoding of small negative s𝑁 values, so that
they can coexist with (positive) type indices in the future.

5.3.6 Result Types
Result types are encoded by the respective lists of value types.

resulttype ::= 𝑡*:list(valtype) ⇒ 𝑡*

35 https://en.wikipedia.org/wiki/LEB128#Signed_LEB128

5.3. Types 197

https://en.wikipedia.org/wiki/LEB128#Signed_LEB128

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.3.7 Composite Types
Composite types are encoded by a distinct byte followed by a type encoding of the respective form.

mut ::= 0x00 ⇒ 𝜖
| 0x01 ⇒ mut

comptype ::= 0x5D tu:heaptype ⇒ cont tu
| 0x5E ft :fieldtype ⇒ array ft
| 0x5F ft*:list(fieldtype) ⇒ struct ft*

| 0x60 𝑡*1:resulttype 𝑡*2:resulttype ⇒ func 𝑡*1 → 𝑡*2

fieldtype ::= zt :storagetype mut?:mut ⇒ mut? zt

storagetype ::= 𝑡:valtype ⇒ 𝑡
| pt :packtype ⇒ pt

packtype ::= 0x77 ⇒ i16
| 0x78 ⇒ i8

5.3.8 Recursive Types
Recursive types are encoded by the byte 0x4E followed by a list of sub types. Additional shorthands are recognized
for unary recursions and sub types without super types.

rectype ::= 0x4E st*:list(subtype) ⇒ rec st*

| st :subtype ⇒ rec st

subtype ::= 0x4F 𝑥*:list(typeidx) ct :comptype ⇒ sub final 𝑥* ct
| 0x50 𝑥*:list(typeidx) ct :comptype ⇒ sub 𝑥* ct
| ct :comptype ⇒ sub final 𝜖 ct

5.3.9 Limits
Limits are encoded with a preceding flag indicating whether a maximum is present, and a flag for the address type.

limits𝑁 ::= 0x00 𝑛:u64 ⇒ (i32, [𝑛 .. 2𝑁 − 1])
| 0x01 𝑛:u64 𝑚:u64 ⇒ (i32, [𝑛 ..𝑚])
| 0x04 𝑛:u64 ⇒ (i64, [𝑛 .. 2𝑁 − 1])
| 0x05 𝑛:u64 𝑚:u64 ⇒ (i64, [𝑛 ..𝑚])

5.3.10 Tag Types
Tag types are encoded by a type index denoting a function type.

tagtype ::= 0x00 𝑥:typeidx ⇒ 𝑥

Note

In future versions of WebAssembly, the preceding zero byte may encode additional attributes.

5.3.11 Global Types
Global types are encoded by their value type and a flag for their mutability.

globaltype ::= 𝑡:valtype mut?:mut ⇒ mut? 𝑡

198 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.3.12 Memory Types
Memory types are encoded with their limits.

memtype ::= (at , lim):limits|at|/(64Ki) ⇒ at lim page

5.3.13 Table Types
Table types are encoded with their limits and the encoding of their element reference type.

tabletype ::= rt :reftype (at , lim):limits|at| ⇒ at lim rt

5.3.14 External Types
External types are encoded by a distiguishing byte followed by an encoding of the respective form of type.

externtype ::= 0x00 𝑥:typeidx ⇒ func 𝑥
| 0x01 tt :tabletype ⇒ table tt
| 0x02 mt :memtype ⇒ mem mt
| 0x03 gt :globaltype ⇒ global gt
| 0x04 jt :tagtype ⇒ tag jt

5.4 Instructions
Instructions are encoded by opcodes. Each opcode is represented by a single byte, and is followed by the instruc-
tion’s immediate arguments, where present. The only exception are structured control instructions, which consist
of several opcodes bracketing their nested instruction sequences.

Note

The byte codes chosen to encode instructions are historical and do not follow a consistent pattern. In this section,
instructions are hence not presented in opcode order, but instead grouped consistently with other sections in
this document. An instruction index ordered by opcode can be found in the Appendix.

Gaps in the byte code ranges are reserved for future extensions.

5.4.1 Parametric Instructions
Parametric instructions are represented by single byte codes, possibly followed by a type annotation.

instr ::= 0x00 ⇒ unreachable
| 0x01 ⇒ nop
| 0x1A ⇒ drop
| 0x1B ⇒ select
| 0x1C 𝑡*:list(valtype) ⇒ select 𝑡*

| . . .

5.4.2 Control Instructions
Control instructions have varying encodings. For structured instructions, the instruction sequences forming nested
blocks are delimited with explicit opcodes for end and else.

5.4. Instructions 199

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Block types are encoded in special compressed form, by either the byte 0x40 indicating the empty type, as a single
value type, or as a type index encoded as a positive signed integer.

blocktype ::= 0x40 ⇒ 𝜖
| 𝑡:valtype ⇒ 𝑡
| 𝑖:s33 ⇒ 𝑖 if 𝑖 ≥ 0

instr ::= . . .
| 0x02 bt :blocktype (in:instr)* 0x0B ⇒ block bt in*

| 0x03 bt :blocktype (in:instr)* 0x0B ⇒ loop bt in*

| 0x04 bt :blocktype (in:instr)* 0x0B ⇒ if bt in* else 𝜖
| 0x04 bt :blocktype (in1:instr)

*

0x05 (in2:instr)
* 0x0B

⇒ if bt in*
1 else in

*
2

| 0x08 𝑥:tagidx ⇒ throw 𝑥
| 0x0A ⇒ throw_ref
| 0x0C 𝑙:labelidx ⇒ br 𝑙
| 0x0D 𝑙:labelidx ⇒ br_if 𝑙
| 0x0E 𝑙*:list(labelidx) 𝑙𝑛:labelidx ⇒ br_table 𝑙* 𝑙𝑛
| 0x0F ⇒ return
| 0x10 𝑥:funcidx ⇒ call 𝑥
| 0x11 𝑦:typeidx 𝑥:tableidx ⇒ call_indirect 𝑥 𝑦
| 0x12 𝑥:funcidx ⇒ return_call 𝑥
| 0x13 𝑦:typeidx 𝑥:tableidx ⇒ return_call_indirect 𝑥 𝑦
| 0x1F bt :blocktype 𝑐*:list(catch) (in:instr)* 0x0B ⇒ try_table bt 𝑐* in*

| 0xE0 𝑥:typeidx ⇒ cont.new 𝑥
| 0xE1 𝑥:typeidx 𝑦:typeidx ⇒ cont.bind 𝑥 𝑦
| 0xE2 𝑥:tagidx ⇒ suspend 𝑥
| 0xE3 𝑥:typeidx hdl*:list(hdl) ⇒ resume 𝑥 hdl*

| 0xE4 𝑥:typeidx 𝑦:tagidx hdl*:list(hdl) ⇒ resume_throw 𝑥 𝑦 hdl*

| 0xE5 𝑥:typeidx 𝑦:tagidx ⇒ switch 𝑥 𝑦
| . . .

catch ::= 0x00 𝑥:tagidx 𝑙:labelidx ⇒ catch 𝑥 𝑙
| 0x01 𝑥:tagidx 𝑙:labelidx ⇒ catch_ref 𝑥 𝑙
| 0x02 𝑙:labelidx ⇒ catch_all 𝑙
| 0x03 𝑙:labelidx ⇒ catch_all_ref 𝑙

hdl ::= 0x00 𝑥:typeidx 𝑦:labelidx ⇒ on 𝑥 𝑦
| 0x01 𝑥:typeidx ⇒ on 𝑥 switch

Note

The else opcode 0x05 in the encoding of an if instruction can be omitted if the following instruction sequence
is empty.

Unlike any other occurrence, the type index in a block type is encoded as a positive signed integer, so that its
signed LEB128 bit pattern cannot collide with the encoding of value types or the special code 0x40, which
correspond to the LEB128 encoding of negative integers. To avoid any loss in the range of allowed indices, it
is treated as a 33 bit signed integer.

200 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.4.3 Variable Instructions
Variable instructions are represented by byte codes followed by the encoding of the respective index.

instr ::= . . .
| 0x20 𝑥:localidx ⇒ local.get 𝑥
| 0x21 𝑥:localidx ⇒ local.set 𝑥
| 0x22 𝑥:localidx ⇒ local.tee 𝑥
| 0x23 𝑥:globalidx ⇒ global.get 𝑥
| 0x24 𝑥:globalidx ⇒ global.set 𝑥
| . . .

5.4.4 Table Instructions
Table instructions are represented either by a single byte or a one byte prefix followed by a variable-length unsigned
integer.

instr ::= . . .
| 0x25 𝑥:tableidx ⇒ table.get 𝑥
| 0x26 𝑥:tableidx ⇒ table.set 𝑥
| 0xFC 12:u32 𝑦:elemidx 𝑥:tableidx ⇒ table.init 𝑥 𝑦
| 0xFC 13:u32 𝑥:elemidx ⇒ elem.drop 𝑥
| 0xFC 14:u32 𝑥1:tableidx 𝑥2:tableidx ⇒ table.copy 𝑥1 𝑥2

| 0xFC 15:u32 𝑥:tableidx ⇒ table.grow 𝑥
| 0xFC 16:u32 𝑥:tableidx ⇒ table.size 𝑥
| 0xFC 17:u32 𝑥:tableidx ⇒ table.fill 𝑥
| . . .

5.4.5 Memory Instructions
Each variant of memory instruction is encoded with a different byte code. Loads and stores are followed by the
encoding of their memarg immediate, which includes the memory index if bit 6 of the flags field containing
alignment is set; the memory index defaults to 0 otherwise.

5.4. Instructions 201

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

memarg ::= 𝑛:u32 𝑚:u32 ⇒ (0, {align 𝑛, offset𝑚}) if 𝑛 < 26

| 𝑛:u32 𝑥:memidx 𝑚:u32 ⇒ (𝑥, {align (𝑛− 26), offset𝑚}) if 26 ≤ 𝑛 < 27

instr ::= . . .
| 0x28 (𝑥, ao):memarg ⇒ i32.load 𝑥 ao
| 0x29 (𝑥, ao):memarg ⇒ i64.load 𝑥 ao
| 0x2A (𝑥, ao):memarg ⇒ f32.load 𝑥 ao
| 0x2B (𝑥, ao):memarg ⇒ f64.load 𝑥 ao
| 0x2C (𝑥, ao):memarg ⇒ i32.load8_s 𝑥 ao
| 0x2D (𝑥, ao):memarg ⇒ i32.load8_u 𝑥 ao
| 0x2E (𝑥, ao):memarg ⇒ i32.load16_s 𝑥 ao
| 0x2F (𝑥, ao):memarg ⇒ i32.load16_u 𝑥 ao
| 0x30 (𝑥, ao):memarg ⇒ i64.load8_s 𝑥 ao
| 0x31 (𝑥, ao):memarg ⇒ i64.load8_u 𝑥 ao
| 0x32 (𝑥, ao):memarg ⇒ i64.load16_s 𝑥 ao
| 0x33 (𝑥, ao):memarg ⇒ i64.load16_u 𝑥 ao
| 0x34 (𝑥, ao):memarg ⇒ i64.load32_s 𝑥 ao
| 0x35 (𝑥, ao):memarg ⇒ i64.load32_u 𝑥 ao
| 0x36 (𝑥, ao):memarg ⇒ i32.store 𝑥 ao
| 0x37 (𝑥, ao):memarg ⇒ i64.store 𝑥 ao
| 0x38 (𝑥, ao):memarg ⇒ f32.store 𝑥 ao
| 0x39 (𝑥, ao):memarg ⇒ f64.store 𝑥 ao
| 0x3A (𝑥, ao):memarg ⇒ i32.store8 𝑥 ao
| 0x3B (𝑥, ao):memarg ⇒ i32.store16 𝑥 ao
| 0x3C (𝑥, ao):memarg ⇒ i64.store8 𝑥 ao
| 0x3D (𝑥, ao):memarg ⇒ i64.store16 𝑥 ao
| 0x3E (𝑥, ao):memarg ⇒ i64.store32 𝑥 ao
| 0x3F 𝑥:memidx ⇒ memory.size 𝑥
| 0x40 𝑥:memidx ⇒ memory.grow 𝑥
| 0xFC 8:u32 𝑦:dataidx 𝑥:memidx ⇒ memory.init 𝑥 𝑦
| 0xFC 9:u32 𝑥:dataidx ⇒ data.drop 𝑥
| 0xFC 10:u32 𝑥1:memidx 𝑥2:memidx ⇒ memory.copy 𝑥1 𝑥2

| 0xFC 11:u32 𝑥:memidx ⇒ memory.fill 𝑥
| . . .

5.4.6 Reference Instructions
Generic reference instructions are represented by single byte codes, others use prefixes and type operands.

202 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0xD0 ht :heaptype ⇒ ref.null ht
| 0xD1 ⇒ ref.is_null
| 0xD2 𝑥:funcidx ⇒ ref.func 𝑥
| 0xD3 ⇒ ref.eq
| 0xD4 ⇒ ref.as_non_null
| 0xD5 𝑙:labelidx ⇒ br_on_null 𝑙
| 0xD6 𝑙:labelidx ⇒ br_on_non_null 𝑙
| 0xFB 0:u32 𝑥:typeidx ⇒ struct.new 𝑥
| 0xFB 1:u32 𝑥:typeidx ⇒ struct.new_default 𝑥
| 0xFB 2:u32 𝑥:typeidx 𝑖:u32 ⇒ struct.get 𝑥 𝑖
| 0xFB 3:u32 𝑥:typeidx 𝑖:u32 ⇒ struct.get_s 𝑥 𝑖
| 0xFB 4:u32 𝑥:typeidx 𝑖:u32 ⇒ struct.get_u 𝑥 𝑖
| 0xFB 5:u32 𝑥:typeidx 𝑖:u32 ⇒ struct.set 𝑥 𝑖
| 0xFB 6:u32 𝑥:typeidx ⇒ array.new 𝑥
| 0xFB 7:u32 𝑥:typeidx ⇒ array.new_default 𝑥
| 0xFB 8:u32 𝑥:typeidx 𝑛:u32 ⇒ array.new_fixed 𝑥 𝑛
| 0xFB 9:u32 𝑥:typeidx 𝑦:dataidx ⇒ array.new_data 𝑥 𝑦
| 0xFB 10:u32 𝑥:typeidx 𝑦:elemidx ⇒ array.new_elem 𝑥 𝑦
| 0xFB 11:u32 𝑥:typeidx ⇒ array.get 𝑥
| 0xFB 12:u32 𝑥:typeidx ⇒ array.get_s 𝑥
| 0xFB 13:u32 𝑥:typeidx ⇒ array.get_u 𝑥
| 0xFB 14:u32 𝑥:typeidx ⇒ array.set 𝑥
| 0xFB 15:u32 ⇒ array.len
| 0xFB 16:u32 𝑥:typeidx ⇒ array.fill 𝑥
| 0xFB 17:u32 𝑥1:typeidx 𝑥2:typeidx ⇒ array.copy 𝑥1 𝑥2

| 0xFB 18:u32 𝑥:typeidx 𝑦:dataidx ⇒ array.init_data 𝑥 𝑦
| 0xFB 19:u32 𝑥:typeidx 𝑦:elemidx ⇒ array.init_elem 𝑥 𝑦
| 0xFB 20:u32 ht :heaptype ⇒ ref.test (ref ht)
| 0xFB 21:u32 ht :heaptype ⇒ ref.test (ref null ht)
| 0xFB 22:u32 ht :heaptype ⇒ ref.cast (ref ht)
| 0xFB 23:u32 ht :heaptype ⇒ ref.cast (ref null ht)

| 0xFB 24:u32 (null?1, null
?
2):castop

𝑙:labelidx ht1:heaptype ht2:heaptype
⇒ br_on_cast 𝑙 (ref null?1 ht1) (ref null

?
2 ht2)

| 0xFB 25:u32 (null?1, null
?
2):castop

𝑙:labelidx ht1:heaptype ht2:heaptype
⇒ br_on_cast_fail 𝑙 (ref null?1 ht1) (ref null

?
2 ht2)

| 0xFB 26:u32 ⇒ any.convert_extern
| 0xFB 27:u32 ⇒ extern.convert_any
| 0xFB 28:u32 ⇒ ref.i31
| 0xFB 29:u32 ⇒ i31.get_s
| 0xFB 30:u32 ⇒ i31.get_u
| . . .

castop ::= 0x00 ⇒ (𝜖, 𝜖)
| 0x01 ⇒ (null, 𝜖)
| 0x02 ⇒ (𝜖, null)
| 0x03 ⇒ (null, null)

5.4.7 Numeric Instructions
All variants of numeric instructions are represented by separate byte codes.

The const instructions are followed by the respective literal.

5.4. Instructions 203

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0x41 𝑛:u32 ⇒ i32.const 𝑛
| 0x42 𝑛:u64 ⇒ i64.const 𝑛
| 0x43 𝑝:f32 ⇒ f32.const 𝑝
| 0x44 𝑝:f64 ⇒ f64.const 𝑝
| . . .

All other numeric instructions are plain opcodes without any immediates.

instr ::= . . .
| 0x45 ⇒ i32.eqz
| 0x46 ⇒ i32.eq
| 0x47 ⇒ i32.ne
| 0x48 ⇒ i32.lt
| 0x49 ⇒ i32.lt
| 0x4A ⇒ i32.gt
| 0x4B ⇒ i32.gt
| 0x4C ⇒ i32.le
| 0x4D ⇒ i32.le
| 0x4E ⇒ i32.ge
| 0x4F ⇒ i32.ge
| 0x50 ⇒ i64.eqz
| 0x51 ⇒ i64.eq
| 0x52 ⇒ i64.ne
| 0x53 ⇒ i64.lt
| 0x54 ⇒ i64.lt
| 0x55 ⇒ i64.gt
| 0x56 ⇒ i64.gt
| 0x57 ⇒ i64.le
| 0x58 ⇒ i64.le
| 0x59 ⇒ i64.ge
| 0x5A ⇒ i64.ge
| . . .

instr ::= . . .
| 0x5B ⇒ f32.eq
| 0x5C ⇒ f32.ne
| 0x5D ⇒ f32.lt
| 0x5E ⇒ f32.gt
| 0x5F ⇒ f32.le
| 0x60 ⇒ f32.ge
| 0x61 ⇒ f64.eq
| 0x62 ⇒ f64.ne
| 0x63 ⇒ f64.lt
| 0x64 ⇒ f64.gt
| 0x65 ⇒ f64.le
| 0x66 ⇒ f64.ge
| . . .

204 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0x67 ⇒ i32.clz
| 0x68 ⇒ i32.ctz
| 0x69 ⇒ i32.popcnt
| 0x6A ⇒ i32.add
| 0x6B ⇒ i32.sub
| 0x6C ⇒ i32.mul
| 0x6D ⇒ i32.div
| 0x6E ⇒ i32.div
| 0x6F ⇒ i32.rem
| 0x70 ⇒ i32.rem
| 0x71 ⇒ i32.and
| 0x72 ⇒ i32.or
| 0x73 ⇒ i32.xor
| 0x74 ⇒ i32.shl
| 0x75 ⇒ i32.shr
| 0x76 ⇒ i32.shr
| 0x77 ⇒ i32.rotl
| 0x78 ⇒ i32.rotr
| 0x79 ⇒ i64.clz
| 0x7A ⇒ i64.ctz
| 0x7B ⇒ i64.popcnt
| 0x7C ⇒ i64.add
| 0x7D ⇒ i64.sub
| 0x7E ⇒ i64.mul
| 0x7F ⇒ i64.div
| 0x80 ⇒ i64.div
| 0x81 ⇒ i64.rem
| 0x82 ⇒ i64.rem
| 0x83 ⇒ i64.and
| 0x84 ⇒ i64.or
| 0x85 ⇒ i64.xor
| 0x86 ⇒ i64.shl
| 0x87 ⇒ i64.shr
| 0x88 ⇒ i64.shr
| 0x89 ⇒ i64.rotl
| 0x8A ⇒ i64.rotr
| . . .

5.4. Instructions 205

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0x8B ⇒ f32.abs
| 0x8C ⇒ f32.neg
| 0x8D ⇒ f32.ceil
| 0x8E ⇒ f32.floor
| 0x8F ⇒ f32.trunc
| 0x90 ⇒ f32.nearest
| 0x91 ⇒ f32.sqrt
| 0x92 ⇒ f32.add
| 0x93 ⇒ f32.sub
| 0x94 ⇒ f32.mul
| 0x95 ⇒ f32.div
| 0x96 ⇒ f32.min
| 0x97 ⇒ f32.max
| 0x98 ⇒ f32.copysign
| 0x99 ⇒ f64.abs
| 0x9A ⇒ f64.neg
| 0x9B ⇒ f64.ceil
| 0x9C ⇒ f64.floor
| 0x9D ⇒ f64.trunc
| 0x9E ⇒ f64.nearest
| 0x9F ⇒ f64.sqrt
| 0xA0 ⇒ f64.add
| 0xA1 ⇒ f64.sub
| 0xA2 ⇒ f64.mul
| 0xA3 ⇒ f64.div
| 0xA4 ⇒ f64.min
| 0xA5 ⇒ f64.max
| 0xA6 ⇒ f64.copysign
| . . .

instr ::= . . .
| 0xA7 ⇒ i32.wrap_i64
| 0xA8 ⇒ i32.trunc_f32
| 0xA9 ⇒ i32.trunc_f32
| 0xAA ⇒ i32.trunc_f64
| 0xAB ⇒ i32.trunc_f64
| 0xAC ⇒ i64.extend_i32
| 0xAD ⇒ i64.extend_i32
| 0xAE ⇒ i64.trunc_f32
| 0xAF ⇒ i64.trunc_f32
| 0xB0 ⇒ i64.trunc_f64
| 0xB1 ⇒ i64.trunc_f64
| 0xB2 ⇒ f32.convert_i32
| 0xB3 ⇒ f32.convert_i32
| 0xB4 ⇒ f32.convert_i64
| 0xB5 ⇒ f32.convert_i64
| 0xB6 ⇒ f32.demote_f64
| 0xB7 ⇒ f64.convert_i32
| 0xB8 ⇒ f64.convert_i32
| 0xB9 ⇒ f64.convert_i64
| 0xBA ⇒ f64.convert_i64
| 0xBB ⇒ f32.promote_f64
| 0xBC ⇒ i32.reinterpret_f32
| 0xBD ⇒ i64.reinterpret_f64
| 0xBE ⇒ f32.reinterpret_i32
| 0xBF ⇒ f64.reinterpret_i64
| . . .

206 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0xC0 ⇒ i32.extend
| 0xC1 ⇒ i32.extend
| 0xC2 ⇒ i64.extend
| 0xC3 ⇒ i64.extend
| 0xC4 ⇒ i64.extend
| . . .

The saturating truncation instructions all have a one byte prefix, whereas the actual opcode is encoded by a variable-
length unsigned integer.

instr ::= . . .
| 0xFC 0:u32 ⇒ i32.trunc_sat_f32
| 0xFC 1:u32 ⇒ i32.trunc_sat_f32
| 0xFC 2:u32 ⇒ i32.trunc_sat_f64
| 0xFC 3:u32 ⇒ i32.trunc_sat_f64
| 0xFC 4:u32 ⇒ i64.trunc_sat_f32
| 0xFC 5:u32 ⇒ i64.trunc_sat_f32
| 0xFC 6:u32 ⇒ i64.trunc_sat_f64
| 0xFC 7:u32 ⇒ i64.trunc_sat_f64
| . . .

5.4.8 Vector Instructions
All variants of vector instructions are represented by separate byte codes. They all have a one byte prefix, whereas
the actual opcode is encoded by a variable-length unsigned integer.

Vector loads and stores are followed by the encoding of their memarg immediate.

laneidx ::= 𝑙:byte ⇒ 𝑙

instr ::= . . .
| 0xFD 0:u32 (𝑥, ao):memarg ⇒ v128.load 𝑥 ao
| 0xFD 1:u32 (𝑥, ao):memarg ⇒ v128.load8x8_s 𝑥 ao
| 0xFD 2:u32 (𝑥, ao):memarg ⇒ v128.load8x8_u 𝑥 ao
| 0xFD 3:u32 (𝑥, ao):memarg ⇒ v128.load16x4_s 𝑥 ao
| 0xFD 4:u32 (𝑥, ao):memarg ⇒ v128.load16x4_u 𝑥 ao
| 0xFD 5:u32 (𝑥, ao):memarg ⇒ v128.load32x2_s 𝑥 ao
| 0xFD 6:u32 (𝑥, ao):memarg ⇒ v128.load32x2_u 𝑥 ao
| 0xFD 7:u32 (𝑥, ao):memarg ⇒ v128.load8_splat 𝑥 ao
| 0xFD 8:u32 (𝑥, ao):memarg ⇒ v128.load16_splat 𝑥 ao
| 0xFD 9:u32 (𝑥, ao):memarg ⇒ v128.load32_splat 𝑥 ao
| 0xFD 10:u32 (𝑥, ao):memarg ⇒ v128.load64_splat 𝑥 ao
| 0xFD 11:u32 (𝑥, ao):memarg ⇒ v128.store 𝑥 ao
| 0xFD 84:u32 (𝑥, ao):memarg 𝑖:laneidx ⇒ v128.load8_lane 𝑥 ao 𝑖
| 0xFD 85:u32 (𝑥, ao):memarg 𝑖:laneidx ⇒ v128.load16_lane 𝑥 ao 𝑖
| 0xFD 86:u32 (𝑥, ao):memarg 𝑖:laneidx ⇒ v128.load32_lane 𝑥 ao 𝑖
| 0xFD 87:u32 (𝑥, ao):memarg 𝑖:laneidx ⇒ v128.load64_lane 𝑥 ao 𝑖
| 0xFD 88:u32 (𝑥, ao):memarg 𝑖:laneidx ⇒ v128.store8_lane 𝑥 ao 𝑖
| 0xFD 89:u32 (𝑥, ao):memarg 𝑖:laneidx ⇒ v128.store16_lane 𝑥 ao 𝑖
| 0xFD 90:u32 (𝑥, ao):memarg 𝑖:laneidx ⇒ v128.store32_lane 𝑥 ao 𝑖
| 0xFD 91:u32 (𝑥, ao):memarg 𝑖:laneidx ⇒ v128.store64_lane 𝑥 ao 𝑖
| 0xFD 92:u32 (𝑥, ao):memarg ⇒ v128.load32_zero 𝑥 ao
| 0xFD 93:u32 (𝑥, ao):memarg ⇒ v128.load64_zero 𝑥 ao
| . . .

The const instruction for vectors is followed by 16 immediate bytes, which are converted into an u128 in

5.4. Instructions 207

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

littleendian byte order:

instr ::= . . .

| 0xFD 12:u32 (𝑏:byte)16 ⇒ v128.const bytes−1
i128((𝑏)

16)
| . . .

The shuffle instruction is also followed by the encoding of 16 laneidx immediates.

instr ::= . . .
| 0xFD 13:u32 (𝑙:laneidx)16 ⇒ i8x16.shuffle 𝑙16

| 0xFD 14:u32 ⇒ i8x16.swizzle
| 0xFD 256:u32 ⇒ i8x16.relaxed_swizzle
| . . .

Lane instructions are followed by the encoding of a laneidx immediate.

instr ::= . . .
| 0xFD 21:u32 𝑙:laneidx ⇒ i8x16.extract_lane_s 𝑙
| 0xFD 22:u32 𝑙:laneidx ⇒ i8x16.extract_lane_u 𝑙
| 0xFD 23:u32 𝑙:laneidx ⇒ i8x16.replace_lane 𝑙
| 0xFD 24:u32 𝑙:laneidx ⇒ i16x8.extract_lane_s 𝑙
| 0xFD 25:u32 𝑙:laneidx ⇒ i16x8.extract_lane_u 𝑙
| 0xFD 26:u32 𝑙:laneidx ⇒ i16x8.replace_lane 𝑙
| 0xFD 27:u32 𝑙:laneidx ⇒ i32x4.extract_lane 𝑙
| 0xFD 28:u32 𝑙:laneidx ⇒ i32x4.replace_lane 𝑙
| 0xFD 29:u32 𝑙:laneidx ⇒ i64x2.extract_lane 𝑙
| 0xFD 30:u32 𝑙:laneidx ⇒ i64x2.replace_lane 𝑙
| 0xFD 31:u32 𝑙:laneidx ⇒ f32x4.extract_lane 𝑙
| 0xFD 32:u32 𝑙:laneidx ⇒ f32x4.replace_lane 𝑙
| 0xFD 33:u32 𝑙:laneidx ⇒ f64x2.extract_lane 𝑙
| 0xFD 34:u32 𝑙:laneidx ⇒ f64x2.replace_lane 𝑙
| . . .

All other vector instructions are plain opcodes without any immediates.

instr ::= . . .
| 0xFD 15:u32 ⇒ i8x16.splat
| 0xFD 16:u32 ⇒ i16x8.splat
| 0xFD 17:u32 ⇒ i32x4.splat
| 0xFD 18:u32 ⇒ i64x2.splat
| 0xFD 19:u32 ⇒ f32x4.splat
| 0xFD 20:u32 ⇒ f64x2.splat
| . . .

208 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0xFD 35:u32 ⇒ i8x16.eq
| 0xFD 36:u32 ⇒ i8x16.ne
| 0xFD 37:u32 ⇒ i8x16.lt
| 0xFD 38:u32 ⇒ i8x16.lt
| 0xFD 39:u32 ⇒ i8x16.gt
| 0xFD 40:u32 ⇒ i8x16.gt
| 0xFD 41:u32 ⇒ i8x16.le
| 0xFD 42:u32 ⇒ i8x16.le
| 0xFD 43:u32 ⇒ i8x16.ge
| 0xFD 44:u32 ⇒ i8x16.ge
| 0xFD 45:u32 ⇒ i16x8.eq
| 0xFD 46:u32 ⇒ i16x8.ne
| 0xFD 47:u32 ⇒ i16x8.lt
| 0xFD 48:u32 ⇒ i16x8.lt
| 0xFD 49:u32 ⇒ i16x8.gt
| 0xFD 50:u32 ⇒ i16x8.gt
| 0xFD 51:u32 ⇒ i16x8.le
| 0xFD 52:u32 ⇒ i16x8.le
| 0xFD 53:u32 ⇒ i16x8.ge
| 0xFD 54:u32 ⇒ i16x8.ge
| 0xFD 55:u32 ⇒ i32x4.eq
| 0xFD 56:u32 ⇒ i32x4.ne
| 0xFD 57:u32 ⇒ i32x4.lt
| 0xFD 58:u32 ⇒ i32x4.lt
| 0xFD 59:u32 ⇒ i32x4.gt
| 0xFD 60:u32 ⇒ i32x4.gt
| 0xFD 61:u32 ⇒ i32x4.le
| 0xFD 62:u32 ⇒ i32x4.le
| 0xFD 63:u32 ⇒ i32x4.ge
| 0xFD 64:u32 ⇒ i32x4.ge
| 0xFD 214:u32 ⇒ i64x2.eq
| 0xFD 215:u32 ⇒ i64x2.ne
| 0xFD 216:u32 ⇒ i64x2.lt_s
| 0xFD 217:u32 ⇒ i64x2.gt_s
| 0xFD 218:u32 ⇒ i64x2.le_s
| 0xFD 219:u32 ⇒ i64x2.ge_s
| . . .

instr ::= . . .
| 0xFD 65:u32 ⇒ f32x4.eq
| 0xFD 66:u32 ⇒ f32x4.ne
| 0xFD 67:u32 ⇒ f32x4.lt
| 0xFD 68:u32 ⇒ f32x4.gt
| 0xFD 69:u32 ⇒ f32x4.le
| 0xFD 70:u32 ⇒ f32x4.ge
| 0xFD 71:u32 ⇒ f64x2.eq
| 0xFD 72:u32 ⇒ f64x2.ne
| 0xFD 73:u32 ⇒ f64x2.lt
| 0xFD 74:u32 ⇒ f64x2.gt
| 0xFD 75:u32 ⇒ f64x2.le
| 0xFD 76:u32 ⇒ f64x2.ge
| . . .

5.4. Instructions 209

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0xFD 77:u32 ⇒ v128.not
| 0xFD 78:u32 ⇒ v128.and
| 0xFD 79:u32 ⇒ v128.andnot
| 0xFD 80:u32 ⇒ v128.or
| 0xFD 81:u32 ⇒ v128.xor
| 0xFD 82:u32 ⇒ v128.bitselect
| 0xFD 83:u32 ⇒ v128.any_true
| . . .

instr ::= . . .
| 0xFD 96:u32 ⇒ i8x16.abs
| 0xFD 97:u32 ⇒ i8x16.neg
| 0xFD 98:u32 ⇒ i8x16.popcnt
| 0xFD 99:u32 ⇒ i8x16.all_true
| 0xFD 100:u32 ⇒ i8x16.bitmask
| 0xFD 101:u32 ⇒ i8x16.narrow_i16x8_s
| 0xFD 102:u32 ⇒ i8x16.narrow_i16x8_u
| 0xFD 107:u32 ⇒ i8x16.shl
| 0xFD 108:u32 ⇒ i8x16.shr
| 0xFD 109:u32 ⇒ i8x16.shr
| 0xFD 110:u32 ⇒ i8x16.add
| 0xFD 111:u32 ⇒ i8x16.add_sat
| 0xFD 112:u32 ⇒ i8x16.add_sat
| 0xFD 113:u32 ⇒ i8x16.sub
| 0xFD 114:u32 ⇒ i8x16.sub_sat
| 0xFD 115:u32 ⇒ i8x16.sub_sat
| 0xFD 118:u32 ⇒ i8x16.min
| 0xFD 119:u32 ⇒ i8x16.min
| 0xFD 120:u32 ⇒ i8x16.max
| 0xFD 121:u32 ⇒ i8x16.max
| 0xFD 123:u32 ⇒ i8x16.avgr
| . . .

210 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0xFD 124:u32 ⇒ i16x8.extadd_pairwise_i8x16
| 0xFD 125:u32 ⇒ i16x8.extadd_pairwise_i8x16
| 0xFD 128:u32 ⇒ i16x8.abs
| 0xFD 129:u32 ⇒ i16x8.neg
| 0xFD 131:u32 ⇒ i16x8.all_true
| 0xFD 132:u32 ⇒ i16x8.bitmask
| 0xFD 133:u32 ⇒ i16x8.narrow_i32x4_s
| 0xFD 134:u32 ⇒ i16x8.narrow_i32x4_u
| 0xFD 135:u32 ⇒ i16x8.extend_i8x16
| 0xFD 136:u32 ⇒ i16x8.extend_i8x16
| 0xFD 137:u32 ⇒ i16x8.extend_i8x16
| 0xFD 138:u32 ⇒ i16x8.extend_i8x16
| 0xFD 139:u32 ⇒ i16x8.shl
| 0xFD 140:u32 ⇒ i16x8.shr
| 0xFD 141:u32 ⇒ i16x8.shr
| 0xFD 130:u32 ⇒ i16x8.q15mulr_sat
| 0xFD 273:u32 ⇒ i16x8.relaxed_q15mulr
| 0xFD 142:u32 ⇒ i16x8.add
| 0xFD 143:u32 ⇒ i16x8.add_sat
| 0xFD 144:u32 ⇒ i16x8.add_sat
| 0xFD 145:u32 ⇒ i16x8.sub
| 0xFD 146:u32 ⇒ i16x8.sub_sat
| 0xFD 147:u32 ⇒ i16x8.sub_sat
| 0xFD 149:u32 ⇒ i16x8.mul
| 0xFD 150:u32 ⇒ i16x8.min
| 0xFD 151:u32 ⇒ i16x8.min
| 0xFD 152:u32 ⇒ i16x8.max
| 0xFD 153:u32 ⇒ i16x8.max
| 0xFD 155:u32 ⇒ i16x8.avgr
| 0xFD 156:u32 ⇒ i16x8.extmul_i8x16
| 0xFD 157:u32 ⇒ i16x8.extmul_i8x16
| 0xFD 158:u32 ⇒ i16x8.extmul_i8x16
| 0xFD 159:u32 ⇒ i16x8.extmul_i8x16
| 0xFD 274:u32 ⇒ i16x8.relaxed_dot_i8x16
| . . .

5.4. Instructions 211

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0xFD 126:u32 ⇒ i32x4.extadd_pairwise_i16x8
| 0xFD 127:u32 ⇒ i32x4.extadd_pairwise_i16x8
| 0xFD 160:u32 ⇒ i32x4.abs
| 0xFD 161:u32 ⇒ i32x4.neg
| 0xFD 163:u32 ⇒ i32x4.all_true
| 0xFD 164:u32 ⇒ i32x4.bitmask
| 0xFD 167:u32 ⇒ i32x4.extend_i16x8
| 0xFD 168:u32 ⇒ i32x4.extend_i16x8
| 0xFD 169:u32 ⇒ i32x4.extend_i16x8
| 0xFD 170:u32 ⇒ i32x4.extend_i16x8
| 0xFD 171:u32 ⇒ i32x4.shl
| 0xFD 172:u32 ⇒ i32x4.shr_s
| 0xFD 173:u32 ⇒ i32x4.shr_u
| 0xFD 174:u32 ⇒ i32x4.add
| 0xFD 177:u32 ⇒ i32x4.sub
| 0xFD 181:u32 ⇒ i32x4.mul
| 0xFD 182:u32 ⇒ i32x4.min
| 0xFD 183:u32 ⇒ i32x4.min
| 0xFD 184:u32 ⇒ i32x4.max
| 0xFD 185:u32 ⇒ i32x4.max
| 0xFD 186:u32 ⇒ i32x4.dot_i16x8
| 0xFD 188:u32 ⇒ i32x4.extmul_i16x8
| 0xFD 189:u32 ⇒ i32x4.extmul_i16x8
| 0xFD 190:u32 ⇒ i32x4.extmul_i16x8
| 0xFD 191:u32 ⇒ i32x4.extmul_i16x8
| 0xFD 275:u32 ⇒ i32x4.relaxed_dot_add_i16x8
| . . .

instr ::= . . .
| 0xFD 192:u32 ⇒ i64x2.abs
| 0xFD 193:u32 ⇒ i64x2.neg
| 0xFD 195:u32 ⇒ i64x2.all_true
| 0xFD 196:u32 ⇒ i64x2.bitmask
| 0xFD 199:u32 ⇒ i64x2.extend_i32x4
| 0xFD 200:u32 ⇒ i64x2.extend_i32x4
| 0xFD 201:u32 ⇒ i64x2.extend_i32x4
| 0xFD 202:u32 ⇒ i64x2.extend_i32x4
| 0xFD 203:u32 ⇒ i64x2.shl
| 0xFD 204:u32 ⇒ i64x2.shr_s
| 0xFD 205:u32 ⇒ i64x2.shr_u
| 0xFD 206:u32 ⇒ i64x2.add
| 0xFD 209:u32 ⇒ i64x2.sub
| 0xFD 213:u32 ⇒ i64x2.mul
| 0xFD 220:u32 ⇒ i64x2.extmul_i32x4
| 0xFD 221:u32 ⇒ i64x2.extmul_i32x4
| 0xFD 222:u32 ⇒ i64x2.extmul_i32x4
| 0xFD 223:u32 ⇒ i64x2.extmul_i32x4
| . . .

212 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0xFD 103:u32 ⇒ f32x4.ceil
| 0xFD 104:u32 ⇒ f32x4.floor
| 0xFD 105:u32 ⇒ f32x4.trunc
| 0xFD 106:u32 ⇒ f32x4.nearest
| 0xFD 224:u32 ⇒ f32x4.abs
| 0xFD 225:u32 ⇒ f32x4.neg
| 0xFD 227:u32 ⇒ f32x4.sqrt
| 0xFD 228:u32 ⇒ f32x4.add
| 0xFD 229:u32 ⇒ f32x4.sub
| 0xFD 230:u32 ⇒ f32x4.mul
| 0xFD 231:u32 ⇒ f32x4.div
| 0xFD 232:u32 ⇒ f32x4.min
| 0xFD 233:u32 ⇒ f32x4.max
| 0xFD 234:u32 ⇒ f32x4.pmin
| 0xFD 235:u32 ⇒ f32x4.pmax
| 0xFD 269:u32 ⇒ f32x4.relaxed_min
| 0xFD 270:u32 ⇒ f32x4.relaxed_max
| 0xFD 261:u32 ⇒ f32x4.relaxed_madd
| 0xFD 262:u32 ⇒ f32x4.relaxed_nmadd
| . . .

instr ::= . . .
| 0xFD 116:u32 ⇒ f64x2.ceil
| 0xFD 117:u32 ⇒ f64x2.floor
| 0xFD 122:u32 ⇒ f64x2.trunc
| 0xFD 148:u32 ⇒ f64x2.nearest
| 0xFD 236:u32 ⇒ f64x2.abs
| 0xFD 237:u32 ⇒ f64x2.neg
| 0xFD 239:u32 ⇒ f64x2.sqrt
| 0xFD 240:u32 ⇒ f64x2.add
| 0xFD 241:u32 ⇒ f64x2.sub
| 0xFD 242:u32 ⇒ f64x2.mul
| 0xFD 243:u32 ⇒ f64x2.div
| 0xFD 244:u32 ⇒ f64x2.min
| 0xFD 245:u32 ⇒ f64x2.max
| 0xFD 246:u32 ⇒ f64x2.pmin
| 0xFD 247:u32 ⇒ f64x2.pmax
| 0xFD 271:u32 ⇒ f64x2.relaxed_min
| 0xFD 272:u32 ⇒ f64x2.relaxed_max
| 0xFD 263:u32 ⇒ f64x2.relaxed_madd
| 0xFD 264:u32 ⇒ f64x2.relaxed_nmadd
| 0xFD 265:u32 ⇒ i8x16.relaxed_laneselect
| 0xFD 266:u32 ⇒ i16x8.relaxed_laneselect
| 0xFD 267:u32 ⇒ i32x4.relaxed_laneselect
| 0xFD 268:u32 ⇒ i64x2.relaxed_laneselect
| . . .

5.4. Instructions 213

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

instr ::= . . .
| 0xFD 94:u32 ⇒ f32x4.demote_zero_f64x2
| 0xFD 95:u32 ⇒ f64x2.promote_low_f32x4
| 0xFD 248:u32 ⇒ i32x4.trunc_sat_f32x4
| 0xFD 249:u32 ⇒ i32x4.trunc_sat_f32x4
| 0xFD 250:u32 ⇒ f32x4.convert_i32x4
| 0xFD 251:u32 ⇒ f32x4.convert_i32x4
| 0xFD 252:u32 ⇒ i32x4.trunc_sat_f64x2
| 0xFD 253:u32 ⇒ i32x4.trunc_sat_f64x2
| 0xFD 254:u32 ⇒ f64x2.convert_i32x4
| 0xFD 255:u32 ⇒ f64x2.convert_i32x4
| 0xFD 257:u32 ⇒ i32x4.relaxed_trunc_f32x4
| 0xFD 258:u32 ⇒ i32x4.relaxed_trunc_f32x4
| 0xFD 259:u32 ⇒ i32x4.relaxed_trunc_f64x2
| 0xFD 260:u32 ⇒ i32x4.relaxed_trunc_f64x2

| 0xFD 256:u32 ⇒ i16x8.relaxed_swizzle
| 0xFD 257:u32 ⇒ i32x4.relaxed_trunc_f32x4_s
| 0xFD 258:u32 ⇒ i32x4.relaxed_trunc_f32x4_u
| 0xFD 259:u32 ⇒ i32x4.relaxed_trunc_f32x4_s_zero
| 0xFD 260:u32 ⇒ i32x4.relaxed_trunc_f32x4_u_zero
| 0xFD 261:u32 ⇒ f32x4.relaxed_madd
| 0xFD 262:u32 ⇒ f32x4.relaxed_nmadd
| 0xFD 263:u32 ⇒ f64x2.relaxed_madd
| 0xFD 264:u32 ⇒ f64x2.relaxed_nmadd
| 0xFD 265:u32 ⇒ i8x16.relaxed_laneselect
| 0xFD 266:u32 ⇒ i16x8.relaxed_laneselect
| 0xFD 267:u32 ⇒ i32x4.relaxed_laneselect
| 0xFD 268:u32 ⇒ i64x2.relaxed_laneselect
| 0xFD 269:u32 ⇒ f32x4.relaxed_min
| 0xFD 270:u32 ⇒ f32x4.relaxed_max
| 0xFD 271:u32 ⇒ f64x2.relaxed_min
| 0xFD 272:u32 ⇒ f64x2.relaxed_max
| 0xFD 273:u32 ⇒ i16x8.relaxed_q15mulr_s
| 0xFD 274:u32 ⇒ i16x8.relaxed_dot_i8x16_i7x16_s
| 0xFD 275:u32 ⇒ i16x8.relaxed_dot_i8x16_i7x16_add_s

5.4.9 Expressions
Expressions are encoded by their instruction sequence terminated with an explicit 0x0B opcode for end.

expr ::= (in:instr)* 0x0B ⇒ in*

5.5 Modules
The binary encoding of modules is organized into sections. Most sections correspond to one component of a
module record, except that function definitions are split into two sections, separating their type declarations in the
function section from their bodies in the code section.

Note

This separation enables parallel and streaming compilation of the functions in a module.

214 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.5.1 Indices
All basic indices are encoded with their respective value.

typeidx ::= 𝑥:u32 ⇒ 𝑥
funcidx ::= 𝑥:u32 ⇒ 𝑥

tableidx ::= 𝑥:u32 ⇒ 𝑥
memidx ::= 𝑥:u32 ⇒ 𝑥

globalidx ::= 𝑥:u32 ⇒ 𝑥
tagidx ::= 𝑥:u32 ⇒ 𝑥
elemidx ::= 𝑥:u32 ⇒ 𝑥
dataidx ::= 𝑥:u32 ⇒ 𝑥

localidx ::= 𝑥:u32 ⇒ 𝑥
labelidx ::= 𝑙:u32 ⇒ 𝑙

External indices are encoded by a distiguishing byte followed by an encoding of their respective value.

externidx ::= 0x00 𝑥:funcidx ⇒ func 𝑥
| 0x01 𝑥:tableidx ⇒ table 𝑥
| 0x02 𝑥:memidx ⇒ memory 𝑥
| 0x03 𝑥:globalidx ⇒ global 𝑥
| 0x04 𝑥:tagidx ⇒ tag 𝑥

5.5.2 Sections
Each section consists of

• a one-byte section id,

• the u32 length of the contents, in bytes,

• the actual contents, whose structure is dependent on the section id.

Every section is optional; an omitted section is equivalent to the section being present with empty contents.

The following parameterized grammar rule defines the generic structure of a section with id 𝑁 and contents de-
scribed by the grammar X.

section𝑁 (X) ::= 𝑁 :byte len:u32 en*:X ⇒ en* if len = ||X||
| 𝜖 ⇒ 𝜖

For most sections, the contents X encodes a list. In these cases, the empty result 𝜖 is interpreted as the empty list.

Note

Other than for unknown custom sections, the size is not required for decoding, but can be used to skip sections
when navigating through a binary. The module is malformed if the size does not match the length of the binary
contents X.

The following section ids are used:

5.5. Modules 215

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Id Section
0 custom section
1 type section
2 import section
3 function section
4 table section
5 memory section
6 global section
7 export section
8 start section
9 element section
10 code section
11 data section
12 data count section
13 tag section

Note

Section ids do not always correspond to the order of sections in the encoding of a module.

5.5.3 Custom Section
Custom sections have the id 0. They are intended to be used for debugging information or third-party extensions,
and are ignored by the WebAssembly semantics. Their contents consist of a name further identifying the custom
section, followed by an uninterpreted sequence of bytes for custom use.

customsec ::= section0(custom)
custom ::= name byte*

Note

If an implementation interprets the data of a custom section, then errors in that data, or the placement of the
section, must not invalidate the module.

5.5.4 Type Section
The type section has the id 1. It decodes into the list of recursive types of a module.

typesec ::= ty*:section1(list(type)) ⇒ ty*

type ::= qt :rectype ⇒ type qt

5.5.5 Import Section
The import section has the id 2. It decodes into the list of imports of a module.

importsec ::= im*:section2(list(import)) ⇒ im*

import ::= nm1:name nm2:name xt :externtype ⇒ import nm1 nm2 xt

216 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.5.6 Function Section
The function section has the id 3. It decodes into a list of type indices that classify the functions defined by a
module. The bodies of the respective functions are encoded separately in the code section.

funcsec ::= 𝑥*:section3(list(typeidx)) ⇒ 𝑥*

5.5.7 Table Section
The table section has the id 4. It decodes into the list of tables defined by a module.

tablesec ::= tab*:section4(list(table)) ⇒ tab*

table ::= tt :tabletype ⇒ table tt (ref.null ht) if tt = at lim (ref null? ht)
| 0x40 0x00 tt :tabletype 𝑒:expr ⇒ table tt 𝑒

Note

The encoding of a table type cannot start with byte 0x40, hence decoding is unambiguous. The zero byte
following it is reserved for future extensions.

5.5.8 Memory Section
The memory section has the id 5. It decodes into the list of memories defined by a module.

memsec ::= mem*:section5(list(mem)) ⇒ mem*

mem ::= mt :memtype ⇒ memory mt

5.5.9 Global Section
The global section has the id 6. It decodes into the list of globals defined by a module.

globalsec ::= glob*:section6(list(global)) ⇒ glob*

global ::= gt :globaltype 𝑒:expr ⇒ global gt 𝑒

5.5.10 Export Section
The export section has the id 7. It decodes into the list of exports of a module.

exportsec ::= ex*:section7(list(export)) ⇒ ex*

export ::= nm:name xx :externidx ⇒ export nm xx

5.5.11 Start Section
The start section has the id 8. It decodes into the optional start function of a module.

startsec ::= start?:section8(start) ⇒ start?

start ::= 𝑥:funcidx ⇒ (start 𝑥)

5.5. Modules 217

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

5.5.12 Element Section
The element section has the id 9. It decodes into the list of element segments defined by a module.

elemsec ::= elem*:section9(list(elem)) ⇒ elem*

elemkind ::= 0x00 ⇒ ref null func
elem ::= 0:u32 𝑒𝑜:expr 𝑦*:list(funcidx) ⇒

elem (ref func) (ref.func 𝑦)* (active 0 𝑒𝑜)
| 1:u32 rt :elemkind 𝑦*:list(funcidx) ⇒

elem rt (ref.func 𝑦)* passive
| 2:u32 𝑥:tableidx 𝑒:expr rt :elemkind 𝑦*:list(funcidx) ⇒

elem rt (ref.func 𝑦)* (active 𝑥 𝑒)
| 3:u32 rt :elemkind 𝑦*:list(funcidx) ⇒

elem rt (ref.func 𝑦)* declare
| 4:u32 𝑒o:expr 𝑒*:list(expr) ⇒

elem (ref null func) 𝑒* (active 0 𝑒o)
| 5:u32 rt :reftype 𝑒*:list(expr) ⇒

elem rt 𝑒* passive
| 6:u32 𝑥:tableidx 𝑒o:expr 𝑒*:list(expr) ⇒

elem (ref null func) 𝑒* (active 𝑥 𝑒o)
| 7:u32 rt :reftype 𝑒*:list(expr) ⇒

elem rt 𝑒* declare

Note

The initial integer can be interpreted as a bitfield. Bit 0 distinguishes a passive or declarative segment from
an active segment, bit 1 indicates the presence of an explicit table index for an active segment and otherwise
distinguishes passive from declarative segments, bit 2 indicates the use of element type and element expressions
instead of element kind and element indices.

Additional element kinds may be added in future versions of WebAssembly.

5.5.13 Code Section
The code section has the id 10. It decodes into the list of code entries that are pairs of lists of locals and expressions.
They represent the body of the functions defined by a module. The types of the respective functions are encoded
separately in the function section.

The encoding of each code entry consists of

• the u32 length of the function code in bytes,

• the actual function code, which in turn consists of

– the declaration of locals,

– the function body as an expression.

Local declarations are compressed into a list whose entries consist of

• a u32 count,

• a value type,

denoting count locals of the same value type.

codesec ::= code*:section10(list(code)) ⇒ code*

code ::= len:u32 code:func ⇒ code if len = ||func||
func ::= loc*

*
:list(locals) 𝑒:expr ⇒ (

⨁︀
loc*

*
, 𝑒) if |

⨁︀
loc*

*| < 232

locals ::= 𝑛:u32 𝑡:valtype ⇒ (local 𝑡)𝑛

Here, code ranges over pairs (local*, expr). Any code for which the length of the resulting sequence is out of
bounds of the maximum size of a list is malformed.

218 Chapter 5. Binary Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

Like with sections, the code size is not needed for decoding, but can be used to skip functions when navigating
through a binary. The module is malformed if a size does not match the length of the respective function code.

5.5.14 Data Section
The data section has the id 11. It decodes into the list of data segments defined by a module.

datasec ::= data*:section11(list(data)) ⇒ data*

data ::= 0:u32 𝑒:expr 𝑏*:list(byte) ⇒ data 𝑏* (active 0 𝑒)
| 1:u32 𝑏*:list(byte) ⇒ data 𝑏* passive
| 2:u32 𝑥:memidx 𝑒:expr 𝑏*:list(byte) ⇒ data 𝑏* (active 𝑥 𝑒)

Note

The initial integer can be interpreted as a bitfield. Bit 0 indicates a passive segment, bit 1 indicates the presence
of an explicit memory index for an active segment.

5.5.15 Data Count Section
The data count section has the id 12. It decodes into an optional u32 count that represents the number of data
segments in the data section. If this count does not match the length of the data segment list, the module is
malformed.

datacntsec ::= 𝑛?:section12(datacnt) ⇒ 𝑛?

datacnt ::= 𝑛:u32 ⇒ 𝑛

Note

The data count section is used to simplify single-pass validation. Since the data section occurs after the code
section, the memory.init and data.drop instructions would not be able to check whether the data segment index
is valid until the data section is read. The data count section occurs before the code section, so a single-pass
validator can use this count instead of deferring validation.

5.5.16 Tag Section
The tag section has the id 13. It decodes into the list of tags defined by a module.

tagsec ::= tag*:section13(list(tag)) ⇒ tag*

tag ::= jt :tagtype ⇒ tag jt

5.5.17 Modules
The encoding of a module starts with a preamble containing a 4-byte magic number (the string ‘∖0asm’) and a
version field. The current version of the WebAssembly binary format is 1.

The preamble is followed by a sequence of sections. Custom sections may be inserted at any place in this sequence,
while other sections must occur at most once and in the prescribed order. All sections can be empty.

The lengths of lists produced by the (possibly empty) function and code section must match up.

5.5. Modules 219

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Similarly, the optional data count must match the length of the data segment list. Furthermore, it must be present
if any data index occurs in the code section.

magic ::= 0x00 0x61 0x73 0x6D

version ::= 0x01 0x00 0x00 0x00

module ::= magic version

customsec* type*:typesec
customsec* import*:importsec
customsec* typeidx*:funcsec
customsec* table*:tablesec
customsec* mem*:memsec
customsec* tag*:tagsec
customsec* global*:globalsec
customsec* export*:exportsec
customsec* start?:startsec
customsec* elem*:elemsec
customsec* 𝑛?:datacntsec
customsec* (local*, expr)*:codesec
customsec* data*:datasec
customsec*

⇒

module type* import* tag* global* mem* table* func* data* elem* start? export*

if (𝑛 = |data*|)?
∧ (𝑛? ̸= 𝜖 ∨ dataidx(func*) = 𝜖)
∧ (func = func typeidx local* expr)*

Note

The version of the WebAssembly binary format may increase in the future if backward-incompatible changes
have to be made to the format. However, such changes are expected to occur very infrequently, if ever. The
binary format is intended to be extensible, such that future features can be added without incrementing its
version.

220 Chapter 5. Binary Format

CHAPTER 6

Text Format

6.1 Conventions
The textual format for WebAssembly modules is a rendering of their abstract syntax into S-expressions36.

Like the binary format, the text format is defined by an attribute grammar. A text string is a well-formed description
of a module if and only if it is generated by the grammar. Each production of this grammar has at most one
synthesized attribute: the abstract syntax that the respective character sequence expresses. Thus, the attribute
grammar implicitly defines a parsing function. Some productions also take a context as an inherited attribute that
records bound identifiers.

Except for a few exceptions, the core of the text grammar closely mirrors the grammar of the abstract syntax.
However, it also defines a number of abbreviations that are “syntactic sugar” over the core syntax.

The recommended extension for files containing WebAssembly modules in text format is “.wat”. Files with this
extension are assumed to be encoded in UTF-8, as per Unicode37 (Section 2.5).

6.1.1 Grammar
The following conventions are adopted in defining grammar rules of the text format. They mirror the conventions
used for abstract syntax and for the binary format. In order to distinguish symbols of the textual syntax from
symbols of the abstract syntax, typewriter font is adopted for the former.

• Terminal symbols are either literal strings of characters enclosed in quotes or expressed as Unicode38 scalar
values: ‘module’, U+0A. (All characters written literally are unambiguously drawn from the 7-bit ASCII39

subset of Unicode.)

• Nonterminal symbols are written in typewriter font: valtype, instr.

• 𝑇𝑛 is a sequence of 𝑛 ≥ 0 iterations of 𝑇 .

• 𝑇 * is a possibly empty sequence of iterations of 𝑇 . (This is a shorthand for 𝑇𝑛 used where 𝑛 is not relevant.)

• 𝑇+ is a possibly empty sequence of iterations of 𝑇 . (This is a shorthand for 𝑇𝑛 used where 𝑛 is not relevant.)

• 𝑇 ? is an optional occurrence of 𝑇 . (This is a shorthand for 𝑇𝑛 where 𝑛 ≤ 1.)
36 https://en.wikipedia.org/wiki/S-expression
37 https://www.unicode.org/versions/latest/
38 https://www.unicode.org/versions/latest/
39 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

221

https://en.wikipedia.org/wiki/S-expression
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• 𝑥:𝑇 denotes the same language as the nonterminal 𝑇 , but also binds the variable 𝑥 to the attribute synthesized
for 𝑇 . A pattern may also be used instead of a variable, e.g., 7:𝑇 .

• Productions are written sym ::= 𝑇1 ⇒ 𝐴1 | . . . | 𝑇𝑛 ⇒ 𝐴𝑛, where each 𝐴𝑖 is the attribute that is syn-
thesized for sym in the given case, usually from attribute variables bound in 𝑇𝑖.

• Large productions may be split into multiple definitions, indicated by ending the first one with explicit el-
lipses, sym ::= 𝐵1 | . . ., and starting continuations with ellipses, sym ::= . . . | 𝐵2.

• Some productions are augmented by side conditions in parentheses, which restrict the applicability of the
production. They provide a shorthand for a combinatorial expansion of the production into many separate
cases.

• If the same meta variable or non-terminal symbol appears multiple times in a production (in the syntax or in
an attribute), then all those occurrences must have the same instantiation.

• A distinction is made between lexical and syntactic productions. For the latter, arbitrary white space is
allowed in any place where the grammar contains spaces. The productions defining lexical syntax and the
syntax of values are considered lexical, all others are syntactic.

Note

For example, the textual grammar for number types is given as follows:

numtype ::= ‘i32’ ⇒ i32
| ‘i64’ ⇒ i64
| ‘f32’ ⇒ f32
| ‘f64’ ⇒ f64

The textual grammar for limits is defined as follows:

limits𝑁 ::= 𝑛:u64 ⇒ [𝑛 .. 2𝑁]
| 𝑛:u64 𝑚:u64 ⇒ [𝑛 ..𝑚]

The variables 𝑛 and 𝑚 name the attributes of the respective u64 nonterminals, which in this case are the actual
unsigned integers those parse into. The attribute of the complete production then is the abstract syntax for the
limit, expressed in terms of the former values.

The variable 𝑁 is a parameter to the grammer symbol that can be instantiated differently at each use site. In
this example, it controls the value range of the limits.

6.1.2 Abbreviations
In addition to the core grammar, which corresponds directly to the abstract syntax, the textual syntax also defines
a number of abbreviations that can be used for convenience and readability.

Abbreviations are defined by rewrite rules specifying their expansion into the core syntax:

sym ::= abbreviated syntax ≡ expanded syntax

These expansions are assumed to be applied, recursively and in order of appearance, before applying the core
grammar rules to construct the abstract syntax.

6.1.3 Contexts
The text format allows the use of symbolic identifiers in place of indices. To resolve these identifiers into concrete
indices, some grammar productions are indexed by an identifier context 𝐼 as a synthesized attribute that records
the declared identifiers in each index space. In addition, the context records the types defined in the module, so
that parameter indices can be computed for functions.

222 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

It is convenient to define identifier contexts as records 𝐼 with abstract syntax as follows:

𝐼 ::= {types (name?)*

tags (name?)*

globals (name?)*

mems (name?)*

tables (name?)*

funcs (name?)*

datas (name?)*

elems (name?)*

locals (name?)*

labels (name?)*

fields ((name?)*)*

typedefs (subtype?)*}

For each index space, such a context contains the list of names assigned to the defined indices, which were denoted
by the corresponding identifiers. Unnamed indices are associated with empty (𝜖) entries in these lists. Fields have
dependent name spaces, and hence a separate list of field identifiers per type.

An identifier context is well-formed if no index space contains duplicate identifiers. For fields, names need only
be unique within a single type.

Conventions

To avoid unnecessary clutter, empty components are omitted when writing out identifier contexts. For example,
the record {} is shorthand for an identifier context whose components are all empty.

6.1.4 Lists
Lists are written as plain sequences, but with a restriction on the length of these sequence.

list(X) ::= (el :X)* ⇒ el* if |el*| < 232

6.2 Lexical Format

6.2.1 Characters
The text format assigns meaning to source text, which consists of a sequence of characters. Characters are assumed
to be represented as valid Unicode40 (Section 2.4) scalar values.

source ::= char*

char ::= U+00 | . . . | U+D7FF | U+E000 | . . . | U+10FFFF

Note

While source text may contain any Unicode character in comments or string literals, the rest of the grammar is
formed exclusively from the characters supported by the 7-bit ASCII41 subset of Unicode.

6.2.2 Tokens
The character stream in the source text is divided, from left to right, into a sequence of tokens, as defined by the
following grammar.

token ::= keyword | u | s | f | string | id | ‘(’ | ‘)’ | reserved
keyword ::= (‘a’ | . . . | ‘z’) idchar*

reserved ::= (idchar | string | ‘,’ | ‘;’ | ‘[’ | ‘]’ | ‘{’ | ‘}’)+

40 https://www.unicode.org/versions/latest/
41 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

6.2. Lexical Format 223

https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Tokens are formed from the input character stream according to the longest match rule. That is, the next token
always consists of the longest possible sequence of characters that is recognized by the above lexical grammar.
Tokens can be separated by white space, but except for strings, they cannot themselves contain whitespace.

Keyword tokens always start with a lower-case letter. The set of keywords is defined implicitly: only those tokens
are defined to be keywords that occur as a terminal symbol in literal form, such as ‘keyword’, in a syntactic
production of this chapter.

Any token that does not fall into any of the other categories is considered reserved, and cannot occur in source text.

Note

The effect of defining the set of reserved tokens is that all tokens must be separated by either parentheses, white
space, or comments. For example, ‘0$x’ is a single reserved token, as is ‘′′a′′′′b′′’. Consequently, they are not
recognized as two separate tokens ‘0’ and ‘$x’, or ‘′′a′′’ and ‘′′b′′’, respectively, but instead disallowed. This
property of tokenization is not affected by the fact that the definition of reserved tokens overlaps with other
token classes.

6.2.3 White Space
White space is any sequence of literal space characters, formatting characters, comments, or annotations. The
allowed formatting characters correspond to a subset of the ASCII42 format effectors, namely, horizontal tabulation
(U+09), line feed (U+0A), and carriage return (U+0D).

space ::= (‘’ | format | comment | annot)*

format ::= newline | U+09

newline ::= U+0A | U+0D | U+0D U+0A

The only relevance of white space is to separate tokens. It is otherwise ignored.

6.2.4 Comments
A comment can either be a line comment, started with a double semicolon ‘; ;’ and extending to the end of the line,
or a block comment, enclosed in delimiters ‘(;’ . . . ‘;)’. Block comments can be nested.

comment ::= linecomment | blockcomment
linecomment ::= ‘; ;’ linechar* (newline | eof)

linechar ::= 𝑐:char if 𝑐 ̸= U+0A ∧ 𝑐 ̸= U+0D

blockcomment ::= ‘(;’ blockchar* ‘;)’
blockchar ::= 𝑐:char if 𝑐 ̸= ‘;’ ∧ 𝑐 ̸= ‘(’

| ‘;’+ 𝑐:char if 𝑐 ̸= ‘;’ ∧ 𝑐 ̸= ‘)’
| ‘(’+ 𝑐:char if 𝑐 ̸= ‘;’ ∧ 𝑐 ̸= ‘(’
| blockcomment

Here, the pseudo token eof indicates the end of the input. The look-ahead restrictions on the productions for
blockchar disambiguate the grammar such that only well-bracketed uses of block comment delimiters are allowed.

Note

Any formatting and control characters are allowed inside comments.

6.2.5 Annotations
An annotation is a bracketed token sequence headed by an annotation id of the form ‘@id’ or ‘@′′...′′’. No space is
allowed between the opening parenthesis and this id. Annotations are intended to be used for third-party extensions;

42 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

224 Chapter 6. Text Format

https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

they can appear anywhere in a program but are ignored by the WebAssembly semantics itself, which treats them
as white space.

Annotations can contain other parenthesized token sequences (including nested annotations), as long as they are
well-nested. String literals and comments occurring in an annotation must also be properly nested and closed.

annot ::= ‘(@’ annotid (space | token)* ‘)’
annotid ::= idchar+ | name

Note

The annotation id is meant to be an identifier categorising the extension, and plays a role similar to the name of a
custom section. By convention, annotations corresponding to a custom section should use the custom section’s
name as an id.

Implementations are expected to ignore annotations with ids that they do not recognize. On the other hand,
they may impose restrictions on annotations that they do recognize, e.g., requiring a specific structure by super-
imposing a more concrete grammar. It is up to an implementation how it deals with errors in such annotations.

6.3 Values
The grammar productions in this section define lexical syntax, hence no white space is allowed.

6.3.1 Integers
All integers can be written in either decimal or hexadecimal notation. In both cases, digits can optionally be
separated by underscores.

sign ::= 𝜖 ⇒ +1 | ‘+’ ⇒ +1 | ‘-’ ⇒ −1

digit ::= ‘0’ ⇒ 0 | . . . | ‘9’ ⇒ 9
hexdigit ::= 𝑑:digit ⇒ 𝑑

| ‘A’ ⇒ 10 | . . . | ‘F’ ⇒ 15
| ‘a’ ⇒ 10 | . . . | ‘f’ ⇒ 15

num ::= 𝑑:digit ⇒ 𝑑

| 𝑛:num ‘_’? 𝑑:digit ⇒ 10𝑛+ 𝑑
hexnum ::= ℎ:hexdigit ⇒ ℎ

| 𝑛:hexnum ‘_’? ℎ:hexdigit ⇒ 16𝑛+ ℎ

The allowed syntax for integer literals depends on size and signedness. Moreover, their value must lie within the
range of the respective type.

u𝑁 ::= 𝑛:num ⇒ 𝑛 if 𝑛 < 2𝑁

| ‘0x’ 𝑛:hexnum ⇒ 𝑛 if 𝑛 < 2𝑁

s𝑁 ::= 𝑠:sign 𝑛:u𝑁 ⇒ 𝑠 · 𝑛 if −2𝑁−1 ≤ 𝑠 · 𝑛 < 2𝑁−1

Uninterpreted integers can be written as either signed or unsigned, and are normalized to unsigned in the abstract
syntax.

i𝑁 ::= 𝑛:u𝑁 ⇒ 𝑛

| 𝑖:s𝑁 ⇒ signed−1
𝑁 (𝑖)

6.3. Values 225

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.3.2 Floating-Point
Floating-point values can be represented in either decimal or hexadecimal notation.

frac ::= 𝑑:digit ⇒ 𝑑/10

| 𝑑:digit ‘_’? 𝑝:frac ⇒ (𝑑+ 𝑝/10)/10
hexfrac ::= ℎ:hexdigit ⇒ ℎ/16

| ℎ:hexdigit ‘_’? 𝑝:hexfrac ⇒ (ℎ+ 𝑝/16)/16

mant ::= 𝑝:num ‘.’? ⇒ 𝑝
| 𝑝:num ‘.’ 𝑞:frac ⇒ 𝑝+ 𝑞

hexmant ::= 𝑝:hexnum ‘.’? ⇒ 𝑝
| 𝑝:hexnum ‘.’ 𝑞:hexfrac ⇒ 𝑝+ 𝑞

float ::= 𝑝:mant (‘E’ | ‘e’) 𝑠:sign 𝑒:num ⇒ 𝑝 · 10𝑠·𝑒
hexfloat ::= ‘0x’ 𝑝:hexmant (‘P’ | ‘p’) 𝑠:sign 𝑒:num ⇒ 𝑝 · 2𝑠·𝑒

The value of a literal must not lie outside the representable range of the corresponding IEEE 75443 type (that is, a
numeric value must not overflow to ±∞), but it may be rounded to the nearest representable value.

Note

Rounding can be prevented by using hexadecimal notation with no more significant bits than supported by the
required type.

Floating-point values may also be written as constants for infinity or canonical NaN (not a number). Furthermore,
arbitrary NaN values may be expressed by providing an explicit payload value.

f𝑁 ::= (+1):sign 𝑞:f𝑁mag ⇒ +𝑞
| (−1):sign 𝑞:f𝑁mag ⇒ −𝑞

f𝑁mag ::= 𝑞:float ⇒ float𝑁 (𝑞) if float𝑁 (𝑞) ̸= ∞
| 𝑞:hexfloat ⇒ float𝑁 (𝑞) if float𝑁 (𝑞) ̸= ∞
| ‘inf’ ⇒ ∞
| ‘nan’ ⇒ nan(canon𝑁)
| ‘nan : 0x’ 𝑛:hexnum ⇒ nan(𝑛) if 1 ≤ 𝑛 < 2signif(𝑁)

6.3.3 Strings
Strings denote sequences of bytes that can represent both textual and binary data. They are enclosed in quotation
marks and may contain any character other than ASCII44 control characters, quotation marks (‘′′’), or backslash
(‘∖’), except when expressed with an escape sequence.

string ::= ‘′′’ (𝑏*:stringelem)* ‘′′’ ⇒
⨁︀

𝑏** if |
⨁︀

𝑏**| < 232

stringelem ::= 𝑐:stringchar ⇒ utf8(𝑐)
| ‘∖’ ℎ1:hexdigit ℎ2:hexdigit ⇒ 16ℎ1 + ℎ2

Each character in a string literal represents the byte sequence corresponding to its UTF-8 Unicode45 (Section 2.5)
encoding, except for hexadecimal escape sequences ‘∖hh’, which represent raw bytes of the respective value.

stringchar ::= 𝑐:char ⇒ 𝑐 if 𝑐 ≥ U+20 ∧ 𝑐 ̸= U+7F ∧ 𝑐 ̸= ‘′′’ ∧ 𝑐 ̸= ‘∖’
| ‘∖t’ ⇒ U+09
| ‘∖n’ ⇒ U+0A
| ‘∖r’ ⇒ U+0D
| ‘∖′′’ ⇒ U+22
| ‘∖′’ ⇒ U+27
| ‘∖∖’ ⇒ U+5C
| ‘∖u{’ 𝑛:hexnum ‘}’ ⇒ 𝑛 if 𝑛 < 0xD800 ∨ 0xE800 ≤ 𝑛 < 0x110000

43 https://ieeexplore.ieee.org/document/8766229
44 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d
45 https://www.unicode.org/versions/latest/

226 Chapter 6. Text Format

https://ieeexplore.ieee.org/document/8766229
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d
https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.3.4 Names
Names are strings denoting a literal character sequence. A name string must form a valid UTF-8 encoding as
defined by Unicode46 (Section 2.5) and is interpreted as a string of Unicode scalar values.

name ::= 𝑏*:string ⇒ 𝑐* if 𝑏* = utf8(𝑐*)

Note

Presuming the source text is itself encoded correctly, strings that do not contain any uses of hexadecimal byte
escapes are always valid names.

6.3.5 Identifiers
Indices can be given in both numeric and symbolic form. Symbolic identifiers that stand in lieu of indices start with
‘$’, followed by eiter a sequence of printable ASCII47 characters that does not contain a space, quotation mark,
comma, semicolon, or bracket, or by a quoted name.

id ::= ‘$’ 𝑐*:idchar+ ⇒ 𝑐*

| ‘$’ 𝑐*:name ⇒ 𝑐* if |𝑐*| > 0
idchar ::= ‘0’ | . . . | ‘9’

| ‘A’ | . . . | ‘Z’
| ‘a’ | . . . | ‘z’
| ‘!’ | ‘#’ | ‘$’ | ‘%’ | ‘&’ | ‘′’ | ‘*’ | ‘+’ | ‘-’ | ‘.’ | ‘/’
| ‘:’ | ‘<’ | ‘=’ | ‘>’ | ‘?’ | ‘@’ | ‘∖’ | ‘^’ | ‘_’ | ‘`’ | ‘|’ | ‘~’

Note

The value of an identifier character is the Unicode codepoint denoting it.

Conventions

The expansion rules of some abbreviations require insertion of a fresh identifier. That may be any syntactically
valid identifier that does not already occur in the given source text.

6.4 Types

6.4.1 Number Types
numtype ::= ‘i32’ ⇒ i32

| ‘i64’ ⇒ i64
| ‘f32’ ⇒ f32
| ‘f64’ ⇒ f64

6.4.2 Vector Types
vectype ::= ‘v128’ ⇒ v128

46 https://www.unicode.org/versions/latest/
47 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

6.4. Types 227

https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.4.3 Heap Types
absheaptype ::= ‘any’ ⇒ any

| ‘eq’ ⇒ eq
| ‘i31’ ⇒ i31
| ‘struct’ ⇒ struct
| ‘array’ ⇒ array
| ‘none’ ⇒ none
| ‘func’ ⇒ func
| ‘nofunc’ ⇒ nofunc
| ‘exn’ ⇒ exn
| ‘cont’ ⇒ cont
| ‘noexn’ ⇒ noexn
| ‘extern’ ⇒ extern
| ‘noextern’ ⇒ noextern
| ‘nocont’ ⇒ nocont

heaptype𝐼 ::= ht :absheaptype ⇒ ht
| 𝑥:typeidx𝐼 ⇒ 𝑥

6.4.4 Reference Types
null ::= ‘null’ ⇒ null

reftype𝐼 ::= ‘(’ ‘ref’ null?:null? ht :heaptype𝐼 ‘)’ ⇒ ref null? ht
| . . .

Abbreviations

There are shorthands for references to abstract heap types.

reftype𝐼 ::= . . .
| ‘anyref’ ≡ ‘(’ ‘ref’ ‘null’ ‘any’ ‘)’
| ‘eqref’ ≡ ‘(’ ‘ref’ ‘null’ ‘eq’ ‘)’
| ‘i31ref’ ≡ ‘(’ ‘ref’ ‘null’ ‘i31’ ‘)’
| ‘structref’ ≡ ‘(’ ‘ref’ ‘null’ ‘struct’ ‘)’
| ‘arrayref’ ≡ ‘(’ ‘ref’ ‘null’ ‘array’ ‘)’
| ‘nullref’ ≡ ‘(’ ‘ref’ ‘null’ ‘none’ ‘)’
| ‘funcref’ ≡ ‘(’ ‘ref’ ‘null’ ‘func’ ‘)’
| ‘nullfuncref’ ≡ ‘(’ ‘ref’ ‘null’ ‘nofunc’ ‘)’
| ‘exnref’ ≡ ‘(’ ‘ref’ ‘null’ ‘exn’ ‘)’
| ‘nullexnref’ ≡ ‘(’ ‘ref’ ‘null’ ‘noexn’ ‘)’
| ‘externref’ ≡ ‘(’ ‘ref’ ‘null’ ‘extern’ ‘)’
| ‘nullexternref’ ≡ ‘(’ ‘ref’ ‘null’ ‘noextern’ ‘)’

6.4.5 Value Types
valtype𝐼 ::= nt :numtype ⇒ nt

| vt :vectype ⇒ vt
| rt :reftype𝐼 ⇒ rt

228 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.4.6 Composite Types
Composite types are parsed into their respective abstract representation, paired with the local identifier context
generated by their bound field or parameter identifiers:

comptype𝐼 ::= ‘(’ ‘struct’ (ft , id?)*:list(field𝐼) ‘)’ ⇒ (struct ft*, {fields (id?)*})
| ‘(’ ‘array’ ft :fieldtype𝐼 ‘)’ ⇒ (array ft , {})
| ‘(’ ‘func’ (𝑡1, id

?)*:list(param𝐼) 𝑡*2:list(result𝐼) ‘)’ ⇒ (func 𝑡*1 → 𝑡*2, {})
| ‘(’ ‘cont’ tu:heaptype𝐼 ‘)’ ⇒ (cont tu, {})

field𝐼 ::= ‘(’ ‘field’ id?:id? ft :fieldtype𝐼 ‘)’ ⇒ (ft , id?)
| . . .

param𝐼 ::= ‘(’ ‘param’ id?:id? 𝑡:valtype𝐼 ‘)’ ⇒ (𝑡, id?)
| . . .

result𝐼 ::= ‘(’ ‘result’ 𝑡:valtype𝐼 ‘)’ ⇒ 𝑡
| . . .

fieldtype𝐼 ::= zt :storagetype𝐼 ⇒ zt
| ‘(’ ‘mut’ zt :storagetype𝐼 ‘)’ ⇒ mut zt

storagetype𝐼 ::= 𝑡:valtype𝐼 ⇒ 𝑡
| pt :packtype ⇒ pt

packtype ::= ‘i8’ ⇒ i8
| ‘i16’ ⇒ i16

Note

The optional identifier names for parameters in a function type only have documentation purpose. They cannot
be referenced from anywhere.

Abbreviations

Multiple anonymous structure fields or parameters or multiple results may be combined into a single declaration:

field𝐼 ::= . . . | ‘(’ ‘field’ fieldtype*𝐼 ‘)’ ≡ (‘(’ ‘field’ fieldtype𝐼 ‘)’)*
param𝐼 ::= . . . | ‘(’ ‘param’ valtype*𝐼 ‘)’ ≡ (‘(’ ‘param’ valtype𝐼 ‘)’)*
result𝐼 ::= . . . | ‘(’ ‘result’ valtype*𝐼 ‘)’ ≡ (‘(’ ‘param’ valtype𝐼 ‘)’)*

6.4.7 Recursive Types
Recursive types are parsed into their respective abstract representation, paired with the identifier context generated
by their bound identifiers:

final ::= ‘final’ ⇒ final

subtype𝐼 ::= ‘(’ ‘sub’ fin?:final? 𝑥*:list(typeidx𝐼) (ct , 𝐼 ′):comptype𝐼 ‘)’ ⇒ (sub fin? 𝑥* ct , 𝐼 ′)
| . . .

typedef𝐼 ::= ‘(’ ‘type’ id?:id? (st , 𝐼 ′):subtype𝐼 ‘)’ ⇒ (st , 𝐼 ′ ⊕ {types (id?)})
rectype𝐼 ::= ‘(’ ‘rec’ (st , 𝐼 ′)*:list(typedef𝐼) ‘)’ ⇒ (rec st*, concatidctxt(𝐼

′*))
| . . .

Abbreviations

Final sub types with no super-types can omit the ‘sub’ keyword and its arguments:

subtype𝐼 ::= . . . | comptype𝐼 ≡ ‘(’ ‘sub’ ‘final’ comptype𝐼 ‘)’

Similarly, singular recursive types can omit the ‘rec’ keyword:

rectype𝐼 ::= . . . | typedef𝐼 ≡ ‘(’ ‘rec’ typedef𝐼 ‘)’

6.4. Types 229

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.4.8 Address Types
addrtype ::= ‘i32’ ⇒ i32

| ‘i64’ ⇒ i64
| . . .

Abbreviations

The address type can be omitted, in which case it defaults i32:

addrtype ::= . . . | 𝜖 ≡ ‘i32’

6.4.9 Limits
limits𝑁 ::= 𝑛:u64 ⇒ [𝑛 .. 2𝑁]

| 𝑛:u64 𝑚:u64 ⇒ [𝑛 ..𝑚]

6.4.10 Tag Types
tagtype𝐼 ::= (𝑥, 𝐼 ′):typeuse𝐼 ⇒ 𝑥

6.4.11 Global Types
globaltype𝐼 ::= 𝑡:valtype𝐼 ⇒ 𝑡

| ‘(’ ‘mut’ 𝑡:valtype𝐼 ‘)’ ⇒ mut 𝑡

6.4.12 Memory Types
memtype𝐼 ::= at :addrtype lim:limits|at|−16 ⇒ at lim page

6.4.13 Table Types
tabletype𝐼 ::= at :addrtype lim:limits|at| rt :reftype𝐼 ⇒ at lim rt

6.4.14 External Types
externtype𝐼 ::= ‘(’ ‘tag’ id?:id? jt :tagtype𝐼 ‘)’ ⇒ (tag jt , {tags (id?)})

| ‘(’ ‘global’ id?:id? gt :globaltype𝐼 ‘)’ ⇒ (global gt , {globals (id?)})
| ‘(’ ‘memory’ id?:id? mt :memtype𝐼 ‘)’ ⇒ (mem mt , {mems (id?)})
| ‘(’ ‘table’ id?:id? tt :tabletype𝐼 ‘)’ ⇒ (table tt , {tables (id?)})
| ‘(’ ‘func’ id?:id? (𝑥, 𝐼 ′):typeuse𝐼 ‘)’ ⇒ (func 𝑥, {funcs (id?)})

230 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.4.15 Type Uses
A type use is a reference to a type definition. Where it is required to reference a function type, it may optionally
be augmented by explicit inlined parameter and result declarations. That allows binding symbolic identifiers to
name the local indices of parameters. If inline declarations are given, then their types must match the referenced
function type.

typeuse𝐼 ::= ‘(’ ‘type’ 𝑥:typeidx𝐼 ‘)’ ⇒ (𝑥, 𝐼 ′)
if 𝐼.typedefs[𝑥] = sub final (func 𝑡*1 → 𝑡*2)

∧ 𝐼 ′ = {locals (𝜖)|𝑡*1 |}
| ‘(’ ‘type’ 𝑥:typeidx𝐼 ‘)’ (𝑡1, id

?)*:param*𝐼 𝑡*2:result
*
𝐼 ⇒ (𝑥, 𝐼 ′)

if 𝐼.typedefs[𝑥] = sub final (func 𝑡*1 → 𝑡*2)

∧ 𝐼 ′ = {locals (id?)*}
∧ ⊢ 𝐼 ′ : ok

| . . .

Note

If inline declarations are given, their types must be syntactically equal to the types from the indexed definition;
possible type substitutions from other definitions that might make them equal are not taken into account. This
is to simplify syntactic pre-processing.

The synthesized attribute of a typeuse is a pair consisting of both the used type index and the local identifier
context containing possible parameter identifiers.

Note

Both productions overlap for the case that the function type is func 𝜖 → 𝜖. However, in that case, they also
produce the same results, so that the choice is immaterial.

The well-formedness condition on 𝐼 ′ ensures that the parameters do not contain duplicate identifiers.

Abbreviations

A type use may also be replaced entirely by inline parameter and result declarations. In that case, a type index is
automatically inserted:

typeuse𝐼 ::= . . . | (𝑡1, id
?)*:param*𝐼 𝑡*2:result

*
𝐼 ≡ ‘(’ ‘type’ 𝑥:typeidx𝐼 ‘)’ param*𝐼 result*𝐼

if 𝐼.typedefs[𝑥] = sub final (func 𝑡*1 → 𝑡*2)
∧ (𝐼.typedefs[𝑖] ̸= sub final (func 𝑡*1 → 𝑡*2))

𝑖<𝑥

where 𝑥 is the smallest existing type index whose recursive type definition parses into a singular, final function
type with the same parameters and results. If no such index exists, then a new recursive type of the same form is
inserted at the end of the module.

Abbreviations are expanded in the order they appear, such that previously inserted type definitions are reused by
consecutive expansions.

6.5 Instructions
Instructions are syntactically distinguished into plain and structured instructions.

instr𝐼 ::= in:plaininstr𝐼 ⇒ in
| in:blockinstr𝐼 ⇒ in

In addition, as a syntactic abbreviation, instructions can be written as S-expressions in folded form, to group them
visually.

6.5. Instructions 231

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.1 Labels
Structured control instructions can be annotated with a symbolic label identifier. They are the only symbolic
identifiers that can be bound locally in an instruction sequence. The following grammar handles the corresponding
update to the identifier context by composing the context with an additional label entry.

label𝐼 ::= 𝑣:id ⇒ 𝑣, {labels 𝑣} ⊕ 𝐼 (if 𝑣 /∈ 𝐼.labels)
| 𝑣:id ⇒ 𝑣, {labels 𝑣} ⊕ (𝐼 with labels[𝑖] = 𝜖) (if 𝐼.labels[𝑖] = 𝑣)
| 𝜖 ⇒ 𝜖, {labels (𝜖)} ⊕ 𝐼

Note

The new label entry is inserted at the beginning of the label list in the identifier context. This effectively shifts
all existing labels up by one, mirroring the fact that control instructions are indexed relatively not absolutely.

If a label with the same name already exists, then it is shadowed and the earlier label becomes inaccessible.

6.5.2 Parametric Instructions
plaininstr𝐼 ::= . . .

| ‘drop’ ⇒ drop
| ‘select’ ((𝑡:result𝐼)*)? ⇒ select (𝑡*)?

6.5.3 Control Instructions
Structured control instructions can bind an optional symbolic label identifier. The same label identifier may op-
tionally be repeated after the corresponding end or else keywords, to indicate the matching delimiters.

Their block type is given as a type use, analogous to the type of functions. However, the special case of a type use
that is syntactically empty or consists of only a single result is not regarded as an abbreviation for an inline function
type, but is parsed directly into an optional value type.

blocktype𝐼 ::=
|

(𝑡:result𝐼)
? ⇒ 𝑡?

𝑥, 𝐼 ′:typeuse𝐼 ⇒ 𝑥 (if 𝐼 ′ = {locals (𝜖)*})
blockinstr𝐼 ::= ‘block’ (𝑣?, 𝐼 ′):label𝐼 bt :blocktype𝐼 (in:instr𝐼′)* ‘end’ 𝑣′

?
:id?

⇒ block bt in* (if 𝑣′? = 𝜖 ∨ 𝑣′
?
= 𝑣?)

| ‘loop’ (𝑣?, 𝐼 ′):label𝐼 bt :blocktype𝐼 (in:instr𝐼′)* ‘end’ 𝑣′
?
:id?

⇒ loop bt in* (if 𝑣′? = 𝜖 ∨ 𝑣′
?
= 𝑣?)

| ‘if’ (𝑣?, 𝐼 ′):label𝐼 bt :blocktype𝐼 (in1:instr𝐼′)* ‘else’ 𝑣?1:id
?
1 (in2:instr𝐼′)* ‘end’ 𝑣?2:id

?
2

⇒ if bt in*
1 else in

*
2 (if 𝑣?1 = 𝜖 ∨ 𝑣?1 = 𝑣?, 𝑣?2 = 𝜖 ∨ 𝑣?2 = 𝑣?)

| ‘try_table’ 𝐼 ′:label𝐼 bt :blocktype (𝑐:catch𝐼)
* (in:instr𝐼′)* ‘end’ id?

⇒ try_table bt 𝑐* in* (if id? = 𝜖 ∨ id? = label)
catch𝐼 ::=

|
|
|

‘(’ ‘catch’ 𝑥:tagidx𝐼 𝑙:labelidx𝐼 ‘)’ ⇒ catch 𝑥 𝑙
‘(’ ‘catch_ref’ 𝑥:tagidx𝐼 𝑙:labelidx𝐼 ‘)’ ⇒ catch_ref 𝑥 𝑙
‘(’ ‘catch_all’ 𝑙:labelidx𝐼 ‘)’ ⇒ catch_all 𝑙
‘(’ ‘catch_all_ref’ 𝑙:labelidx𝐼 ‘)’ ⇒ catch_all_ref 𝑙

Note

The side condition stating that the identifier context 𝐼 ′ must only contain unnamed entries in the rule for
typeuse block types enforces that no identifier can be bound in any param declaration for a block type.

232 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

All other control instruction are represented verbatim.

plaininstr𝐼 ::= ‘unreachable’ ⇒ unreachable
| ‘nop’ ⇒ nop
| ‘br’ 𝑙:labelidx𝐼 ⇒ br 𝑙
| ‘br_if’ 𝑙:labelidx𝐼 ⇒ br_if 𝑙
| ‘br_table’ 𝑙*:list(labelidx𝐼) 𝑙𝑁 :labelidx𝐼 ⇒ br_table 𝑙* 𝑙𝑁
| ‘br_on_null’ 𝑙:labelidx𝐼 ⇒ br_on_null 𝑙
| ‘br_on_non_null’ 𝑙:labelidx𝐼 ⇒ br_on_non_null 𝑙
| ‘br_on_cast’ 𝑙:labelidx𝐼 𝑡1:reftype 𝑡2:reftype ⇒ br_on_cast 𝑙 𝑡1 𝑡2
| ‘br_on_cast_fail’ 𝑙:labelidx𝐼 𝑡1:reftype 𝑡2:reftype ⇒ br_on_cast_fail 𝑙 𝑡1 𝑡2
| ‘return’ ⇒ return
| ‘call’ 𝑥:funcidx𝐼 ⇒ call 𝑥
| ‘call_ref’ 𝑥:typeidx ⇒ call_ref 𝑥
| ‘call_indirect’ 𝑥:tableidx 𝑦, 𝐼 ′:typeuse𝐼 ⇒ call_indirect 𝑥 𝑦 (if 𝐼 ′ = {locals (𝜖)*})
| ‘return_call’ 𝑥:funcidx𝐼 ⇒ return_call 𝑥
| ‘return_call_ref’ 𝑥:typeidx ⇒ return_call_ref 𝑥
| ‘return_call_indirect’ 𝑥:tableidx 𝑦, 𝐼 ′:typeuse𝐼 ⇒ return_call_indirect 𝑥 𝑦 (if 𝐼 ′ = {locals (𝜖)*})
| ‘throw’ 𝑥:tagidx𝐼 ⇒ throw 𝑥
| ‘throw_ref’ ⇒ throw_ref
| . . .

Note

The side condition stating that the identifier context 𝐼 ′ must only contain unnamed entries in the rule for
call_indirect enforces that no identifier can be bound in any param declaration appearing in the type anno-
tation.

Abbreviations

The ‘else’ keyword of an ‘if’ instruction can be omitted if the following instruction sequence is empty.

‘if’ label blocktype𝐼 instr* ‘end’ ≡ ‘if’ label blocktype𝐼 instr* ‘else’ ‘end’

Also, for backwards compatibility, the table index to ‘call_indirect’ and ‘return_call_indirect’ can be
omitted, defaulting to 0.

‘call_indirect’ typeuse ≡ ‘call_indirect’ 0 typeuse

‘return_call_indirect’ typeuse ≡ ‘return_call_indirect’ 0 typeuse

6.5.4 Variable Instructions
plaininstr𝐼 ::= . . .

| ‘local.get’ 𝑥:localidx𝐼 ⇒ local.get 𝑥
| ‘local.set’ 𝑥:localidx𝐼 ⇒ local.set 𝑥
| ‘local.tee’ 𝑥:localidx𝐼 ⇒ local.tee 𝑥
| ‘global.get’ 𝑥:globalidx𝐼 ⇒ global.get 𝑥
| ‘global.set’ 𝑥:globalidx𝐼 ⇒ global.set 𝑥

6.5. Instructions 233

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.5 Table Instructions
plaininstr𝐼 ::= . . .

| ‘table.get’ 𝑥:tableidx𝐼 ⇒ table.get 𝑥
| ‘table.set’ 𝑥:tableidx𝐼 ⇒ table.set 𝑥
| ‘table.size’ 𝑥:tableidx𝐼 ⇒ table.size 𝑥
| ‘table.grow’ 𝑥:tableidx𝐼 ⇒ table.grow 𝑥
| ‘table.fill’ 𝑥:tableidx𝐼 ⇒ table.fill 𝑥
| ‘table.copy’ 𝑥:tableidx𝐼 𝑦:tableidx𝐼 ⇒ table.copy 𝑥 𝑦
| ‘table.init’ 𝑥:tableidx𝐼 𝑦:elemidx𝐼 ⇒ table.init 𝑥 𝑦
| ‘elem.drop’ 𝑥:elemidx𝐼 ⇒ elem.drop 𝑥

Abbreviations

For backwards compatibility, all table indices may be omitted from table instructions, defaulting to 0.

‘table.get’ ≡ ‘table.get’ ‘0’
‘table.set’ ≡ ‘table.set’ ‘0’
‘table.size’ ≡ ‘table.size’ ‘0’
‘table.grow’ ≡ ‘table.grow’ ‘0’
‘table.fill’ ≡ ‘table.fill’ ‘0’
‘table.copy’ ≡ ‘table.copy’ ‘0’ ‘0’
‘table.init’ 𝑥:elemidx𝐼 ≡ ‘table.init’ ‘0’ 𝑥:elemidx𝐼

6.5.6 Memory Instructions
The offset and alignment immediates to memory instructions are optional. The offset defaults to 0, the alignment
to the storage size of the respective memory access, which is its natural alignment. Lexically, an offset or align

234 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

phrase is considered a single keyword token, so no white space is allowed around the ‘=’.

memarg𝑁 ::= 𝑜:offset 𝑎:align𝑁 ⇒ {align 𝑛, offset 𝑜} (if 𝑎 = 2𝑛)
offset ::= ‘offset=’𝑜:u64 ⇒ 𝑜

| 𝜖 ⇒ 0
align𝑁 ::= ‘align=’𝑎:u64 ⇒ 𝑎

| 𝜖 ⇒ 𝑁
plaininstr𝐼 ::= . . .

| ‘i32.load’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ i32.load 𝑥 𝑚
| ‘i64.load’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ i64.load 𝑥 𝑚
| ‘f32.load’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ f32.load 𝑥 𝑚
| ‘f64.load’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ f64.load 𝑥 𝑚
| ‘v128.load’ 𝑥:memidx𝐼 𝑚:memarg16 ⇒ v128.load 𝑥 𝑚
| ‘i32.load8_s’ 𝑥:memidx𝐼 𝑚:memarg1 ⇒ i32.load8_s 𝑥 𝑚
| ‘i32.load8_u’ 𝑥:memidx𝐼 𝑚:memarg1 ⇒ i32.load8_u 𝑥 𝑚
| ‘i32.load16_s’ 𝑥:memidx𝐼 𝑚:memarg2 ⇒ i32.load16_s 𝑥 𝑚
| ‘i32.load16_u’ 𝑥:memidx𝐼 𝑚:memarg2 ⇒ i32.load16_u 𝑥 𝑚
| ‘i64.load8_s’ 𝑥:memidx𝐼 𝑚:memarg1 ⇒ i64.load8_s 𝑥 𝑚
| ‘i64.load8_u’ 𝑥:memidx𝐼 𝑚:memarg1 ⇒ i64.load8_u 𝑥 𝑚
| ‘i64.load16_s’ 𝑥:memidx𝐼 𝑚:memarg2 ⇒ i64.load16_s 𝑥 𝑚
| ‘i64.load16_u’ 𝑥:memidx𝐼 𝑚:memarg2 ⇒ i64.load16_u 𝑥 𝑚
| ‘i64.load32_s’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ i64.load32_s 𝑥 𝑚
| ‘i64.load32_u’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ i64.load32_u 𝑥 𝑚
| ‘v128.load8x8_s’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ v128.load8x8_s 𝑥 𝑚
| ‘v128.load8x8_u’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ v128.load8x8_u 𝑥 𝑚
| ‘v128.load16x4_s’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ v128.load16x4_s 𝑥 𝑚
| ‘v128.load16x4_u’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ v128.load16x4_u 𝑥 𝑚
| ‘v128.load32x2_s’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ v128.load32x2_s 𝑥 𝑚
| ‘v128.load32x2_u’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ v128.load32x2_u 𝑥 𝑚
| ‘v128.load8_splat’ 𝑥:memidx𝐼 𝑚:memarg1 ⇒ v128.load8_splat 𝑥 𝑚
| ‘v128.load16_splat’ 𝑥:memidx𝐼 𝑚:memarg2 ⇒ v128.load16_splat 𝑥 𝑚
| ‘v128.load32_splat’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ v128.load32_splat 𝑥 𝑚
| ‘v128.load64_splat’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ v128.load64_splat 𝑥 𝑚
| ‘v128.load32_zero’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ v128.load32_zero 𝑥 𝑚
| ‘v128.load64_zero’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ v128.load64_zero 𝑥 𝑚
| ‘v128.load8_lane’ 𝑥:memidx𝐼 𝑚:memarg1 𝑦:u8 ⇒ v128.load8_lane 𝑥 𝑚 𝑦
| ‘v128.load16_lane’ 𝑥:memidx𝐼 𝑚:memarg2 𝑦:u8 ⇒ v128.load16_lane 𝑥 𝑚 𝑦
| ‘v128.load32_lane’ 𝑥:memidx𝐼 𝑚:memarg4 𝑦:u8 ⇒ v128.load32_lane 𝑥 𝑚 𝑦
| ‘v128.load64_lane’ 𝑥:memidx𝐼 𝑚:memarg8 𝑦:u8 ⇒ v128.load64_lane 𝑥 𝑚 𝑦
| ‘i32.store’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ i32.store 𝑥 𝑚
| ‘i64.store’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ i64.store 𝑥 𝑚
| ‘f32.store’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ f32.store 𝑥 𝑚
| ‘f64.store’ 𝑥:memidx𝐼 𝑚:memarg8 ⇒ f64.store 𝑥 𝑚
| ‘v128.store’ 𝑥:memidx𝐼 𝑚:memarg16 ⇒ v128.store 𝑥 𝑚
| ‘i32.store8’ 𝑥:memidx𝐼 𝑚:memarg1 ⇒ i32.store8 𝑥 𝑚
| ‘i32.store16’ 𝑥:memidx𝐼 𝑚:memarg2 ⇒ i32.store16 𝑥 𝑚
| ‘i64.store8’ 𝑥:memidx𝐼 𝑚:memarg1 ⇒ i64.store8 𝑥 𝑚
| ‘i64.store16’ 𝑥:memidx𝐼 𝑚:memarg2 ⇒ i64.store16 𝑥 𝑚
| ‘i64.store32’ 𝑥:memidx𝐼 𝑚:memarg4 ⇒ i64.store32 𝑥 𝑚
| ‘v128.store8_lane’ 𝑥:memidx𝐼 𝑚:memarg1 𝑦:u8 ⇒ v128.store8_lane 𝑥 𝑚 𝑦
| ‘v128.store16_lane’ 𝑥:memidx𝐼 𝑚:memarg2 𝑦:u8 ⇒ v128.store16_lane 𝑥 𝑚 𝑦
| ‘v128.store32_lane’ 𝑥:memidx𝐼 𝑚:memarg4 𝑦:u8 ⇒ v128.store32_lane 𝑥 𝑚 𝑦
| ‘v128.store64_lane’ 𝑥:memidx𝐼 𝑚:memarg8 𝑦:u8 ⇒ v128.store64_lane 𝑥 𝑚 𝑦
| ‘memory.size’ 𝑥:memidx𝐼 ⇒ memory.size 𝑥
| ‘memory.grow’ 𝑥:memidx𝐼 ⇒ memory.grow 𝑥
| ‘memory.fill’ 𝑥:memidx𝐼 ⇒ memory.fill 𝑥
| ‘memory.copy’ 𝑥:memidx𝐼 𝑦:memidx𝐼 ⇒ memory.copy 𝑥 𝑦
| ‘memory.init’ 𝑥:memidx𝐼 𝑦:dataidx𝐼 ⇒ memory.init 𝑥 𝑦
| ‘data.drop’ 𝑥:dataidx𝐼 ⇒ data.drop 𝑥

6.5. Instructions 235

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Abbreviations

As an abbreviation, the memory index can be omitted in all memory instructions, defaulting to 0.

numtype‘.load’ memarg ≡ numtype‘.load’ ‘0’ memarg

vectype‘.load’ memarg ≡ vectype‘.load’ ‘0’ memarg

numtype‘.load’𝑁 ‘_’sx memarg ≡ numtype‘.load’𝑁 ‘_’sx ‘0’ memarg

vectype‘.load’𝑁x𝑀 ‘_’sx memarg ≡ vectype‘.load’𝑁x𝑀 ‘_’sx ‘0’ memarg

vectype‘.load’𝑁 ‘_splat’ memarg ≡ vectype‘.load’𝑁 ‘_splat’ ‘0’ memarg

vectype‘.load’𝑁 ‘_zero’ memarg ≡ vectype‘.load’𝑁 ‘_zero’ ‘0’ memarg

vectype‘.load’𝑁 ‘_lane’ memarg u8 ≡ vectype‘.load’𝑁 ‘_lane’ ‘0’ memarg u8

numtype‘.store’ memarg ≡ numtype‘.store’ ‘0’ memarg

vectype‘.store’ memarg ≡ vectype‘.store’ ‘0’ memarg

numtype‘.store’𝑁 memarg ≡ numtype‘.store’𝑁 ‘0’ memarg

vectype‘.store’𝑁 ‘_lane’ memarg u8 ≡ vectype‘.store’𝑁 ‘_lane’ ‘0’ memarg u8

‘memory.size’ ≡ ‘memory.size’ ‘0’
‘memory.grow’ ≡ ‘memory.grow’ ‘0’
‘memory.fill’ ≡ ‘memory.fill’ ‘0’
‘memory.copy’ ≡ ‘memory.copy’ ‘0’ ‘0’
‘memory.init’ 𝑥:elemidx𝐼 ≡ ‘memory.init’ ‘0’ 𝑥:elemidx𝐼

6.5.7 Reference Instructions
plaininstr𝐼 ::= . . .

| ‘ref.null’ 𝑡:heaptype𝐼 ⇒ ref.null 𝑡
| ‘ref.func’ 𝑥:funcidx𝐼 ⇒ ref.func 𝑥
| ‘ref.is_null’ ⇒ ref.is_null
| ‘ref.as_non_null’ ⇒ ref.as_non_null
| ‘ref.eq’ ⇒ ref.eq
| ‘ref.test’ 𝑡:reftype𝐼 ⇒ ref.test 𝑡
| ‘ref.cast’ 𝑡:reftype𝐼 ⇒ ref.cast 𝑡
| ‘struct.new’ 𝑥:typeidx𝐼 ⇒ struct.new 𝑥
| ‘struct.new_default’ 𝑥:typeidx𝐼 ⇒ struct.new_default 𝑥
| ‘struct.get’ 𝑥:typeidx𝐼 𝑦:fieldidx𝐼,𝑥 ⇒ struct.get 𝑥 𝑦
| ‘struct.get_u’ 𝑥:typeidx𝐼 𝑦:fieldidx𝐼,𝑥 ⇒ struct.get_u 𝑥 𝑦
| ‘struct.get_s’ 𝑥:typeidx𝐼 𝑦:fieldidx𝐼,𝑥 ⇒ struct.get_s 𝑥 𝑦
| ‘struct.set’ 𝑥:typeidx𝐼 𝑦:fieldidx𝐼,𝑥 ⇒ struct.set 𝑥 𝑦
| ‘array.new’ 𝑥:typeidx𝐼 ⇒ array.new 𝑥
| ‘array.new_default’ 𝑥:typeidx𝐼 ⇒ array.new_default 𝑥
| ‘array.new_fixed’ 𝑥:typeidx𝐼 𝑛:u32 ⇒ array.new_fixed 𝑥 𝑛
| ‘array.new_data’ 𝑥:typeidx𝐼 𝑦:dataidx𝐼 ⇒ array.new_data 𝑥 𝑦
| ‘array.new_elem’ 𝑥:typeidx𝐼 𝑦:elemidx𝐼 ⇒ array.new_elem 𝑥 𝑦
| ‘array.get’ 𝑥:typeidx𝐼 ⇒ array.get 𝑥
| ‘array.get_u’ 𝑥:typeidx𝐼 ⇒ array.get_u 𝑥
| ‘array.get_s’ 𝑥:typeidx𝐼 ⇒ array.get_s 𝑥
| ‘array.set’ 𝑥:typeidx𝐼 ⇒ array.set 𝑥
| ‘array.len’ ⇒ array.len
| ‘array.fill’ 𝑥:typeidx𝐼 ⇒ array.fill 𝑥
| ‘array.copy’ 𝑥:typeidx𝐼 𝑦:typeidx𝐼 ⇒ array.copy 𝑥 𝑦
| ‘array.init_data’ 𝑥:typeidx𝐼 𝑦:dataidx𝐼 ⇒ array.init_data 𝑥 𝑦
| ‘array.init_elem’ 𝑥:typeidx𝐼 𝑦:elemidx𝐼 ⇒ array.init_elem 𝑥 𝑦
| ‘ref.i31’ ⇒ ref.i31
| ‘i31.get_u’ ⇒ i31.get_u
| ‘i31.get_s’ ⇒ i31.get_s
| ‘any.convert_extern’ ⇒ any.convert_extern
| ‘extern.convert_any’ ⇒ extern.convert_any

236 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.8 Numeric Instructions
plaininstr𝐼 ::= . . .

| ‘i32.const’ 𝑛:i32 ⇒ i32.const 𝑛
| ‘i64.const’ 𝑛:i64 ⇒ i64.const 𝑛
| ‘f32.const’ 𝑧:f32 ⇒ f32.const 𝑧
| ‘f64.const’ 𝑧:f64 ⇒ f64.const 𝑧

| ‘i32.clz’ ⇒ i32.clz
| ‘i32.ctz’ ⇒ i32.ctz
| ‘i32.popcnt’ ⇒ i32.popcnt
| ‘i32.add’ ⇒ i32.add
| ‘i32.sub’ ⇒ i32.sub
| ‘i32.mul’ ⇒ i32.mul
| ‘i32.div_s’ ⇒ i32.div_s
| ‘i32.div_u’ ⇒ i32.div_u
| ‘i32.rem_s’ ⇒ i32.rem_s
| ‘i32.rem_u’ ⇒ i32.rem_u
| ‘i32.and’ ⇒ i32.and
| ‘i32.or’ ⇒ i32.or
| ‘i32.xor’ ⇒ i32.xor
| ‘i32.shl’ ⇒ i32.shl
| ‘i32.shr_s’ ⇒ i32.shr_s
| ‘i32.shr_u’ ⇒ i32.shr_u
| ‘i32.rotl’ ⇒ i32.rotl
| ‘i32.rotr’ ⇒ i32.rotr

| ‘i64.clz’ ⇒ i64.clz
| ‘i64.ctz’ ⇒ i64.ctz
| ‘i64.popcnt’ ⇒ i64.popcnt
| ‘i64.add’ ⇒ i64.add
| ‘i64.sub’ ⇒ i64.sub
| ‘i64.mul’ ⇒ i64.mul
| ‘i64.div_s’ ⇒ i64.div_s
| ‘i64.div_u’ ⇒ i64.div_u
| ‘i64.rem_s’ ⇒ i64.rem_s
| ‘i64.rem_u’ ⇒ i64.rem_u
| ‘i64.and’ ⇒ i64.and
| ‘i64.or’ ⇒ i64.or
| ‘i64.xor’ ⇒ i64.xor
| ‘i64.shl’ ⇒ i64.shl
| ‘i64.shr_s’ ⇒ i64.shr_s
| ‘i64.shr_u’ ⇒ i64.shr_u
| ‘i64.rotl’ ⇒ i64.rotl
| ‘i64.rotr’ ⇒ i64.rotr

6.5. Instructions 237

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| ‘f32.abs’ ⇒ f32.abs
| ‘f32.neg’ ⇒ f32.neg
| ‘f32.ceil’ ⇒ f32.ceil
| ‘f32.floor’ ⇒ f32.floor
| ‘f32.trunc’ ⇒ f32.trunc
| ‘f32.nearest’ ⇒ f32.nearest
| ‘f32.sqrt’ ⇒ f32.sqrt
| ‘f32.add’ ⇒ f32.add
| ‘f32.sub’ ⇒ f32.sub
| ‘f32.mul’ ⇒ f32.mul
| ‘f32.div’ ⇒ f32.div
| ‘f32.min’ ⇒ f32.min
| ‘f32.max’ ⇒ f32.max
| ‘f32.copysign’ ⇒ f32.copysign

| ‘f64.abs’ ⇒ f64.abs
| ‘f64.neg’ ⇒ f64.neg
| ‘f64.ceil’ ⇒ f64.ceil
| ‘f64.floor’ ⇒ f64.floor
| ‘f64.trunc’ ⇒ f64.trunc
| ‘f64.nearest’ ⇒ f64.nearest
| ‘f64.sqrt’ ⇒ f64.sqrt
| ‘f64.add’ ⇒ f64.add
| ‘f64.sub’ ⇒ f64.sub
| ‘f64.mul’ ⇒ f64.mul
| ‘f64.div’ ⇒ f64.div
| ‘f64.min’ ⇒ f64.min
| ‘f64.max’ ⇒ f64.max
| ‘f64.copysign’ ⇒ f64.copysign

| ‘i32.eqz’ ⇒ i32.eqz
| ‘i32.eq’ ⇒ i32.eq
| ‘i32.ne’ ⇒ i32.ne
| ‘i32.lt_s’ ⇒ i32.lt_s
| ‘i32.lt_u’ ⇒ i32.lt_u
| ‘i32.gt_s’ ⇒ i32.gt_s
| ‘i32.gt_u’ ⇒ i32.gt_u
| ‘i32.le_s’ ⇒ i32.le_s
| ‘i32.le_u’ ⇒ i32.le_u
| ‘i32.ge_s’ ⇒ i32.ge_s
| ‘i32.ge_u’ ⇒ i32.ge_u

| ‘i64.eqz’ ⇒ i64.eqz
| ‘i64.eq’ ⇒ i64.eq
| ‘i64.ne’ ⇒ i64.ne
| ‘i64.lt_s’ ⇒ i64.lt_s
| ‘i64.lt_u’ ⇒ i64.lt_u
| ‘i64.gt_s’ ⇒ i64.gt_s
| ‘i64.gt_u’ ⇒ i64.gt_u
| ‘i64.le_s’ ⇒ i64.le_s
| ‘i64.le_u’ ⇒ i64.le_u
| ‘i64.ge_s’ ⇒ i64.ge_s
| ‘i64.ge_u’ ⇒ i64.ge_u

238 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| ‘f32.eq’ ⇒ f32.eq
| ‘f32.ne’ ⇒ f32.ne
| ‘f32.lt’ ⇒ f32.lt
| ‘f32.gt’ ⇒ f32.gt
| ‘f32.le’ ⇒ f32.le
| ‘f32.ge’ ⇒ f32.ge

| ‘f64.eq’ ⇒ f64.eq
| ‘f64.ne’ ⇒ f64.ne
| ‘f64.lt’ ⇒ f64.lt
| ‘f64.gt’ ⇒ f64.gt
| ‘f64.le’ ⇒ f64.le
| ‘f64.ge’ ⇒ f64.ge

| ‘i32.wrap_i64’ ⇒ i32.wrap_i64
| ‘i32.trunc_f32_s’ ⇒ i32.trunc_f32_s
| ‘i32.trunc_f32_u’ ⇒ i32.trunc_f32_u
| ‘i32.trunc_f64_s’ ⇒ i32.trunc_f64_s
| ‘i32.trunc_f64_u’ ⇒ i32.trunc_f64_u
| ‘i32.trunc_sat_f32_s’ ⇒ i32.trunc_sat_f32_s
| ‘i32.trunc_sat_f32_u’ ⇒ i32.trunc_sat_f32_u
| ‘i32.trunc_sat_f64_s’ ⇒ i32.trunc_sat_f64_s
| ‘i32.trunc_sat_f64_u’ ⇒ i32.trunc_sat_f64_u
| ‘i64.extend_i32_s’ ⇒ i64.extend_i32_s
| ‘i64.extend_i32_u’ ⇒ i64.extend_i32_u
| ‘i64.trunc_f32_s’ ⇒ i64.trunc_f32_s
| ‘i64.trunc_f32_u’ ⇒ i64.trunc_f32_u
| ‘i64.trunc_f64_s’ ⇒ i64.trunc_f64_s
| ‘i64.trunc_f64_u’ ⇒ i64.trunc_f64_u
| ‘i64.trunc_sat_f32_s’ ⇒ i64.trunc_sat_f32_s
| ‘i64.trunc_sat_f32_u’ ⇒ i64.trunc_sat_f32_u
| ‘i64.trunc_sat_f64_s’ ⇒ i64.trunc_sat_f64_s
| ‘i64.trunc_sat_f64_u’ ⇒ i64.trunc_sat_f64_u
| ‘f32.convert_i32_s’ ⇒ f32.convert_i32_s
| ‘f32.convert_i32_u’ ⇒ f32.convert_i32_u
| ‘f32.convert_i64_s’ ⇒ f32.convert_i64_s
| ‘f32.convert_i64_u’ ⇒ f32.convert_i64_u
| ‘f32.demote_f64’ ⇒ f32.demote_f64
| ‘f64.convert_i32_s’ ⇒ f64.convert_i32_s
| ‘f64.convert_i32_u’ ⇒ f64.convert_i32_u
| ‘f64.convert_i64_s’ ⇒ f64.convert_i64_s
| ‘f64.convert_i64_u’ ⇒ f64.convert_i64_u
| ‘f64.promote_f32’ ⇒ f64.promote_f32
| ‘i32.reinterpret_f32’ ⇒ i32.reinterpret_f32
| ‘i64.reinterpret_f64’ ⇒ i64.reinterpret_f64
| ‘f32.reinterpret_i32’ ⇒ f32.reinterpret_i32
| ‘f64.reinterpret_i64’ ⇒ f64.reinterpret_i64

| ‘i32.extend8_s’ ⇒ i32.extend8_s
| ‘i32.extend16_s’ ⇒ i32.extend16_s
| ‘i64.extend8_s’ ⇒ i64.extend8_s
| ‘i64.extend16_s’ ⇒ i64.extend16_s
| ‘i64.extend32_s’ ⇒ i64.extend32_s

6.5. Instructions 239

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.9 Vector Instructions
Vector constant instructions have a mandatory shape descriptor, which determines how the following values are
parsed.

| ‘v128.const’ ‘i8x16’ (𝑛:i8)16 ⇒ v128.const bytes−1
i128(bytes𝑖8(𝑛)

16)
| ‘v128.const’ ‘i16x8’ (𝑛:i16)8 ⇒ v128.const bytes−1

i128(bytes𝑖16(𝑛)
8)

| ‘v128.const’ ‘i32x4’ (𝑛:i32)4 ⇒ v128.const bytes−1
i128(bytes𝑖32(𝑛)

4)
| ‘v128.const’ ‘i64x2’ (𝑛:i64)2 ⇒ v128.const bytes−1

i128(bytes𝑖64(𝑛)
2)

| ‘v128.const’ ‘f32x4’ (𝑧:f32)4 ⇒ v128.const bytes−1
i128(bytes𝑓32(𝑧)

4)
| ‘v128.const’ ‘f64x2’ (𝑧:f64)2 ⇒ v128.const bytes−1

i128(bytes𝑓64(𝑧)
2)

| ‘i8x16.shuffle’ (𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8)16 ⇒ i8x16.shuffle 𝑙𝑎𝑛𝑒𝑖𝑑𝑥16

| ‘i8x16.swizzle’ ⇒ i8x16.swizzle

| ‘i8x16.splat’ ⇒ i8x16.splat
| ‘i16x8.splat’ ⇒ i16x8.splat
| ‘i32x4.splat’ ⇒ i32x4.splat
| ‘i64x2.splat’ ⇒ i64x2.splat
| ‘f32x4.splat’ ⇒ f32x4.splat
| ‘f64x2.splat’ ⇒ f64x2.splat

| ‘i8x16.extract_lane_s’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i8x16.extract_lane_s 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i8x16.extract_lane_u’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i8x16.extract_lane_u 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i8x16.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i8x16.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i16x8.extract_lane_s’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i16x8.extract_lane_s 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i16x8.extract_lane_u’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i16x8.extract_lane_u 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i16x8.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i16x8.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i32x4.extract_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i32x4.extract_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i32x4.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i32x4.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i64x2.extract_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i64x2.extract_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘i64x2.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ i64x2.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘f32x4.extract_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ f32x4.extract_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘f32x4.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ f32x4.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘f64x2.extract_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ f64x2.extract_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥
| ‘f64x2.replace_lane’ 𝑙𝑎𝑛𝑒𝑖𝑑𝑥:u8 ⇒ f64x2.replace_lane 𝑙𝑎𝑛𝑒𝑖𝑑𝑥

| ‘i8x16.eq’ ⇒ i8x16.eq
| ‘i8x16.ne’ ⇒ i8x16.ne
| ‘i8x16.lt_s’ ⇒ i8x16.lt_s
| ‘i8x16.lt_u’ ⇒ i8x16.lt_u
| ‘i8x16.gt_s’ ⇒ i8x16.gt_s
| ‘i8x16.gt_u’ ⇒ i8x16.gt_u
| ‘i8x16.le_s’ ⇒ i8x16.le_s
| ‘i8x16.le_u’ ⇒ i8x16.le_u
| ‘i8x16.ge_s’ ⇒ i8x16.ge_s
| ‘i8x16.ge_u’ ⇒ i8x16.ge_u

| ‘i16x8.eq’ ⇒ i16x8.eq
| ‘i16x8.ne’ ⇒ i16x8.ne
| ‘i16x8.lt_s’ ⇒ i16x8.lt_s
| ‘i16x8.lt_u’ ⇒ i16x8.lt_u
| ‘i16x8.gt_s’ ⇒ i16x8.gt_s
| ‘i16x8.gt_u’ ⇒ i16x8.gt_u
| ‘i16x8.le_s’ ⇒ i16x8.le_s
| ‘i16x8.le_u’ ⇒ i16x8.le_u
| ‘i16x8.ge_s’ ⇒ i16x8.ge_s
| ‘i16x8.ge_u’ ⇒ i16x8.ge_u

240 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| ‘i32x4.eq’ ⇒ i32x4.eq
| ‘i32x4.ne’ ⇒ i32x4.ne
| ‘i32x4.lt_s’ ⇒ i32x4.lt_s
| ‘i32x4.lt_u’ ⇒ i32x4.lt_u
| ‘i32x4.gt_s’ ⇒ i32x4.gt_s
| ‘i32x4.gt_u’ ⇒ i32x4.gt_u
| ‘i32x4.le_s’ ⇒ i32x4.le_s
| ‘i32x4.le_u’ ⇒ i32x4.le_u
| ‘i32x4.ge_s’ ⇒ i32x4.ge_s
| ‘i32x4.ge_u’ ⇒ i32x4.ge_u

| ‘i64x2.eq’ ⇒ i64x2.eq
| ‘i64x2.ne’ ⇒ i64x2.ne
| ‘i64x2.lt_s’ ⇒ i64x2.lt_s
| ‘i64x2.gt_s’ ⇒ i64x2.gt_s
| ‘i64x2.le_s’ ⇒ i64x2.le_s
| ‘i64x2.ge_s’ ⇒ i64x2.ge_s
|

| ‘f32x4.eq’ ⇒ f32x4.eq
| ‘f32x4.ne’ ⇒ f32x4.ne
| ‘f32x4.lt’ ⇒ f32x4.lt
| ‘f32x4.gt’ ⇒ f32x4.gt
| ‘f32x4.le’ ⇒ f32x4.le
| ‘f32x4.ge’ ⇒ f32x4.ge

| ‘f64x2.eq’ ⇒ f64x2.eq
| ‘f64x2.ne’ ⇒ f64x2.ne
| ‘f64x2.lt’ ⇒ f64x2.lt
| ‘f64x2.gt’ ⇒ f64x2.gt
| ‘f64x2.le’ ⇒ f64x2.le
| ‘f64x2.ge’ ⇒ f64x2.ge

| ‘v128.not’ ⇒ v128.not
| ‘v128.and’ ⇒ v128.and
| ‘v128.andnot’ ⇒ v128.andnot
| ‘v128.or’ ⇒ v128.or
| ‘v128.xor’ ⇒ v128.xor
| ‘v128.bitselect’ ⇒ v128.bitselect
| ‘v128.any_true’ ⇒ v128.any_true

6.5. Instructions 241

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| ‘i8x16.abs’ ⇒ i8x16.abs
| ‘i8x16.neg’ ⇒ i8x16.neg
| ‘i8x16.all_true’ ⇒ i8x16.all_true
| ‘i8x16.bitmask’ ⇒ i8x16.bitmask
| ‘i8x16.narrow_i16x8_s’ ⇒ i8x16.narrow_i16x8_s
| ‘i8x16.narrow_i16x8_u’ ⇒ i8x16.narrow_i16x8_u
| ‘i8x16.shl’ ⇒ i8x16.shl
| ‘i8x16.shr_s’ ⇒ i8x16.shr_s
| ‘i8x16.shr_u’ ⇒ i8x16.shr_u
| ‘i8x16.add’ ⇒ i8x16.add
| ‘i8x16.add_sat_s’ ⇒ i8x16.add_sat_s
| ‘i8x16.add_sat_u’ ⇒ i8x16.add_sat_u
| ‘i8x16.sub’ ⇒ i8x16.sub
| ‘i8x16.sub_sat_s’ ⇒ i8x16.sub_sat_s
| ‘i8x16.sub_sat_u’ ⇒ i8x16.sub_sat_u
| ‘i8x16.min_s’ ⇒ i8x16.min_s
| ‘i8x16.min_u’ ⇒ i8x16.min_u
| ‘i8x16.max_s’ ⇒ i8x16.max_s
| ‘i8x16.max_u’ ⇒ i8x16.max_u
| ‘i8x16.avgr_u’ ⇒ i8x16.avgr_u
| ‘i8x16.popcnt’ ⇒ i8x16.popcnt

| ‘i16x8.abs’ ⇒ i16x8.abs
| ‘i16x8.neg’ ⇒ i16x8.neg
| ‘i16x8.all_true’ ⇒ i16x8.all_true
| ‘i16x8.bitmask’ ⇒ i16x8.bitmask
| ‘i16x8.narrow_i32x4_s’ ⇒ i16x8.narrow_i32x4_s
| ‘i16x8.narrow_i32x4_u’ ⇒ i16x8.narrow_i32x4_u
| ‘i16x8.extend_low_i8x16_s’ ⇒ i16x8.extend_low_i8x16_s
| ‘i16x8.extend_high_i8x16_s’ ⇒ i16x8.extend_high_i8x16_s
| ‘i16x8.extend_low_i8x16_u’ ⇒ i16x8.extend_low_i8x16_u
| ‘i16x8.extend_high_i8x16_u’ ⇒ i16x8.extend_high_i8x16_u
| ‘i16x8.shl’ ⇒ i16x8.shl
| ‘i16x8.shr_s’ ⇒ i16x8.shr_s
| ‘i16x8.shr_u’ ⇒ i16x8.shr_u
| ‘i16x8.add’ ⇒ i16x8.add
| ‘i16x8.add_sat_s’ ⇒ i16x8.add_sat_s
| ‘i16x8.add_sat_u’ ⇒ i16x8.add_sat_u
| ‘i16x8.sub’ ⇒ i16x8.sub
| ‘i16x8.sub_sat_s’ ⇒ i16x8.sub_sat_s
| ‘i16x8.sub_sat_u’ ⇒ i16x8.sub_sat_u
| ‘i16x8.mul’ ⇒ i16x8.mul
| ‘i16x8.min_s’ ⇒ i16x8.min_s
| ‘i16x8.min_u’ ⇒ i16x8.min_u
| ‘i16x8.max_s’ ⇒ i16x8.max_s
| ‘i16x8.max_u’ ⇒ i16x8.max_u
| ‘i16x8.avgr_u’ ⇒ i16x8.avgr_u
| ‘i16x8.q15mulr_sat_s’ ⇒ i16x8.q15mulr_sat_s
| ‘i16x8.extmul_low_i8x16_s’ ⇒ i16x8.extmul_low_i8x16_s
| ‘i16x8.extmul_high_i8x16_s’ ⇒ i16x8.extmul_high_i8x16_s
| ‘i16x8.extmul_low_i8x16_u’ ⇒ i16x8.extmul_low_i8x16_u
| ‘i16x8.extmul_high_i8x16_u’ ⇒ i16x8.extmul_high_i8x16_u
| ‘i16x8.extadd_pairwise_i8x16_s’ ⇒ i16x8.extadd_pairwise_i8x16_s
| ‘i16x8.extadd_pairwise_i8x16_u’ ⇒ i16x8.extadd_pairwise_i8x16_u

242 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| ‘i32x4.abs’ ⇒ i32x4.abs
| ‘i32x4.neg’ ⇒ i32x4.neg
| ‘i32x4.all_true’ ⇒ i32x4.all_true
| ‘i32x4.bitmask’ ⇒ i32x4.bitmask
| ‘i32x4.extadd_pairwise_i16x8_s’ ⇒ i32x4.extadd_pairwise_i16x8_s
| ‘i32x4.extadd_pairwise_i16x8_u’ ⇒ i32x4.extadd_pairwise_i16x8_u
| ‘i32x4.extend_low_i16x8_s’ ⇒ i32x4.extend_low_i16x8_s
| ‘i32x4.extend_high_i16x8_s’ ⇒ i32x4.extend_high_i16x8_s
| ‘i32x4.extend_low_i16x8_u’ ⇒ i32x4.extend_low_i16x8_u
| ‘i32x4.extend_high_i16x8_u’ ⇒ i32x4.extend_high_i16x8_u
| ‘i32x4.shl’ ⇒ i32x4.shl
| ‘i32x4.shr_s’ ⇒ i32x4.shr_s
| ‘i32x4.shr_u’ ⇒ i32x4.shr_u
| ‘i32x4.add’ ⇒ i32x4.add
| ‘i32x4.sub’ ⇒ i32x4.sub
| ‘i32x4.mul’ ⇒ i32x4.mul
| ‘i32x4.min_s’ ⇒ i32x4.min_s
| ‘i32x4.min_u’ ⇒ i32x4.min_u
| ‘i32x4.max_s’ ⇒ i32x4.max_s
| ‘i32x4.max_u’ ⇒ i32x4.max_u
| ‘i32x4.dot_i16x8_s’ ⇒ i32x4.dot_i16x8_s
| ‘i32x4.extmul_low_i16x8_s’ ⇒ i32x4.extmul_low_i16x8_s
| ‘i32x4.extmul_high_i16x8_s’ ⇒ i32x4.extmul_high_i16x8_s
| ‘i32x4.extmul_low_i16x8_u’ ⇒ i32x4.extmul_low_i16x8_u
| ‘i32x4.extmul_high_i16x8_u’ ⇒ i32x4.extmul_high_i16x8_u

| ‘i64x2.abs’ ⇒ i64x2.abs
| ‘i64x2.neg’ ⇒ i64x2.neg
| ‘i64x2.all_true’ ⇒ i64x2.all_true
| ‘i64x2.bitmask’ ⇒ i64x2.bitmask
| ‘i64x2.extend_low_i32x4_s’ ⇒ i64x2.extend_low_i32x4_s
| ‘i64x2.extend_high_i32x4_s’ ⇒ i64x2.extend_high_i32x4_s
| ‘i64x2.extend_low_i32x4_u’ ⇒ i64x2.extend_low_i32x4_u
| ‘i64x2.extend_high_i32x4_u’ ⇒ i64x2.extend_high_i32x4_u
| ‘i64x2.shl’ ⇒ i64x2.shl
| ‘i64x2.shr_s’ ⇒ i64x2.shr_s
| ‘i64x2.shr_u’ ⇒ i64x2.shr_u
| ‘i64x2.add’ ⇒ i64x2.add
| ‘i64x2.sub’ ⇒ i64x2.sub
| ‘i64x2.mul’ ⇒ i64x2.mul
| ‘i64x2.extmul_low_i32x4_s’ ⇒ i64x2.extmul_low_i32x4_s
| ‘i64x2.extmul_high_i32x4_s’ ⇒ i64x2.extmul_high_i32x4_s
| ‘i64x2.extmul_low_i32x4_u’ ⇒ i64x2.extmul_low_i32x4_u
| ‘i64x2.extmul_high_i32x4_u’ ⇒ i64x2.extmul_high_i32x4_u

6.5. Instructions 243

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| ‘f32x4.abs’ ⇒ f32x4.abs
| ‘f32x4.neg’ ⇒ f32x4.neg
| ‘f32x4.sqrt’ ⇒ f32x4.sqrt
| ‘f32x4.ceil’ ⇒ f32x4.ceil
| ‘f32x4.floor’ ⇒ f32x4.floor
| ‘f32x4.trunc’ ⇒ f32x4.trunc
| ‘f32x4.nearest’ ⇒ f32x4.nearest
| ‘f32x4.add’ ⇒ f32x4.add
| ‘f32x4.sub’ ⇒ f32x4.sub
| ‘f32x4.mul’ ⇒ f32x4.mul
| ‘f32x4.div’ ⇒ f32x4.div
| ‘f32x4.min’ ⇒ f32x4.min
| ‘f32x4.max’ ⇒ f32x4.max
| ‘f32x4.pmin’ ⇒ f32x4.pmin
| ‘f32x4.pmax’ ⇒ f32x4.pmax

| ‘f64x2.abs’ ⇒ f64x2.abs
| ‘f64x2.neg’ ⇒ f64x2.neg
| ‘f64x2.sqrt’ ⇒ f64x2.sqrt
| ‘f64x2.ceil’ ⇒ f64x2.ceil
| ‘f64x2.floor’ ⇒ f64x2.floor
| ‘f64x2.trunc’ ⇒ f64x2.trunc
| ‘f64x2.nearest’ ⇒ f64x2.nearest
| ‘f64x2.add’ ⇒ f64x2.add
| ‘f64x2.sub’ ⇒ f64x2.sub
| ‘f64x2.mul’ ⇒ f64x2.mul
| ‘f64x2.div’ ⇒ f64x2.div
| ‘f64x2.min’ ⇒ f64x2.min
| ‘f64x2.max’ ⇒ f64x2.max
| ‘f64x2.pmin’ ⇒ f64x2.pmin
| ‘f64x2.pmax’ ⇒ f64x2.pmax

| ‘i32x4.trunc_sat_f32x4_s’ ⇒ i32x4.trunc_sat_f32x4_s
| ‘i32x4.trunc_sat_f32x4_u’ ⇒ i32x4.trunc_sat_f32x4_u
| ‘i32x4.trunc_sat_f64x2_s_zero’ ⇒ i32x4.trunc_sat_f64x2_s_zero
| ‘i32x4.trunc_sat_f64x2_u_zero’ ⇒ i32x4.trunc_sat_f64x2_u_zero
| ‘f32x4.convert_i32x4_s’ ⇒ f32x4.convert_i32x4_s
| ‘f32x4.convert_i32x4_u’ ⇒ f32x4.convert_i32x4_u
| ‘f64x2.convert_low_i32x4_s’ ⇒ f64x2.convert_low_i32x4_s
| ‘f64x2.convert_low_i32x4_u’ ⇒ f64x2.convert_low_i32x4_u
| ‘f32x4.demote_f64x2_zero’ ⇒ f32x4.demote_f64x2_zero
| ‘f64x2.promote_low_f32x4’ ⇒ f64x2.promote_low_f32x4

244 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

| ‘i8x16.relaxed_swizzle’ ⇒ i8x16.relaxed_swizzle
| ‘i32x4.relaxed_trunc_f32x4_s’ ⇒ i32x4.relaxed_trunc_f32x4_s
| ‘i32x4.relaxed_trunc_f32x4_u’ ⇒ i32x4.relaxed_trunc_f32x4_u
| ‘i32x4.relaxed_trunc_f32x4_s_zero’ ⇒ i32x4.relaxed_trunc_f32x4_s_zero
| ‘i32x4.relaxed_trunc_f32x4_u_zero’ ⇒ i32x4.relaxed_trunc_f32x4_u_zero
| ‘f32x4.relaxed_madd’ ⇒ f32x4.relaxed_madd
| ‘f32x4.relaxed_nmadd’ ⇒ f32x4.relaxed_nmadd
| ‘f64x2.relaxed_madd’ ⇒ f64x2.relaxed_madd
| ‘f64x2.relaxed_nmadd’ ⇒ f64x2.relaxed_nmadd
| ‘i8x16.relaxed_laneselect’ ⇒ i8x16.relaxed_laneselect
| ‘i16x8.relaxed_laneselect’ ⇒ i16x8.relaxed_laneselect
| ‘i32x4.relaxed_laneselect’ ⇒ i32x4.relaxed_laneselect
| ‘i64x2.relaxed_laneselect’ ⇒ i64x2.relaxed_laneselect
| ‘f32x4.relaxed_min’ ⇒ f32x4.relaxed_min
| ‘f32x4.relaxed_max’ ⇒ f32x4.relaxed_max
| ‘f64x2.relaxed_min’ ⇒ f64x2.relaxed_min
| ‘f64x2.relaxed_max’ ⇒ f64x2.relaxed_max
| ‘i16x8.relaxed_q15mulr_s’ ⇒ i16x8.relaxed_q15mulr_s
| ‘i16x8.relaxed_dot_i8x16_i7x16_s’ ⇒ i16x8.relaxed_dot_i8x16_i7x16_s
| ‘i16x8.relaxed_dot_i8x16_i7x16_add_s’ ⇒ i16x8.relaxed_dot_i8x16_i7x16_add_s

6.5.10 Folded Instructions
Instructions can be written as S-expressions by grouping them into folded form. In that notation, an instruction is
wrapped in parentheses and optionally includes nested folded instructions to indicate its operands.

In the case of block instructions, the folded form omits the ‘end’ delimiter. For if instructions, both branches have
to be wrapped into nested S-expressions, headed by the keywords ‘then’ and ‘else’.

The set of all phrases defined by the following abbreviations recursively forms the auxiliary syntactic class
foldedinstr. Such a folded instruction can appear anywhere a regular instruction can.

‘(’ plaininstr foldedinstr* ‘)’ ≡ foldedinstr* plaininstr

‘(’ ‘block’ label blocktype instr* ‘)’ ≡ ‘block’ label blocktype instr* ‘end’
‘(’ ‘loop’ label blocktype instr* ‘)’ ≡ ‘loop’ label blocktype instr* ‘end’
‘(’ ‘if’ label blocktype foldedinstr*

‘(’ ‘then’ instr*1 ‘)’ (‘(’ ‘else’ instr*2 ‘)’)? ‘)’ ≡ foldedinstr* ‘if’ label blocktype instr*1
‘else’ (instr*2)

? ‘end’
‘(’ ‘try_table’ label blocktype catch* instr* ‘)’ ≡ ‘try_table’ label blocktype

catch* instr* ‘end’

Note

For example, the instruction sequence

(local.get $x) (i32.const 2) i32.add (i32.const 3) i32.mul

can be folded into

(i32.mul (i32.add (local.get $x) (i32.const 2)) (i32.const 3))

Folded instructions are solely syntactic sugar, no additional syntactic or type-based checking is implied.

6.5. Instructions 245

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.5.11 Expressions
Expressions are written as instruction sequences. No explicit ‘end’ keyword is included, since they only occur in
bracketed positions.

expr𝐼 ::= (in:instr𝐼)
* ⇒ in*

6.6 Modules

6.6.1 Indices
Indices can be given either in raw numeric form or as symbolic identifiers when bound by a respective construct.
Such identifiers are looked up in the suitable space of the identifier context 𝐼 .

typeidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.types[𝑥] = 𝑣)

globalidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.globals[𝑥] = 𝑣)

tagidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.tags[𝑥] = 𝑣)

memidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.mems[𝑥] = 𝑣)

tableidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.tables[𝑥] = 𝑣)

funcidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.funcs[𝑥] = 𝑣)

dataidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.datas[𝑥] = 𝑣)

elemidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.elems[𝑥] = 𝑣)

localidx𝐼 ::= 𝑥:u32 ⇒ 𝑥
| 𝑣:id ⇒ 𝑥 (if 𝐼.locals[𝑥] = 𝑣)

labelidx𝐼 ::= 𝑙:u32 ⇒ 𝑙
| 𝑣:id ⇒ 𝑙 (if 𝐼.labels[𝑙] = 𝑣)

fieldidx𝐼,𝑥 ::= 𝑖:u32 ⇒ 𝑖
| 𝑣:id ⇒ 𝑖 (if 𝐼.fields[𝑥][𝑖] = 𝑣)

6.6.2 Tags
An tag definition can bind a symbolic tag identifier.

tag𝐼 ::= ‘(’ ‘tag’ id? tt :tagtype𝐼 ‘)’
⇒ tag tt

Abbreviations

Tags can be defined as imports or exports inline:

‘(’ ‘tag’ id? ‘(’ ‘import’ name1 name2 ‘)’ tagtype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘tag’ id? tagtype ‘)’ ‘)’

‘(’ ‘tag’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘tag’ id′ ‘)’ ‘)’ ‘(’ ‘tag’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

246 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently, a
memory declaration can contain any number of exports, possibly followed by an import.

6.6.3 Globals
Global definitions can bind a symbolic global identifier.

global𝐼 ::= ‘(’ ‘global’ id? gt :globaltype𝐼 𝑒:expr𝐼 ‘)’ ⇒ global gt 𝑒

Abbreviations

Globals can be defined as imports or exports inline:

‘(’ ‘global’ id? ‘(’ ‘import’ name1 name2 ‘)’ globaltype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘global’ id? globaltype ‘)’ ‘)’

‘(’ ‘global’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘global’ id′ ‘)’ ‘)’ ‘(’ ‘global’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Note

The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently, a
global declaration can contain any number of exports, possibly followed by an import.

6.6.4 Memories
Memory definitions can bind a symbolic memory identifier.

mem𝐼 ::= ‘(’ ‘memory’ id? mt :memtype𝐼 ‘)’ ⇒ memory mt

Abbreviations

A data segment can be given inline with a memory definition, in which case its offset is 0 and the limits of the
memory type are inferred from the length of the data, rounded up to page size:

‘(’ ‘memory’ id? addrtype? ‘(’ ‘data’ 𝑏𝑛:datastring ‘)’ ‘)’ ≡
‘(’ ‘memory’ id′ addrtype? 𝑚 𝑚 ‘)’
‘(’ ‘data’ ‘(’ ‘memory’ id′ ‘)’ ‘(’ addrtype′‘.const’ ‘0’ ‘)’ datastring ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh,
if addrtype? ̸= 𝜖 ∧ addrtype′ = addrtype? ∨ addrtype? = 𝜖 ∧ addrtype′ = ‘i32’,
𝑚 = ceil(𝑛/64Ki))

Memories can be defined as imports or exports inline:

‘(’ ‘memory’ id? ‘(’ ‘import’ name1 name2 ‘)’ memtype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘memory’ id? memtype ‘)’ ‘)’

‘(’ ‘memory’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘memory’ id′ ‘)’ ‘)’ ‘(’ ‘memory’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

6.6. Modules 247

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently, a
memory declaration can contain any number of exports, possibly followed by an import.

6.6.5 Tables
Table definitions can bind a symbolic table identifier.

table𝐼 ::= ‘(’ ‘table’ id? tt :tabletype𝐼 𝑒:expr𝐼 ‘)’ ⇒ table tt 𝑒

Abbreviations

A table’s initialization expression can be omitted, in which case it defaults to ref.null:

‘(’ ‘table’ id? tabletype ‘)’ ≡ ‘(’ ‘table’ id? tabletype ‘(’ ref.null ht ‘)’ ‘)’
(if tabletype = addrtype? limits ‘(’ ‘ref’ ‘null’? ht ‘)’)

An element segment can be given inline with a table definition, in which case its offset is 0 and the limits of the
table type are inferred from the length of the given segment:

‘(’ ‘table’ id? addrtype? reftype ‘(’ ‘elem’ expr𝑛:list(elemexpr) ‘)’ ‘)’ ≡
‘(’ ‘table’ id′ addrtype? 𝑛 𝑛 reftype ‘)’
‘(’ ‘elem’ ‘(’ ‘table’ id′ ‘)’ ‘(’ addrtype′‘.const’ ‘0’ ‘)’ reftype list(elemexpr) ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh,
if addrtype? ̸= 𝜖 ∧ addrtype′ = addrtype? ∨ addrtype? = 𝜖 ∧ addrtype′ = ‘i32’)

‘(’ ‘table’ id? addrtype? reftype ‘(’ ‘elem’ 𝑥𝑛:list(funcidx) ‘)’ ‘)’ ≡
‘(’ ‘table’ id′ addrtype? 𝑛 𝑛 reftype ‘)’
‘(’ ‘elem’ ‘(’ ‘table’ id′ ‘)’ ‘(’ addrtype′‘.const’ ‘0’ ‘)’ reftype list(‘(’ ‘ref.func’ funcidx ‘)’) ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh,
if addrtype? ̸= 𝜖 ∧ addrtype′ = addrtype? ∨ addrtype? = 𝜖 ∧ addrtype′ = ‘i32’)

Tables can be defined as imports or exports inline:

‘(’ ‘table’ id? ‘(’ ‘import’ name1 name2 ‘)’ tabletype ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘table’ id? tabletype ‘)’ ‘)’

‘(’ ‘table’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘table’ id′ ‘)’ ‘)’ ‘(’ ‘table’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Note

The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently, a
table declaration can contain any number of exports, possibly followed by an import.

6.6.6 Functions
Function definitions can bind a symbolic function identifier, and local identifiers for its parameters and locals.

func𝐼 ::= ‘(’ ‘func’ id? 𝑥, 𝐼 ′:typeuse𝐼 (loc:local𝐼)
* (in:instr𝐼′′)* ‘)’

⇒ func 𝑥 loc* in*

(if 𝐼 ′′ = 𝐼 ⊕ 𝐼 ′ ⊕ {locals id(local)*} well-formed)
local𝐼 ::= ‘(’ ‘local’ id? 𝑡:valtype𝐼 ‘)’ ⇒ local 𝑡

248 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The definition of the local identifier context 𝐼 ′′ uses the following auxiliary function to extract optional identifiers
from locals:

id(‘(’ ‘local’ id? . . . ‘)’) = id?

Note

The well-formedness condition on 𝐼 ′′ ensures that parameters and locals do not contain duplicate identifiers.

Abbreviations

Multiple anonymous locals may be combined into a single declaration:

‘(’ ‘local’ valtype* ‘)’ ≡ (‘(’ ‘local’ valtype ‘)’)*

Functions can be defined as imports or exports inline:

‘(’ ‘func’ id? ‘(’ ‘import’ name1 name2 ‘)’ typeuse ‘)’ ≡
‘(’ ‘import’ name1 name2 ‘(’ ‘func’ id? typeuse ‘)’ ‘)’

‘(’ ‘func’ id? ‘(’ ‘export’ name ‘)’ . . . ‘)’ ≡
‘(’ ‘export’ name ‘(’ ‘func’ id′ ‘)’ ‘)’ ‘(’ ‘func’ id′ . . . ‘)’

(if id? ̸= 𝜖 ∧ id′ = id? ∨ id? = 𝜖 ∧ id′ fresh)

Note

The latter abbreviation can be applied repeatedly, if “. . .” contains additional export clauses. Consequently, a
function declaration can contain any number of exports, possibly followed by an import.

6.6.7 Data Segments
Data segments allow for an optional memory index to identify the memory to initialize. The data is written as a
string, which may be split up into a possibly empty sequence of individual string literals.

data𝐼 ::= ‘(’ ‘data’ id? 𝑏*:datastring ‘)’
⇒ data 𝑏* passive

| ‘(’ ‘data’ id? 𝑥:memuse𝐼 ‘(’ ‘offset’ 𝑒:expr𝐼 ‘)’ 𝑏*:datastring ‘)’
⇒ data 𝑏* active 𝑥 𝑒

datastring ::= (𝑏*:string)* ⇒
⨁︀

((𝑏*)*)
memuse𝐼 ::= ‘(’ ‘memory’ 𝑥:memidx𝐼 ‘)’ ⇒ 𝑥

Note

In the current version of WebAssembly, the only valid memory index is 0 or a symbolic memory identifier
resolving to the same value.

Abbreviations

As an abbreviation, a single folded instruction may occur in place of the offset of an active data segment:

‘(’ foldedinstr ‘)’ ≡ ‘(’ ‘offset’ instr ‘)’

Also, a memory use can be omitted, defaulting to 0.

𝜖 ≡ ‘(’ ‘memory’ ‘0’ ‘)’

As another abbreviation, data segments may also be specified inline with memory definitions; see the respective
section.

6.6. Modules 249

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.6.8 Element Segments
Element segments allow for an optional table index to identify the table to initialize.

elem𝐼 ::= ‘(’ ‘elem’ id? (𝑒𝑡, 𝑒*):elemlist𝐼 ‘)’
⇒ elem 𝑒𝑡 𝑒* passive

| ‘(’ ‘elem’ id? 𝑥:tableuse𝐼 ‘(’ ‘offset’ 𝑒′:expr𝐼 ‘)’ (𝑒𝑡, 𝑒*):elemlist𝐼 ‘)’
⇒ elem 𝑒𝑡 𝑒* active 𝑥 𝑒′

‘(’ ‘elem’ id? ‘declare’ (𝑒𝑡, 𝑦*):elemlist𝐼 ‘)’
⇒ elem 𝑒𝑡 𝑒* declare

elemlist𝐼 ::= 𝑡:reftype𝐼 𝑒*:list(elemexpr𝐼) ⇒ (𝑡, 𝑒𝑒*)
elemexpr𝐼 ::= ‘(’ ‘item’ 𝑒:expr𝐼 ‘)’ ⇒ 𝑒
tableuse𝐼 ::= ‘(’ ‘table’ 𝑥:tableidx𝐼 ‘)’ ⇒ 𝑥

Abbreviations

As an abbreviation, a single folded instruction may occur in place of the offset of an active element segment or as
an element expression:

‘(’ foldedinstr ‘)’ ≡ ‘(’ ‘offset’ instr ‘)’
‘(’ foldedinstr ‘)’ ≡ ‘(’ ‘item’ instr ‘)’

Also, the element list may be written as just a sequence of function indices:

‘func’ list(funcidx𝐼) ≡ ‘(ref’ ‘func)’ list(‘(’ ‘ref.func’ funcidx𝐼 ‘)’)

A table use can be omitted, defaulting to 0. Furthermore, for backwards compatibility with earlier versions of
WebAssembly, if the table use is omitted, the ‘func’ keyword can be omitted as well.

𝜖 ≡ ‘(’ ‘table’ ‘0’ ‘)’
‘(’ ‘elem’ id? ‘(’ ‘offset’ expr𝐼 ‘)’

list(funcidx𝐼) ‘)’ ≡ ‘(’ ‘elem’ id? ‘(’ ‘table’ ‘0’ ‘)’ ‘(’ ‘offset’ expr𝐼 ‘)’
‘func’ list(funcidx𝐼) ‘)’

As another abbreviation, element segments may also be specified inline with table definitions; see the respective
section.

6.6.9 Start Function
A start function is defined in terms of its index.

start𝐼 ::= ‘(’ ‘start’ 𝑥:funcidx𝐼 ‘)’ ⇒ start 𝑥

Note

At most one start function may occur in a module, which is ensured by a suitable side condition on the module
grammar.

6.6.10 Imports
The external type in imports can bind a symbolic tag, global, memory, or function identifier.

import𝐼 ::= ‘(’ ‘import’ nm1:name nm2:name xx :externtype𝐼 ‘)’
⇒ import nm1 nm2 xx

Abbreviations

As an abbreviation, imports may also be specified inline with tag, global, memory, table, or function definitions;
see the respective sections.

250 Chapter 6. Text Format

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6.6.11 Exports
The syntax for exports mirrors their abstract syntax directly.

export𝐼 ::= ‘(’ ‘export’ nm:name xx :externidx𝐼 ‘)’ ⇒ export nm xx}
externidx𝐼 ::= ‘(’ ‘tag’ 𝑥:tagidx𝐼 ‘)’ ⇒ tag 𝑥

| ‘(’ ‘global’ 𝑥:globalidx𝐼 ‘)’ ⇒ global 𝑥
| ‘(’ ‘memory’ 𝑥:memidx𝐼 ‘)’ ⇒ memory 𝑥
| ‘(’ ‘table’ 𝑥:tableidx𝐼 ‘)’ ⇒ table 𝑥
| ‘(’ ‘func’ 𝑥:funcidx𝐼 ‘)’ ⇒ func 𝑥

Abbreviations

As an abbreviation, exports may also be specified inline with tag, global, memory, table, or function definitions;
see the respective sections.

6.6.12 Modules
A module consists of a sequence of fields that can occur in any order. All definitions and their respective bound
identifiers scope over the entire module, including the text preceding them.

A module may optionally bind an identifier that names the module. The name serves a documentary role only.

Note

Tools may include the module name in the name section of the binary format.

module ::= ‘(’ ‘module’ id? (𝑚:modulefield𝐼)
* ‘)’ ⇒

⨁︀
𝑚*

(if 𝐼 =
⨁︀

idc(modulefield)* well-formed)
modulefield𝐼 ::= ty*:rectype𝐼 ⇒ module ty*

| im:import𝐼 ⇒ module im
| tg :tag𝐼 ⇒ module tg
| gl :global𝐼 ⇒ module gl
| me:mem𝐼 ⇒ module me
| ta:table𝐼 ⇒ module ta
| fn:func𝐼 ⇒ module fn
| da:data𝐼 ⇒ module da
| el :elem𝐼 ⇒ module el
| st :start𝐼 ⇒ module st
| ex :export𝐼 ⇒ module ex

where
⨁︀

𝑚* is the module formed by the repeated concatenation of the indivual field sequences in order. The
following restrictions are imposed on this composition: 𝑚1 ⊕𝑚2 is defined if and only if

• start?1 = 𝜖 ∨ start?2 = 𝜖

• tag*1 = global*1 = mem*
1 = table*1 = func*1 = 𝜖 ∨ import*2 = 𝜖

Note

The first condition ensures that there is at most one start function. The second condition enforces that all imports
must occur before any regular definition of a tag, global, memory, table, or function, thereby maintaining the
ordering of the respective index spaces.

The well-formedness condition on 𝐼 in the grammar for module ensures that no namespace contains duplicate
identifiers.

6.6. Modules 251

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The definition of the initial identifier context 𝐼 uses the following auxiliary definition which maps each relevant
definition to a singular context with one (possibly empty) identifier:

idc(‘(’ ‘rec’ typedef* ‘)’) =
⨁︀

idc(typedef)*

idc(‘(’ ‘type’ 𝑣?:id? subtype ‘)’) = {types (𝑣?), fields idf(subtype), typedefs st}
idc(‘(’ ‘tag’ 𝑣?:id? . . . ‘)’) = {tags (𝑣?)}
idc(‘(’ ‘global’ 𝑣?:id? . . . ‘)’) = {globals (𝑣?)}
idc(‘(’ ‘memory’ 𝑣?:id? . . . ‘)’) = {mems (𝑣?)}
idc(‘(’ ‘table’ 𝑣?:id? . . . ‘)’) = {tables (𝑣?)}
idc(‘(’ ‘func’ 𝑣?:id? . . . ‘)’) = {funcs (𝑣?)}
idc(‘(’ ‘data’ 𝑣?:id? . . . ‘)’) = {datas (𝑣?)}
idc(‘(’ ‘elem’ 𝑣?:id? . . . ‘)’) = {elems (𝑣?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘func’ 𝑣?:id? . . . ‘)’ ‘)’) = {funcs (𝑣?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘table’ 𝑣?:id? . . . ‘)’ ‘)’) = {tables (𝑣?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘memory’ 𝑣?:id? . . . ‘)’ ‘)’) = {mems (𝑣?)}
idc(‘(’ ‘import’ . . . ‘(’ ‘global’ 𝑣?:id? . . . ‘)’ ‘)’) = {globals (𝑣?)}
idc(‘(’ . . . ‘)’) = {}

idf(‘(’ ‘sub’ . . . comptype ‘)’) = idf(comptype)
idf(‘(’ ‘struct’ Tfield* ‘)’) =

⨁︀
idf(field)*

idf(‘(’ ‘array’ . . . ‘)’) = 𝜖
idf(‘(’ ‘func’ . . . ‘)’) = 𝜖
idf(‘(’ ‘field’ 𝑣?:id? . . . ‘)’) = 𝑣?

Abbreviations

In a source file, the toplevel (module . . .) surrounding the module body may be omitted.

modulefield* ≡ ‘(’ ‘module’ modulefield* ‘)’

252 Chapter 6. Text Format

CHAPTER 7

Appendix

7.1 Embedding
A WebAssembly implementation will typically be embedded into a host environment. An embedder implements
the connection between such a host environment and the WebAssembly semantics as defined in the main body of
this specification. An embedder is expected to interact with the semantics in well-defined ways.

This section defines a suitable interface to the WebAssembly semantics in the form of entry points through which
an embedder can access it. The interface is intended to be complete, in the sense that an embedder does not need
to reference other functional parts of the WebAssembly specification directly.

Note

On the other hand, an embedder does not need to provide the host environment with access to all functionality
defined in this interface. For example, an implementation may not support parsing of the text format.

7.1.1 Types
In the description of the embedder interface, syntactic classes from the abstract syntax and the runtime’s abstract
machine are used as names for variables that range over the possible objects from that class. Hence, these syntactic
classes can also be interpreted as types.

For numeric parameters, notation like 𝑖 : u64 is used to specify a symbolic name in addition to the respective value
range.

7.1.2 Booleans
Interface operation that are predicates return Boolean values:

bool ::= false | true

7.1.3 Exceptions and Errors
Invoking an exported function may throw or propagate exceptions, expressed by an auxiliary syntactic class:

exception ::= exception exnaddr

The exception address 𝑒𝑥𝑛𝑎𝑑𝑑𝑟 identifies the exception thrown.

253

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Failure of an interface operation is also indicated by an auxiliary syntactic class:

error ::= error

In addition to the error conditions specified explicitly in this section, such as invalid arguments or exceptions and
traps resulting from execution, implementations may also return errors when specific implementation limitations
are reached.

Note

Errors are abstract and unspecific with this definition. Implementations can refine it to carry suitable classifi-
cations and diagnostic messages.

7.1.4 Pre- and Post-Conditions
Some operations state pre-conditions about their arguments or post-conditions about their results. It is the embed-
der’s responsibility to meet the pre-conditions. If it does, the post conditions are guaranteed by the semantics.

In addition to pre- and post-conditions explicitly stated with each operation, the specification adopts the following
conventions for runtime objects (store, moduleinst , addresses):

• Every runtime object passed as a parameter must be valid per an implicit pre-condition.

• Every runtime object returned as a result is valid per an implicit post-condition.

Note

As long as an embedder treats runtime objects as abstract and only creates and manipulates them through the
interface defined here, all implicit pre-conditions are automatically met.

7.1.5 Store
store_init() : store

1. Return the empty store.

store_init() = {}

7.1.6 Modules
module_decode(byte*) : module | error

1. If there exists a derivation for the byte sequence byte* as a module according to the binary grammar for
modules, yielding a module 𝑚, then return 𝑚.

2. Else, return error.

module_decode(𝑏*) = 𝑚 (if module *
=⇒ 𝑚:𝑏*)

module_decode(𝑏*) = error (otherwise)

module_parse(char*) : module | error

1. If there exists a derivation for the source char* as a module according to the text grammar for modules,
yielding a module 𝑚, then return 𝑚.

2. Else, return error.

module_parse(𝑐*) = 𝑚 (if module *
=⇒ 𝑚:𝑐*)

module_parse(𝑐*) = error (otherwise)

254 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

module_validate(module) : error?

1. If module is valid, then return nothing.

2. Else, return error.

module_validate(𝑚) = 𝜖 (if ⊢ 𝑚 : externtype* → externtype ′
*
)

module_validate(𝑚) = error (otherwise)

module_instantiate(store,module, externaddr*) : (store,moduleinst | exception | error)

1. Try instantiating module in store with external addresses externaddr* as imports:

a. If it succeeds with a module instance moduleinst , then let result be moduleinst .

b. Else, let result be error.

2. Return the new store paired with result .

module_instantiate(𝑆,𝑚, ev*) = (𝑆′, 𝐹.module) (if instantiate(𝑆,𝑚, ev*) →˓ *𝑆′;𝐹 ; 𝜖)
module_instantiate(𝑆,𝑚, ev*) = (𝑆′, error) (otherwise, if instantiate(𝑆,𝑚, ev*) →˓ *𝑆′;𝐹 ; result)

Note

The store may be modified even in case of an error.

module_imports(module) : (name,name, externtype)*

1. Pre-condition: module is valid with the external import types externtype* and external export types
externtype ′

*.

2. Let import* be the imports of module.

3. Assert: the length of import* equals the length of externtype*.

4. For each import 𝑖 in import* and corresponding externtype𝑖 in externtype*, do:

a. Let import nm𝑖1 nm𝑖2 xt 𝑖 be the deconstruction of import 𝑖.

b. Let result 𝑖 be the triple (nm𝑖1,nm𝑖2, externtype𝑖).

5. Return the concatenation of all result 𝑖, in index order.

6. Post-condition: each externtype𝑖 is valid under the empty context.

module_imports(𝑚) = (nm1,nm2, externtype)
*

(if (import nm1 nm2 xt
) ∈ 𝑚 ∧ ⊢ 𝑚 : externtype* → externtype ′

*
)

module_exports(module) : (name, externtype)*

1. Pre-condition: module is valid with the external import types externtype* and external export types
externtype ′

*.

2. Let export* be the exports of module.

3. Assert: the length of export* equals the length of externtype ′*.

4. For each export 𝑖 in export* and corresponding externtype ′𝑖 in externtype ′
*, do:

a. Let export nm𝑖 externidx 𝑖 be the deconstruction of export 𝑖.

b. Let result 𝑖 be the pair (nm𝑖, externtype
′
𝑖).

5. Return the concatenation of all result 𝑖, in index order.

7.1. Embedding 255

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

6. Post-condition: each externtype ′𝑖 is valid under the empty context.

module_exports(𝑚) = (
𝑚𝑎𝑡ℎ𝑖𝑡𝑛𝑚, externtype ′)*

(if (export nm xt*)* ∈ 𝑚 ∧ ⊢ 𝑚 : externtype* → externtype ′
*
)

7.1.7 Module Instances
instance_export(moduleinst ,name) : externaddr | error

1. Assert: due to validity of the module instance moduleinst , all its export names are different.

2. If there exists an exportinst 𝑖 in moduleinst .exports such that name exportinst 𝑖.name equals name, then:

a. Return the external address exportinst 𝑖.addr.

3. Else, return error.

instance_export(𝑚,name) = 𝑚.exports[𝑖].addr (if 𝑚.exports[𝑖].name = name)
instance_export(𝑚,name) = error (otherwise)

7.1.8 Functions
func_alloc(store, deftype, hostfunc) : (store, funcaddr)

1. Pre-condition: the defined type deftype is valid under the empty context and expands to a function type.

2. Let funcaddr be the result of allocating a host function in store with defined type deftype, host function
code hostfunc and an empty module instance.

3. Return the new store paired with funcaddr .

func_alloc(𝑆, dt , code) = (𝑆′, a) (if allocfunc(𝑆, dt , code, {}) = 𝑆′, a)

Note

This operation assumes that hostfunc satisfies the pre- and post-conditions required for a function instance with
type deftype.

Regular (non-host) function instances can only be created indirectly through module instantiation.

func_type(store, funcaddr) : deftype

1. Let deftype be the definedn type 𝑆.funcs[𝑎].type.

2. Return deftype.

3. Post-condition: the returned defined type is valid and expands to a function type.

func_type(𝑆, 𝑎) = 𝑆.funcs[𝑎].type

func_invoke(store, funcaddr , val*) : (store, val* | exception | error)

1. Try invoking the function funcaddr in store with values val* as arguments:

a. If it succeeds with values val ′* as results, then let result be val ′*.

b. Else if the outcome is an exception with a thrown exception ref.exn exnaddr as the result, then let result be
exception exnaddr

256 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

c. Else it has trapped, hence let result be error.

2. Return the new store paired with result .

func_invoke(𝑆, 𝑎, 𝑣*) = (𝑆′, 𝑣′
*
) (if invoke(𝑆, 𝑎, 𝑣*) →˓ *𝑆′;𝐹 ; 𝑣′

*
)

func_invoke(𝑆, 𝑎, 𝑣*) = (𝑆′, exception 𝑎′) (if invoke(𝑆, 𝑎, 𝑣*) →˓ *𝑆′;𝐹 ; (ref.exn 𝑎′) throw_ref
func_invoke(𝑆, 𝑎, 𝑣*) = (𝑆′, error) (if invoke(𝑆, 𝑎, 𝑣*) →˓ *𝑆′;𝐹 ; trap)

Note

The store may be modified even in case of an error.

7.1.9 Tables
table_alloc(store, tabletype, ref) : (store, tableaddr)

1. Pre-condition: the tabletype is valid under the empty context.

2. Let tableaddr be the result of allocating a table in store with table type tabletype and initialization value
ref .

3. Return the new store paired with tableaddr .

table_alloc(𝑆, tt , 𝑟) = (𝑆′, a) (if alloctable(𝑆, tt , 𝑟) = 𝑆′, a)

table_type(store, tableaddr) : tabletype

1. Return 𝑆.tables[𝑎].type.

2. Post-condition: the returned table type is valid under the empty context.

table_type(𝑆, 𝑎) = 𝑆.tables[𝑎].type

table_read(store, tableaddr , 𝑖 : u64) : ref | error

1. Let ti be the table instance store.tables[tableaddr].

2. If 𝑖 is larger than or equal to the length of ti .elem, then return error.

3. Else, return the reference value ti .elem[𝑖].

table_read(𝑆, 𝑎, 𝑖) = 𝑟 (if 𝑆.tables[𝑎].elem[𝑖] = 𝑟)
table_read(𝑆, 𝑎, 𝑖) = error (otherwise)

table_write(store, tableaddr , 𝑖 : u64 , ref) : store | error

1. Let ti be the table instance store.tables[tableaddr].

2. If 𝑖 is larger than or equal to the length of ti .elem, then return error.

3. Replace ti .elem[𝑖] with the reference value ref .

4. Return the updated store.

table_write(𝑆, 𝑎, 𝑖, 𝑟) = 𝑆′ (if 𝑆′ = 𝑆 with tables[𝑎].elem[𝑖] = 𝑟)
table_write(𝑆, 𝑎, 𝑖, 𝑟) = error (otherwise)

table_size(store, tableaddr) : u64

1. Return the length of store.tables[tableaddr].elem.

table_size(𝑆, 𝑎) = 𝑛 (if |𝑆.tables[𝑎].elem| = 𝑛)

7.1. Embedding 257

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

table_grow(store, tableaddr , 𝑛 : u64 , ref) : store | error

1. Try growing the table instance store.tables[tableaddr] by 𝑛 elements with initialization value ref :

a. If it succeeds, return the updated store.

b. Else, return error.

table_grow(𝑆, 𝑎, 𝑛, 𝑟) = 𝑆′ (if 𝑆′ = 𝑆 with tables[𝑎] = growtable(𝑆.tables[𝑎], 𝑛, 𝑟))
table_grow(𝑆, 𝑎, 𝑛, 𝑟) = error (otherwise)

7.1.10 Memories
mem_alloc(store,memtype) : (store,memaddr)

1. Pre-condition: the memtype is valid under the empty context.

2. Let memaddr be the result of allocating a memory in store with memory type memtype.

3. Return the new store paired with memaddr .

mem_alloc(𝑆,mt) = (𝑆′, a) (if allocmem(𝑆,mt) = 𝑆′, a)

mem_type(store,memaddr) : memtype

1. Return 𝑆.mems[𝑎].type.

2. Post-condition: the returned memory type is valid under the empty context.

mem_type(𝑆, 𝑎) = 𝑆.mems[𝑎].type

mem_read(store,memaddr , 𝑖 : u64) : byte | error

1. Let mi be the memory instance store.mems[memaddr].

2. If 𝑖 is larger than or equal to the length of mi .bytes, then return error.

3. Else, return the byte mi .bytes[𝑖].

mem_read(𝑆, 𝑎, 𝑖) = 𝑏 (if 𝑆.mems[𝑎].bytes[𝑖] = 𝑏)
mem_read(𝑆, 𝑎, 𝑖) = error (otherwise)

mem_write(store,memaddr , 𝑖 : u64 , byte) : store | error

1. Let mi be the memory instance store.mems[memaddr].

2. If 𝑖 is larger than or equal to the length of mi .bytes, then return error.

3. Replace mi .bytes[𝑖] with byte.

4. Return the updated store.

mem_write(𝑆, 𝑎, 𝑖, 𝑏) = 𝑆′ (if 𝑆′ = 𝑆 with mems[𝑎].bytes[𝑖] = 𝑏)
mem_write(𝑆, 𝑎, 𝑖, 𝑏) = error (otherwise)

mem_size(store,memaddr) : u64

1. Return the length of store.mems[memaddr].bytes divided by the page size.

mem_size(𝑆, 𝑎) = 𝑛 (if |𝑆.mems[𝑎].bytes| = 𝑛 · 64Ki)

258 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

mem_grow(store,memaddr , 𝑛 : u64) : store | error

1. Try growing the memory instance store.mems[memaddr] by 𝑛 pages:

a. If it succeeds, return the updated store.

b. Else, return error.

mem_grow(𝑆, 𝑎, 𝑛) = 𝑆′ (if 𝑆′ = 𝑆 with mems[𝑎] = growmem(𝑆.mems[𝑎], 𝑛))
mem_grow(𝑆, 𝑎, 𝑛) = error (otherwise)

7.1.11 Tags
tag_alloc(store, tagtype) : (store, tagaddr)

1. Pre-condition: 𝑡𝑎𝑔𝑡𝑦𝑝𝑒 is valid.

2. Let tagaddr be the result of allocating a tag in store with tag type tagtype.

3. Return the new store paired with tagaddr .

tag_alloc(𝑆, tt) = (𝑆′, a) (if alloctag(𝑆, tt) = 𝑆′, a)

tag_type(store, tagaddr) : tagtype

1. Return 𝑆.tags[𝑎].type.

2. Post-condition: the returned tag type is valid.

tag_type(𝑆, 𝑎) = 𝑆.tags[𝑎].type

7.1.12 Exceptions
exn_alloc(store, tagaddr , val*) : (store, exnaddr)

1. Pre-condition: tagaddr is an allocated tag address.

2. Let exnaddr be the result of allocating an exception instance in store with tag address tagaddr and initial-
ization values val*.

3. Return the new store paired with exnaddr .

exn_alloc(𝑆, tagaddr , val*) = (𝑆 ⊕ {exns exninst}, |𝑆.exns|) (if exninst = {tag tagaddr , fields val*}

exn_tag(store, exnaddr) : tagaddr

1. Let exninst be the exception instance store.exns[exnaddr].

2. Return the tag address exninst .tag.

exn_tag(𝑆, 𝑎) = exninst .tag (if exninst = 𝑆.exns[𝑎])

exn_read(store, exnaddr) : val*

1. Let exninst be the exception instance store.exns[exnaddr].

2. Return the values exninst .fields.

exn_read(𝑆, 𝑎) = exninst .fields (if exninst = 𝑆.exns[𝑎])

7.1. Embedding 259

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.1.13 Globals
global_alloc(store, globaltype, val) : (store, globaladdr)

1. Pre-condition: the globaltype is valid under the empty context.

2. Let globaladdr be the result of allocating a global in store with global type globaltype and initialization
value val .

3. Return the new store paired with globaladdr .

global_alloc(𝑆, gt , 𝑣) = (𝑆′, a) (if allocglobal(𝑆, gt , 𝑣) = 𝑆′, a)

global_type(store, globaladdr) : globaltype

1. Return 𝑆.globals[𝑎].type.

2. Post-condition: the returned global type is valid under the empty context.

global_type(𝑆, 𝑎) = 𝑆.globals[𝑎].type

global_read(store, globaladdr) : val

1. Let gi be the global instance store.globals[globaladdr].

2. Return the value gi .value.

global_read(𝑆, 𝑎) = 𝑣 (if 𝑆.globals[𝑎].value = 𝑣)

global_write(store, globaladdr , val) : store | error

1. Let gi be the global instance store.globals[globaladdr].

2. Let mut 𝑡 be the structure of the global type gi .type.

3. If mut is empty, then return error.

4. Replace gi .value with the value val .

5. Return the updated store.

global_write(𝑆, 𝑎, 𝑣) = 𝑆′ (if 𝑆.globals[𝑎].type = mut 𝑡 ∧ 𝑆′ = 𝑆 with globals[𝑎].value = 𝑣)
global_write(𝑆, 𝑎, 𝑣) = error (otherwise)

7.1.14 Values
ref_type(store, ref) : reftype

1. Pre-condition: the reference ref is valid under store 𝑆.

2. Return the reference type 𝑡 with which ref is valid.

3. Post-condition: the returned reference type is valid under the empty context.

ref_type(𝑆, 𝑟) = 𝑡 (if 𝑆 ⊢ 𝑟 : 𝑡)

Note

In future versions of WebAssembly, not all references may carry precise type information at run time. In such
cases, this function may return a less precise supertype.

260 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

val_default(valtype) : val

1. If default𝑣𝑎𝑙𝑡𝑦𝑝𝑒 is not defined, then return error.

1. Else, return the value default𝑣𝑎𝑙𝑡𝑦𝑝𝑒.

val_default(𝑡) = 𝑣 (if default𝑡 = 𝑣)
val_default(𝑡) = error (if default𝑡 = 𝜖)

7.1.15 Matching
match_valtype(valtype1, valtype2) : bool

1. Pre-condition: the value types valtype1 and valtype2 are valid under the empty context.

2. If valtype1 matches valtype2, then return true.

3. Else, return false.

match_reftype(𝑡1, 𝑡2) = true (if ⊢ 𝑡1 ≤ 𝑡2)
match_reftype(𝑡1, 𝑡2) = false (otherwise)

match_externtype(externtype1, externtype2) : bool

1. Pre-condition: the extern types externtype1 and externtype2 are valid under the empty context.

2. If externtype1 matches externtype2, then return true.

3. Else, return false.

match_externtype(et1, et2) = true (if ⊢ et1 ≤ et2)
match_externtype(et1, et2) = false (otherwise)

7.2 Profiles
To enable the use of WebAssembly in as many environments as possible, profiles specify coherent language subsets
that fit constraints imposed by common classes of host environments. A host platform can thereby decide to support
the language only under a restricted profile, or even the intersection of multiple profiles.

7.2.1 Conventions
A profile modification is specified by decorating selected rules in the main body of this specification with a profile
annotation that defines them as conditional on the choice of profile.

For that purpose, every profile defines a profile marker, an alphanumeric short-hand likeABC. A profile annotation
of the form [!ABC XYZ] on a rule indicates that this rule is excluded for either of the profiles whose marker is ABC
or XYZ.

There are two ways of subsetting the language in a profile:

• Syntactic, by omitting a feature, in which case certain constructs are removed from the syntax altogether.

• Semantic, by restricting a feature, in which case certain constructs are still present but some behaviours are
ruled out.

Syntax Annotations

To omit a construct from a profile syntactically, respective productions in the grammar of the abstract syntax are
annotated with an associated profile marker. This is defined to have the following implications:

1. Any production in the binary or textual syntax that produces abstract syntax with a marked construct is
omitted by extension.

2. Any validation or execution rule that handles a marked construct is omitted by extension.

7.2. Profiles 261

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The overall effect is that the respective construct is no longer part of the language under a respective profile.

Note

For example, a “busy” profile marked BUSY could rule out the nop instruction by marking the production for
it in the abstract syntax as follows:

instr ::= . . .
[!BUSY] | nop

| unreachable

A rule may be annotated by multiple markers, which could be the case if a construct is in the intersection of
multiple features.

Semantics Annotations

To restrict certain behaviours in a profile, individual validation or reduction rules or auxiliary definitions are an-
notated with an associated marker.

This has the consequence that the respective rule is no longer applicable under the given profile.

Note

For example, an “infinite” profile marked INF could define that growing memory never fails:

𝑆;𝐹 ; (i32.const 𝑛) memory.grow 𝑥 →˓ 𝑆′;𝐹 ; (i32.const sz)
(if 𝐹.module.mems[𝑥] = 𝑎
∧ sz = |𝑆.mems[𝑎].datas|/64Ki
∧ 𝑆′ = 𝑆 with mems[𝑎] = growmem(𝑆.mems[𝑎], 𝑛))

[!INF] 𝑆;𝐹 ; (i32.const 𝑛) memory.grow 𝑥 →˓ 𝑆;𝐹 ; (i32.const signed−1
32 (−1))

Properties

All profiles are defined such that the following properties are preserved:

• All profiles represent syntactic and semantic subsets of the full profile, i.e., they do not add syntax or alter
behaviour.

• All profiles are mutually compatible, i.e., no two profiles subset semantic behaviour in inconsistent or am-
biguous ways, and any intersection of profiles preserves the properties described here.

• Profiles do not violate soundness, i.e., all configurations valid under that profile still have well-defined exe-
cution behaviour.

Note

Tools are generally expected to handle and produce code for the full profile by default. In particular, producers
should not generate code that depends on specific profiles. Instead, all code should preserve correctness when
executed under the full profile.

Moreover, profiles should be considered static and fixed for a given platform or ecosystem. Runtime condition-
ing on the “current” profile is not intended and should be avoided.

7.2.2 Defined Profiles

262 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Note

The number of defined profiles is expected to remain small in the future. Profiles are intended for broad and
permanent use cases only. In particular, profiles are not intended for language versioning.

Full Profile (FUL)

The full profile contains the complete language and all possible behaviours. It imposes no restrictions, i.e., all rules
and definitions are active. All other profiles define sub-languages of this profile.

Deterministic Profile (DET)

The deterministic profile excludes all rules marked [!DET]. It defines a sub-language that does not exhibit any
incidental non-deterministic behaviour:

• All NaN values generated by floating-point instructions are canonical and positive.

• All relaxed vector instructions have a fixed behaviour that does not depend on the implementation.

Even under this profile, the memory.grow and table.grow instructions technically remain non-deterministic, in
order to be able to indicate resource exhaustion.

Note

In future versions of WebAssembly, new non-deterministic behaviour may be added to the language, such that
the deterministic profile will induce additional restrictions.

7.3 Implementation Limitations
Implementations typically impose additional restrictions on a number of aspects of a WebAssembly module or
execution. These may stem from:

• physical resource limits,

• constraints imposed by the embedder or its environment,

• limitations of selected implementation strategies.

This section lists allowed limitations. Where restrictions take the form of numeric limits, no minimum requirements
are given, nor are the limits assumed to be concrete, fixed numbers. However, it is expected that all implementations
have “reasonably” large limits to enable common applications.

Note

A conforming implementation is not allowed to leave out individual features. However, designated subsets of
WebAssembly may be specified in the future.

7.3.1 Syntactic Limits
Structure

An implementation may impose restrictions on the following dimensions of a module:

• the number of types in a module

• the number of functions in a module, including imports

• the number of tables in a module, including imports

• the number of memories in a module, including imports

7.3. Implementation Limitations 263

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• the number of globals in a module, including imports

• the number of tags in a module, including imports

• the number of element segments in a module

• the number of data segments in a module

• the number of imports to a module

• the number of exports from a module

• the number of sub types in a recursive type

• the subtyping depth of a sub type

• the number of fields in a structure type

• the number of parameters in a function type

• the number of results in a function type

• the number of parameters in a block type

• the number of results in a block type

• the number of locals in a function

• the number of instructions in a function body

• the number of instructions in a structured control instruction

• the number of structured control instructions in a function

• the nesting depth of structured control instructions

• the number of label indices in a br_table instruction

• the number of instructions in a constant expression

• the length of the array in a array.new_fixed instruction

• the length of an element segment

• the length of a data segment

• the length of a name

• the range of characters in a name

If the limits of an implementation are exceeded for a given module, then the implementation may reject the vali-
dation, compilation, or instantiation of that module with an embedder-specific error.

Note

The last item allows embedders that operate in limited environments without support for Unicode48 to limit the
names of imports and exports to common subsets like ASCII49.

Binary Format

For a module given in binary format, additional limitations may be imposed on the following dimensions:

• the size of a module

• the size of any section

• the size of an individual function’s code

• the size of a structured control instruction
48 https://www.unicode.org/versions/latest/
49 https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

264 Chapter 7. Appendix

https://www.unicode.org/versions/latest/
https://webstore.ansi.org/RecordDetail.aspx?sku=INCITS+4-1986%5bR2012%5d

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• the size of an individual constant expression’s instruction sequence

• the number of sections

Text Format

For a module given in text format, additional limitations may be imposed on the following dimensions:

• the size of the source text

• the size of any syntactic element

• the size of an individual token

• the nesting depth of folded instructions

• the length of symbolic identifiers

• the range of literal characters allowed in the source text

7.3.2 Validation
An implementation may defer validation of individual functions until they are first invoked.

If a function turns out to be invalid, then the invocation, and every consecutive call to the same function, results in
a trap.

Note

This is to allow implementations to use interpretation or just-in-time compilation for functions. The function
must still be fully validated before execution of its body begins.

7.3.3 Execution
Restrictions on the following dimensions may be imposed during execution of a WebAssembly program:

• the number of allocated module instances

• the number of allocated function instances

• the number of allocated table instances

• the number of allocated memory instances

• the number of allocated global instances

• the number of allocated tag instances

• the number of allocated structure instances

• the number of allocated array instances

• the number of allocated exception instances

• the size of a table instance

• the size of a memory instance

• the size of an array instance

• the number of frames on the stack

• the number of labels on the stack

• the number of values on the stack

7.3. Implementation Limitations 265

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

If the runtime limits of an implementation are exceeded during execution of a computation, then it may terminate
that computation and report an embedder-specific error to the invoking code.

Some of the above limits may already be verified during instantiation, in which case an implementation may report
exceedance in the same manner as for syntactic limits.

Note

Concrete limits are usually not fixed but may be dependent on specifics, interdependent, vary over time, or
depend on other implementation- or embedder-specific situations or events.

7.4 Type Soundness
The type system of WebAssembly is sound, implying both type safety and memory safety with respect to the We-
bAssembly semantics. For example:

• All types declared and derived during validation are respected at run time; e.g., every local or global variable
will only contain type-correct values, every instruction will only be applied to operands of the expected type,
and every function invocation always evaluates to a result of the right type (if it does not diverge, throw an
exception, or trap).

• No memory location will be read or written except those explicitly defined by the program, i.e., as a local, a
global, an element in a table, or a location within a linear memory.

• There is no undefined behavior, i.e., the execution rules cover all possible cases that can occur in a valid
program, and the rules are mutually consistent.

Soundness also is instrumental in ensuring additional properties, most notably, encapsulation of function and
module scopes: no locals can be accessed outside their own function and no module components can be accessed
outside their own module unless they are explicitly exported or imported.

The typing rules defining WebAssembly validation only cover the static components of a WebAssembly program.
In order to state and prove soundness precisely, the typing rules must be extended to the dynamic components of
the abstract runtime, that is, the store, configurations, and administrative instructions.50

7.4.1 Contexts
In order to check rolled up recursive types, the context is locally extended with an additional component that records
the sub type corresponding to each recursive type index within the current recursive type:

𝐶 ::= { . . . , recs subtype* }

7.4.2 Types
Well-formedness for extended type forms is defined as follows.

Heap Type bot

• The heap type is valid.

𝐶 ⊢ bot : ok
50 The formalization and theorems are derived from the following article: Andreas Haas, Andreas Rossberg, Derek Schuff, Ben Titzer, Dan

Gohman, Luke Wagner, Alon Zakai, JF Bastien, Michael Holman. Bringing the Web up to Speed with WebAssembly51. Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). ACM 2017.

51 https://dl.acm.org/citation.cfm?doid=3062341.3062363

266 Chapter 7. Appendix

https://dl.acm.org/citation.cfm?doid=3062341.3062363

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Heap Type rec 𝑖

• The recursive type index 𝑖 must exist in 𝐶.recs.

• Then the heap type is valid.
𝐶.recs[𝑖] = subtype

𝐶 ⊢ rec 𝑖 : ok

Value Type bot

• The value type is valid.

𝐶 ⊢ bot : ok

Recursive Types rec subtype*

• Let 𝐶 ′ be the current context 𝐶, but where recs is subtype*.

• There must be a type index 𝑥, such that for each sub type subtype𝑖 in subtype*:

– Under the context 𝐶 ′, the sub type subtype𝑖 must be valid for type index 𝑥+ 𝑖 and recursive type index
𝑖.

• Then the recursive type is valid for the type index 𝑥.
𝐶, recs subtype* ⊢ rec subtype* : ok(𝑥, 0)

𝐶 ⊢ rec subtype* : ok(𝑥)

𝐶 ⊢ rec 𝜖 : ok(𝑥, 𝑖)

𝐶 ⊢ subtype : ok(𝑥, 𝑖) 𝐶 ⊢ rec subtype ′* : ok(𝑥+ 1, 𝑖+ 1)

𝐶 ⊢ rec subtype subtype ′* : ok(𝑥, 𝑖)

Note

These rules are a generalisation of the ones previously given.

Sub types sub final? ht* comptype

• The composite type comptype must be valid.

• The sequence ht* may be no longer than 1.

• For every heap type ht𝑘 in ht*:

– The heap type ht𝑘 must be ordered before a type index 𝑥 and recursive type index a 𝑖, meaning:

∗ Either ht𝑘 is a defined type.

∗ Or ht𝑘 is a type index 𝑦𝑘 that is smaller than 𝑥.

∗ Or ht𝑘 is a recursive type index rec 𝑗𝑘 where 𝑗𝑘 is smaller than 𝑖.

– Let sub type subtype𝑘 be the unrolling of the heap type ht𝑘, meaning:

∗ Either ht𝑘 is a defined type deftype𝑘, then subtype𝑘 must be the unrolling of deftype𝑘.

∗ Or ht𝑘 is a type index 𝑦𝑘, then subtype𝑘 must be the unrolling of the defined type 𝐶.types[𝑦𝑘].

∗ Or ht𝑘 is a recursive type index rec 𝑗𝑘, then subtype𝑘 must be 𝐶.recs[𝑗𝑘].

– The sub type subtype𝑘 must not contain final.

– Let comptype ′𝑘 be the composite type in subtype𝑘.

– The composite type comptype must match comptype ′𝑘.

• Then the sub type is valid for the type index 𝑥 and recursive type index 𝑖.

7.4. Type Soundness 267

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

|ht*| ≤ 1 (ht ≺ 𝑥, 𝑖)* (unroll𝐶(ht) = sub ht ′
*
comptype ′)*

𝐶 ⊢ comptype : ok (𝐶 ⊢ comptype ≤ comptype ′)*

𝐶 ⊢ sub final? ht* comptype : ok(𝑥, 𝑖)

where:

(deftype ≺ 𝑥, 𝑖) = true
(𝑦 ≺ 𝑥, 𝑖) = 𝑦 < 𝑥
(rec 𝑗 ≺ 𝑥, 𝑖) = 𝑗 < 𝑖

unroll𝐶(deftype) = unroll(deftype)
unroll𝐶(𝑦) = unroll(𝐶.types[𝑦])
unroll𝐶(rec 𝑗) = 𝐶.recs[𝑗]

Note

This rule is a generalisation of the ones previously given, which only allowed type indices as supertypes.

Defined types rectype.𝑖

The defined type (rectype.𝑖) is valid if:

• The recursive type rectype is valid for the type index 𝑥.

• The recursive type rectype is of the form (rec subtype𝑛).

• 𝑖 is less than 𝑛.
𝐶 ⊢ rectype : ok(𝑥) rectype = rec subtype𝑛 𝑖 < 𝑛

𝐶 ⊢ rectype.𝑖 : ok

7.4.3 Subtyping
In a rolled-up recursive type, a recursive type indices rec 𝑖 matches another heap type ht if:

• Let sub final? ht ′
*
comptype be the sub type 𝐶.recs[𝑖].

• The heap type ht is contained in ht ′
*.

𝐶.recs[𝑖] = sub final? (ht*1 ht ht
*
2) comptype

𝐶 ⊢ rec 𝑖 ≤ ht

Note

This rule is only invoked when checking validity of rolled-up recursive types.

7.4.4 Results
Results can be classified by result types as follows.

Results val*

• For each value val 𝑖 in val*:

– The value val 𝑖 is valid with some value type 𝑡𝑖.

• Let 𝑡* be the concatenation of all 𝑡𝑖.

• Then the result is valid with result type [𝑡*].

(𝑆 ⊢ val : 𝑡)*

𝑆 ⊢ val* : [𝑡*]

268 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Results (ref.exn 𝑎) throw_ref

• The value ref.exn 𝑎 must be valid.

• Then the result is valid with result type [𝑡*], for any valid closed result types.

𝑆 ⊢ ref.exn 𝑎 : ref exn ⊢ [𝑡*] : ok

𝑆 ⊢ (ref.exn 𝑎) throw_ref : [𝑡′*]

Results trap

• The result is valid with result type [𝑡*], for any valid closed result types.

⊢ [𝑡*] : ok

𝑆 ⊢ trap : [𝑡*]

7.4.5 Store Validity
The following typing rules specify when a runtime store 𝑆 is valid. A valid store must consist of tag, global,
memory, table, function, data, element, structure, array, exception, and module instances that are themselves valid,
relative to 𝑆.

To that end, each kind of instance is classified by a respective tag, global, memory, table, function, or element,
type, or just ok in the case of data structures, arrays, or exceptions. Module instances are classified by module
contexts, which are regular contexts repurposed as module types describing the index spaces defined by a module.

Store 𝑆

• Each tag instance taginst 𝑖 in 𝑆.tags must be valid with some tag type tagtype𝑖.

• Each global instance globalinst 𝑖 in 𝑆.globals must be valid with some global type globaltype𝑖.

• Each memory instance meminst 𝑖 in 𝑆.mems must be valid with some memory type memtype𝑖.

• Each table instance tableinst 𝑖 in 𝑆.tables must be valid with some table type tabletype𝑖.

• Each function instance funcinst 𝑖 in 𝑆.funcs must be valid with some defined type deftype𝑖.

• Each data instance datainst 𝑖 in 𝑆.datas must be valid.

• Each element instance eleminst 𝑖 in 𝑆.elems must be valid with some reference type reftype𝑖.

• Each structure instance structinst 𝑖 in 𝑆.structs must be valid.

• Each array instance arrayinst 𝑖 in 𝑆.arrays must be valid.

• Each exception instance exninst 𝑖 in 𝑆.exns must be valid.

• No reference to a bound structure address must be reachable from itself through a path consisting only of
indirections through immutable structure, or array fields or fields of exception instances.

• No reference to a bound array address must be reachable from itself through a path consisting only of indi-
rections through immutable structure or array fields or fields of exception instances.

• No reference to a bound exception address must be reachable from itself through a path consisting only of
indirections through immutable structure or array fields or fields of exception instances.

• Then the store is valid.

7.4. Type Soundness 269

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(𝑆 ⊢ taginst : tagtype)* (𝑆 ⊢ globalinst : globaltype)*

(𝑆 ⊢ meminst : memtype)* (𝑆 ⊢ tableinst : tabletype)*

(𝑆 ⊢ funcinst : deftype)* (𝑆 ⊢ datainst : ok)* (𝑆 ⊢ eleminst : reftype)*

(𝑆 ⊢ structinst : ok)* (𝑆 ⊢ arrayinst : ok)* (𝑆 ⊢ exninst : ok)*

𝑆 = {tags taginst*, globals globalinst*,mems meminst*, tables tableinst*, funcs funcinst*,
datas datainst*, elems eleminst*, structs structinst*, arrays arrayinst*, exns exninst*}

(𝑆.structs[𝑎s] = structinst)* ((ref.struct 𝑎s) ̸≫+
𝑆 (ref.struct 𝑎s))

*

(𝑆.arrays[𝑎a] = arrayinst)* ((ref.array 𝑎a) ̸≫+
𝑆 (ref.array 𝑎a))

*

(𝑆.exns[𝑎e] = exninst)* ((ref.exn 𝑎e) ̸≫+
𝑆 (ref.exn 𝑎e))

*

⊢ 𝑆 : ok

where val1 ≫+
𝑆 val2 denotes the transitive closure of the following immutable reachability relation on values:

(ref.struct 𝑎) ≫𝑆 𝑆.structs[𝑎].fields[𝑖] if expand(𝑆.structs[𝑎].type) = struct ft 𝑖1 st ft
*
2

(ref.array 𝑎) ≫𝑆 𝑆.arrays[𝑎].fields[𝑖] if expand(𝑆.arrays[𝑎].type) = array st
(ref.exn 𝑎) ≫𝑆 𝑆.exns[𝑎].fields[𝑖]
(ref.extern ref) ≫𝑆 ref

Note

The constraint on reachability through immutable fields prevents the presence of cyclic data structures that can
not be constructed in the language. Cycles can only be formed using mutation.

Tag Instances {type tagtype}

• The tag type tagtype must be valid under the empty context.

• Then the tag instance is valid with tag type tagtype.
⊢ tagtype : ok

𝑆 ⊢ {type tagtype} : tagtype

Global Instances {type mut 𝑡, value val}

• The global type mut 𝑡 must be valid under the empty context.

• The value val must be valid with some value type 𝑡′.

• The value type 𝑡′ must match the value type 𝑡.

• Then the global instance is valid with global type mut 𝑡.
⊢ mut 𝑡 : ok 𝑆 ⊢ val : 𝑡′ ⊢ 𝑡′ ≤ 𝑡

𝑆 ⊢ {type mut 𝑡, value val} : mut 𝑡

Memory Instances {type (addrtype limits), bytes 𝑏*}

• The memory type addrtype limits must be valid under the empty context.

• Let limits be [𝑛 ..𝑚].

• The length of 𝑏* must equal 𝑚 multiplied by the page size 64Ki.

• Then the memory instance is valid with memory type addrtype limits .
⊢ addrtype [𝑛 ..𝑚] : ok |𝑏*| = 𝑛 · 64Ki

𝑆 ⊢ {type (addrtype [𝑛 ..𝑚]), bytes 𝑏*} : addrtype [𝑛 ..𝑚]

270 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table Instances {type (addrtype limits 𝑡), elem ref *}

• The table type addrtype limits 𝑡 must be valid under the empty context.

• Let limits be [𝑛 ..𝑚].

• The length of ref * must equal 𝑛.

• For each reference ref 𝑖 in the table’s elements ref 𝑛:

– The reference ref 𝑖 must be valid with some reference type 𝑡′𝑖.

– The reference type 𝑡′𝑖 must match the reference type 𝑡.

• Then the table instance is valid with table type addrtype limits 𝑡.
⊢ addrtype [𝑛 ..𝑚] 𝑡 : ok |ref *| = 𝑛 (𝑆 ⊢ ref : 𝑡′)* (⊢ 𝑡′ ≤ 𝑡)*

𝑆 ⊢ {type (addrtype [𝑛 ..𝑚] 𝑡), elem ref *} : addrtype [𝑛 ..𝑚] 𝑡

Function Instances {type deftype,module moduleinst , code func}

• The defined type deftype must be valid under an empty context.

• The module instance moduleinst must be valid with some context 𝐶.

• Under context 𝐶:

– The function func must be valid with some defined type deftype ′.

– The defined type deftype ′ must match deftype.

• Then the function instance is valid with defined type deftype.

⊢ deftype : ok 𝑆 ⊢ moduleinst : 𝐶
𝐶 ⊢ func : deftype ′ 𝐶 ⊢ deftype ′ ≤ deftype

𝑆 ⊢ {type deftype,module moduleinst , code func} : deftype

Host Function Instances {type deftype, hostfunc hf }

• The defined type deftype must be valid under an empty context.

• The expansion of defined type deftype must be some function type func [𝑡*1] → [𝑡*2].

• For every valid store 𝑆1 extending 𝑆 and every sequence val* of values whose types coincide with 𝑡*1:

– Executing hf in store 𝑆1 with arguments val* has a non-empty set of possible outcomes.

– For every element 𝑅 of this set:

∗ Either 𝑅 must be ⊥ (i.e., divergence).

∗ Or 𝑅 consists of a valid store 𝑆2 extending 𝑆1 and a result result whose type coincides with [𝑡*2].

• Then the function instance is valid with defined type deftype.

⊢ deftype : ok
deftype ≈ func [𝑡*1] → [𝑡*2]

∀𝑆1, val
, ⊢ 𝑆1 : ok ∧ ⊢ 𝑆 ⪯ 𝑆1 ∧ 𝑆1 ⊢ val : [𝑡*1] =⇒

hf (𝑆1; val
*) ⊃ ∅ ∧

∀𝑅 ∈ hf (𝑆1; val
*), 𝑅 = ⊥ ∨

∃𝑆2, result , ⊢ 𝑆2 : ok ∧ ⊢ 𝑆1 ⪯ 𝑆2 ∧ 𝑆2 ⊢ result : [𝑡*2] ∧𝑅 = (𝑆2; result)

𝑆 ⊢ {type deftype, hostfunc hf } : deftype

Note

This rule states that, if appropriate pre-conditions about store and arguments are satisfied, then executing the
host function must satisfy appropriate post-conditions about store and results. The post-conditions match the
ones in the execution rule for invoking host functions.

7.4. Type Soundness 271

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Any store under which the function is invoked is assumed to be an extension of the current store. That way, the
function itself is able to make sufficient assumptions about future stores.

Data Instances {bytes 𝑏*}

• The data instance is valid.

𝑆 ⊢ {bytes 𝑏*} : ok

Element Instances {type 𝑡, elem ref *}

• The reference type 𝑡 must be valid under the empty context.

• For each reference ref 𝑖 in the elements ref 𝑛:

– The reference ref 𝑖 must be valid with some reference type 𝑡′𝑖.

– The reference type 𝑡′𝑖 must match the reference type 𝑡.

• Then the element instance is valid with reference type 𝑡.
⊢ 𝑡 : ok (𝑆 ⊢ ref : 𝑡′)* (⊢ 𝑡′ ≤ 𝑡)*

𝑆 ⊢ {type 𝑡, elem ref *} : 𝑡

Structure Instances {type deftype, fields fieldval*}

• The defined type deftype must be valid under the empty context.

• The expansion of deftype must be a structure type struct fieldtype*.

• The length of the sequence of field values fieldval* must be the same as the length of the sequence of field
types fieldtype*.

• For each field value fieldval 𝑖 in fieldval* and corresponding field type fieldtype𝑖 in fieldtype*:

– Let fieldtype𝑖 be mut storagetype𝑖.

– The field value fieldval 𝑖 must be valid with storage type storagetype𝑖.

• Then the structure instance is valid.
⊢ dt : ok expand(dt) = struct (mut st)* (𝑆 ⊢ fv : st)*

𝑆 ⊢ {type dt , fields fv*} : ok

Array Instances {type deftype, fields fieldval*}

• The defined type deftype must be valid under the empty context.

• The expansion of deftype must be an array type array fieldtype.

• Let fieldtype be mut storagetype.

• For each field value fieldval 𝑖 in fieldval*:

– The field value fieldval 𝑖 must be valid with storage type storagetype.

• Then the array instance is valid.
⊢ dt : ok expand(dt) = array (mut st) (𝑆 ⊢ fv : st)*

𝑆 ⊢ {type dt , fields fv*} : ok

272 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Field Values fieldval

• If fieldval is a value val , then:

– The value val must be valid with value type 𝑡.

– Then the field value is valid with value type 𝑡.

• Else, fieldval is a packed value packval :

– Let packtype.pack 𝑖 be the field value fieldval .

– Then the field value is valid with packed type packtype.

𝑆 ⊢ pt .pack 𝑖 : pt

Exception Instances {tag 𝑎, fields val*}

• The store entry 𝑆.tags[𝑎] must exist.

• The expansion of the tag type 𝑆.tags[𝑎].type must be some function type func [𝑡*] → [𝑡′
*
].

• The result type [𝑡′*] must be empty.

• The sequence val𝑎𝑠𝑡 of values must have the same length as the sequence 𝑡* of value types.

• For each value val 𝑖 in val𝑎𝑠𝑡 and corresponding value type 𝑡𝑖 in 𝑡*, the value val 𝑖 must be valid with type
𝑡𝑖.

• Then the exception instance is valid.
𝑆.tags[𝑎].type ≈ func [𝑡*] → [] (𝑆 ⊢ val : 𝑡)*

𝑆 ⊢ {tag 𝑎, fields val*} : ok

Export Instances {name name, addr externaddr}

• The external address externaddr must be valid with some external type externtype.

• Then the export instance is valid.
𝑆 ⊢ externaddr : externtype

𝑆 ⊢ {name name, addr externaddr} : ok

Module Instances moduleinst

• Each defined type deftype𝑖 in moduleinst .types must be valid under the empty context.

• For each tag address tagaddr 𝑖 in moduleinst .tags, the external address tag tagaddr 𝑖 must be valid with
some external type tag tagtype𝑖.

• For each global address globaladdr 𝑖 in moduleinst .globals, the external address global globaladdr 𝑖 must be
valid with some external type global globaltype𝑖.

• For each memory address memaddr 𝑖 in moduleinst .mems, the external address mem memaddr 𝑖 must be
valid with some external type mem memtype𝑖.

• For each table address tableaddr 𝑖 in moduleinst .tables, the external address table tableaddr 𝑖 must be valid
with some external type table tabletype𝑖.

• For each function address funcaddr 𝑖 in moduleinst .funcs, the external address func funcaddr 𝑖 must be
valid with some external type func deftypeF𝑖.

• For each data address dataaddr 𝑖 in moduleinst .datas, the data instance 𝑆.datas[dataaddr 𝑖] must be valid
with ok 𝑖.

7.4. Type Soundness 273

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

• For each element address elemaddr 𝑖 in moduleinst .elems, the element instance 𝑆.elems[elemaddr 𝑖] must
be valid with some reference type reftype𝑖.

• Each export instance exportinst 𝑖 in moduleinst .exports must be valid.

• For each export instance exportinst 𝑖 in moduleinst .exports, the name exportinst 𝑖.name must be different
from any other name occurring in moduleinst .exports.

• Let deftype* be the concatenation of all deftype𝑖 in order.

• Let tagtype* be the concatenation of all tagtype𝑖 in order.

• Let globaltype* be the concatenation of all globaltype𝑖 in order.

• Let memtype* be the concatenation of all memtype𝑖 in order.

• Let tabletype* be the concatenation of all tabletype𝑖 in order.

• Let deftype*F be the concatenation of all deftypeF𝑖 in order.

• Let reftype* be the concatenation of all reftype𝑖 in order.

• Let ok* be the concatenation of all ok 𝑖 in order.

• Let 𝑚 be the length of moduleinst .funcs.

• Let 𝑥* be the sequence of function indices from 0 to 𝑚− 1.

• Then the module instance is valid with context {types deftype*, tags tagtype*, globals globaltype*,
mems memtype*, tables tabletype*, funcs deftype*F, datas ok

, elems reftype, refs 𝑥*}.

(⊢ deftype : ok)* (𝑆 ⊢ tag tagaddr : tag tagtype)*

(𝑆 ⊢ global globaladdr : global globaltype)* (𝑆 ⊢ func funcaddr : func deftypeF)
*

(𝑆 ⊢ mem memaddr : mem memtype)* (𝑆 ⊢ table tableaddr : table tabletype)*

(𝑆 ⊢ 𝑆.datas[dataaddr] : ok)* (𝑆 ⊢ 𝑆.elems[elemaddr] : reftype)*

(𝑆 ⊢ exportinst : ok)* (exportinst .name)* disjoint
𝑆 ⊢ {types deftype*,

tags tagaddr*,
globals globaladdr*,
mems memaddr*,
tables tableaddr*,
funcs funcaddr*,
datas dataaddr*,
elems elemaddr*,
exports exportinst* } : {types deftype*,

tags tagtype*,
globals globaltype*,
mems memtype*,
tables tabletype*,
funcs deftype*F,
datas ok*,
elems reftype*,
refs 0 . . . (|funcaddr*| − 1) }

7.4.6 Configuration Validity
To relate the WebAssembly type system to its execution semantics, the typing rules for instructions must be ex-
tended to configurations 𝑆;𝑇 , which relates the store to execution threads.

Configurations and threads are classified by their result type. In addition to the store 𝑆, threads are typed under a
return type resulttype?, which controls whether and with which type a return instruction is allowed. This type is
absent (𝜖) except for instruction sequences inside an administrative frame instruction.

274 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Finally, frames are classified with frame contexts, which extend the module contexts of a frame’s associated module
instance with the locals that the frame contains.

Configurations 𝑆;𝑇

• The store 𝑆 must be valid.

• Under no allowed return type, the thread 𝑇 must be valid with some result type [𝑡*].

• Then the configuration is valid with the result type [𝑡*].

⊢ 𝑆 : ok 𝑆; 𝜖 ⊢ 𝑇 : [𝑡*]

⊢ 𝑆;𝑇 : [𝑡*]

Threads 𝐹 ; instr*

• Let resulttype? be the current allowed return type.

• The frame 𝐹 must be valid with a context 𝐶.

• Let 𝐶 ′ be the same context as 𝐶, but with return set to resulttype?.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with some type [] → [𝑡*].

• Then the thread is valid with the result type [𝑡*].

𝑆 ⊢ 𝐹 : 𝐶 𝑆;𝐶, return resulttype? ⊢ instr* : [] → [𝑡*]

𝑆; resulttype? ⊢ 𝐹 ; instr* : [𝑡*]

Frames {locals val*,module moduleinst}

• The module instance moduleinst must be valid with some module context 𝐶.

• Each value val 𝑖 in val* must be valid with some value type 𝑡𝑖.

• Let 𝑡* be the concatenation of all 𝑡𝑖 in order.

• Let 𝐶 ′ be the same context as 𝐶, but with the value types 𝑡* prepended to the locals list.

• Then the frame is valid with frame context 𝐶 ′.
𝑆 ⊢ moduleinst : 𝐶 (𝑆 ⊢ val : 𝑡)*

𝑆 ⊢ {locals val*,module moduleinst} : (𝐶, locals 𝑡*)

7.4.7 Administrative Instructions
Typing rules for administrative instructions are specified as follows. In addition to the context 𝐶, typing of these
instructions is defined under a given store 𝑆.

To that end, all previous typing judgements 𝐶 ⊢ prop are generalized to include the store, as in 𝑆;𝐶 ⊢ prop, by
implicitly adding 𝑆 to all rules – 𝑆 is never modified by the pre-existing rules, but it is accessed in the extra rules
for administrative instructions given below.

trap

• The instruction is valid with any valid instruction type of the form [𝑡*1] → [𝑡*2].

𝐶 ⊢ [𝑡*1] → [𝑡*2] : ok

𝑆;𝐶 ⊢ trap : [𝑡*1] → [𝑡*2]

7.4. Type Soundness 275

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

val

• The value val must be valid with value type 𝑡.

• Then it is valid as an instruction with type [] → [𝑡].
𝑆 ⊢ val : 𝑡

𝑆;𝐶 ⊢ val : [] → [𝑡]

invoke funcaddr

• The external function address func funcaddr must be valid with external function type func deftype ′.

• The expansion of the defined type deftype must be some function type func [𝑡*1] → [𝑡*2]).

• Then the instruction is valid with type [𝑡*1] → [𝑡*2].

𝑆 ⊢ func funcaddr : func deftype deftype ≈ func [𝑡*1] → [𝑡*2]

𝑆;𝐶 ⊢ invoke funcaddr : [𝑡*1] → [𝑡*2]

label𝑛{instr*0} instr*

• The instruction sequence instr*0 must be valid with some type [𝑡𝑛1] →𝑥* [𝑡*2].

• Let 𝐶 ′ be the same context as 𝐶, but with the result type [𝑡𝑛1] prepended to the labels list.

• Under context 𝐶 ′, the instruction sequence instr* must be valid with type [] →𝑥′* [𝑡*2].

• Then the compound instruction is valid with type [] → [𝑡*2].

𝑆;𝐶 ⊢ instr*0 : [𝑡𝑛1] →𝑥* [𝑡*2] 𝑆;𝐶, labels [𝑡𝑛1] ⊢ instr* : [] →𝑥′* [𝑡*2]

𝑆;𝐶 ⊢ label𝑛{instr*0} instr* : [] → [𝑡*2]

frame𝑛{𝐹} instr*

• Under the valid return type [𝑡𝑛], the thread 𝐹 ; instr* must be valid with result type [𝑡𝑛].

• Then the compound instruction is valid with type [] → [𝑡𝑛].

𝐶 ⊢ [𝑡𝑛] : ok 𝑆; [𝑡𝑛] ⊢ 𝐹 ; instr* : [𝑡𝑛]

𝑆;𝐶 ⊢ frame𝑛{𝐹} instr* : [] → [𝑡𝑛]

handler𝑛{catch*} instr*

• For every catch clause catch𝑖 in catch*, catch𝑖 must be valid.

• The instruction sequence instr* must be valid with some type [𝑡*1] → [𝑡*2].

• Then the compound instruction is valid with type [𝑡*1] → [𝑡*2].

(𝐶 ⊢ catch : ok)* 𝑆;𝐶 ⊢ instr* : [𝑡*1] → [𝑡*2]

𝑆;𝐶 ⊢ handler𝑛{catch*} instr* : [𝑡*1] → [𝑡*2]

7.4.8 Store Extension
Programs can mutate the store and its contained instances. Any such modification must respect certain invariants,
such as not removing allocated instances or changing immutable definitions. While these invariants are inherent
to the execution semantics of WebAssembly instructions and modules, host functions do not automatically adhere
to them. Consequently, the required invariants must be stated as explicit constraints on the invocation of host
functions. Soundness only holds when the embedder ensures these constraints.

276 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The necessary constraints are codified by the notion of store extension: a store state 𝑆′ extends state 𝑆, written
𝑆 ⪯ 𝑆′, when the following rules hold.

Note

Extension does not imply that the new store is valid, which is defined separately above.

Store 𝑆

• The length of 𝑆.tags must not shrink.

• The length of 𝑆.globals must not shrink.

• The length of 𝑆.mems must not shrink.

• The length of 𝑆.tables must not shrink.

• The length of 𝑆.funcs must not shrink.

• The length of 𝑆.datas must not shrink.

• The length of 𝑆.elems must not shrink.

• The length of 𝑆.structs must not shrink.

• The length of 𝑆.arrays must not shrink.

• The length of 𝑆.exns must not shrink.

• For each tag instance taginst 𝑖 in the original 𝑆.tags, the new tag instance must be an extension of the old.

• For each global instance globalinst 𝑖 in the original 𝑆.globals, the new global instance must be an extension
of the old.

• For each memory instancememinst 𝑖 in the original 𝑆.mems, the new memory instance must be an extension
of the old.

• For each table instance tableinst 𝑖 in the original 𝑆.tables, the new table instance must be an extension of the
old.

• For each function instance funcinst 𝑖 in the original 𝑆.funcs, the new function instance must be an extension
of the old.

• For each data instance datainst 𝑖 in the original 𝑆.datas, the new data instance must be an extension of the
old.

• For each element instance eleminst 𝑖 in the original 𝑆.elems, the new element instance must be an extension
of the old.

• For each structure instance structinst 𝑖 in the original 𝑆.structs, the new structure instance must be an ex-
tension of the old.

• For each array instance arrayinst 𝑖 in the original 𝑆.arrays, the new array instance must be an extension of
the old.

• For each exception instance exninst 𝑖 in the original 𝑆.exns, the new exception instance must be an extension
of the old.

7.4. Type Soundness 277

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

𝑆1.tags = taginst*1 𝑆2.tags = taginst ′1
*
taginst*2 (⊢ taginst1 ⪯ taginst ′1)

*

𝑆1.globals = globalinst*1 𝑆2.globals = globalinst ′1
*
globalinst*2 (⊢ globalinst1 ⪯ globalinst ′1)

*

𝑆1.mems = meminst*1 𝑆2.mems = meminst ′1
*
meminst*2 (⊢ meminst1 ⪯ meminst ′1)

*

𝑆1.tables = tableinst*1 𝑆2.tables = tableinst ′1
*
tableinst*2 (⊢ tableinst1 ⪯ tableinst ′1)

*

𝑆1.funcs = funcinst*1 𝑆2.funcs = funcinst ′1
*
funcinst*2 (⊢ funcinst1 ⪯ funcinst ′1)

*

𝑆1.datas = datainst*1 𝑆2.datas = datainst ′1
*
datainst*2 (⊢ datainst1 ⪯ datainst ′1)

*

𝑆1.elems = eleminst*1 𝑆2.elems = eleminst ′1
*
eleminst*2 (⊢ eleminst1 ⪯ eleminst ′1)

*

𝑆1.structs = structinst*1 𝑆2.structs = structinst ′1
*
structinst*2 (⊢ structinst1 ⪯ structinst ′1)

*

𝑆1.arrays = arrayinst*1 𝑆2.arrays = arrayinst ′1
*
arrayinst*2 (⊢ arrayinst1 ⪯ arrayinst ′1)

*

𝑆1.exns = exninst*1 𝑆2.exns = exninst ′1
*
exninst*2 (⊢ exninst1 ⪯ exninst ′1)

*

⊢ 𝑆1 ⪯ 𝑆2

Tag Instance taginst

• A tag instance must remain unchanged.

⊢ taginst ⪯ taginst

Global Instance globalinst

• The global type globalinst .type must remain unchanged.

• Let mut 𝑡 be the structure of globalinst .type.

• If mut is empty, then the value globalinst .value must remain unchanged.
mut = mut ∨ val1 = val2

⊢ {type (mut 𝑡), value val1} ⪯ {type (mut 𝑡), value val2}

Memory Instance meminst

• The memory type meminst .type must remain unchanged.

• The length of meminst .bytes must not shrink.
𝑛1 ≤ 𝑛2

⊢ {type mt , bytes 𝑏𝑛1
1 } ⪯ {type mt , bytes 𝑏𝑛2

2 }

Table Instance tableinst

• The table type tableinst .type must remain unchanged.

• The length of tableinst .elem must not shrink.
𝑛1 ≤ 𝑛2

⊢ {type tt , elem (fa?
1)

𝑛1} ⪯ {type tt , elem (fa?
2)

𝑛2}

Function Instance funcinst

• A function instance must remain unchanged.

⊢ funcinst ⪯ funcinst

278 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Data Instance datainst

• The list datainst .bytes must:

– either remain unchanged,

– or shrink to length 0.

⊢ {bytes 𝑏*} ⪯ {bytes 𝑏*}

⊢ {bytes 𝑏*} ⪯ {bytes 𝜖}

Element Instance eleminst

• The reference type eleminst .type must remain unchanged.

• The list eleminst .elem must:

– either remain unchanged,

– or shrink to length 0.

⊢ {type 𝑡, elem 𝑎*} ⪯ {type 𝑡, elem 𝑎*}

⊢ {type 𝑡, elem 𝑎*} ⪯ {type 𝑡, elem 𝜖}

Structure Instance structinst

• The defined type structinst .type must remain unchanged.

• Assert: due to store well-formedness, the expansion of structinst .type is a structure type.

• Let struct fieldtype* be the expansion of structinst .type.

• The length of the list structinst .fields must remain unchanged.

• Assert: due to store well-formedness, the length of structinst .fields is the same as the length of fieldtype*.

• For each field value fieldval 𝑖 in structinst .fields and corresponding field type fieldtype𝑖 in fieldtype*:

– Let mut 𝑖 st 𝑖 be the structure of fieldtype𝑖.

– If mut 𝑖 is empty, then the field value fieldval 𝑖 must remain unchanged.
(mut = mut ∨ fieldval1 = fieldval2)

*

⊢ {type (mut st)*, fields fieldval*1} ⪯ {type (mut st)*, fields fieldval*2}

Array Instance arrayinst

• The defined type arrayinst .type must remain unchanged.

• Assert: due to store well-formedness, the expansion of arrayinst .type is an array type.

• Let array fieldtype be the expansion of arrayinst .type.

• The length of the list arrayinst .fields must remain unchanged.

• Let mut st be the structure of fieldtype.

• If mut is empty, then the sequence of field values arrayinst .fields must remain unchanged.
mut = mut ∨ fieldval*1 = fieldval*2

⊢ {type (mut st), fields fieldval*1} ⪯ {type (mut st), fields fieldval*2}

7.4. Type Soundness 279

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Exception Instance exninst

• An exception instance must remain unchanged.

⊢ exninst ⪯ exninst

7.4.9 Theorems
Given the definition of valid configurations, the standard soundness theorems hold.5254

Theorem (Preservation). If a configuration 𝑆;𝑇 is valid with result type [𝑡*] (i.e., ⊢ 𝑆;𝑇 : [𝑡*]), and steps to
𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ 𝑆′;𝑇 ′), then 𝑆′;𝑇 ′ is a valid configuration with the same result type (i.e., ⊢ 𝑆′;𝑇 ′ : [𝑡*]).
Furthermore, 𝑆′ is an extension of 𝑆 (i.e., ⊢ 𝑆 ⪯ 𝑆′).

A terminal thread is one whose sequence of instructions is a result. A terminal configuration is a configuration
whose thread is terminal.

Theorem (Progress). If a configuration 𝑆;𝑇 is valid (i.e., ⊢ 𝑆;𝑇 : [𝑡*] for some result type [𝑡*]), then either it is
terminal, or it can step to some configuration 𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ 𝑆′;𝑇 ′).

From Preservation and Progress the soundness of the WebAssembly type system follows directly.

Corollary (Soundness). If a configuration 𝑆;𝑇 is valid (i.e., ⊢ 𝑆;𝑇 : [𝑡*] for some result type [𝑡*]), then it either
diverges or takes a finite number of steps to reach a terminal configuration 𝑆′;𝑇 ′ (i.e., 𝑆;𝑇 →˓ *𝑆′;𝑇 ′) that is
valid with the same result type (i.e., ⊢ 𝑆′;𝑇 ′ : [𝑡*]) and where 𝑆′ is an extension of 𝑆 (i.e., ⊢ 𝑆 ⪯ 𝑆′).

In other words, every thread in a valid configuration either runs forever, traps, throws an exception, or terminates
with a result that has the expected type. Consequently, given a valid store, no computation defined by instantiation or
invocation of a valid module can “crash” or otherwise (mis)behave in ways not covered by the execution semantics
given in this specification.

7.5 Type System Properties

7.5.1 Principal Types
The type system of WebAssembly features both subtyping and simple forms of polymorphism for instruction types.
That has the effect that every instruction or instruction sequence can be classified with multiple different instruction
types.

However, the typing rules still allow deriving principal types for instruction sequences. That is, every valid instruc-
tion sequence has one particular type scheme, possibly containing some unconstrained place holder type variables,
that is a subtype of all its valid instruction types, after substituting its type variables with suitable specific types.

Moreover, when deriving an instruction type in a “forward” manner, i.e., the input of the instruction sequence is
already fixed to specific types, then it has a principal output type expressible without type variables, up to a possibly
polymorphic stack bottom representable with one single variable. In other words, “forward” principal types are
effectively closed.

Note

For example, in isolation, the instruction ref.as_non_null has the type [(ref null ht)] → [(ref ht)] for any choice
of valid heap type ht . Moreover, if the input type [(ref null ht)] is already determined, i.e., a specific ht is given,
then the output type [(ref ht)] is fully determined as well.

52 A machine-verified version of the formalization and soundness proof of the PLDI 2017 paper is described in the following article: Conrad
Watt. Mechanising and Verifying the WebAssembly Specification53. Proceedings of the 7th ACM SIGPLAN Conference on Certified Programs
and Proofs (CPP 2018). ACM 2018.

53 https://dl.acm.org/citation.cfm?id=3167082
54 Machine-verified formalizations and soundness proofs of the semantics from the official specification are described in the following article:

Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, Philippa Gardner. Two Mechanisations of WebAssembly 1.055. Proceedings
of the 24th International Symposium on Formal Methods (FM 2021). Springer 2021.

55 https://link.springer.com/chapter/10.1007/978-3-030-90870-6_4

280 Chapter 7. Appendix

https://dl.acm.org/citation.cfm?id=3167082
https://link.springer.com/chapter/10.1007/978-3-030-90870-6_4

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

The implication of the latter property is that a validator for complete instruction sequences (as they occur in
valid modules) can be implemented with a simple left-to-right algorithm that does not require the introduction
of type variables.

A typing algorithm capable of handling partial instruction sequences (as might be considered for program
analysis or program manipulation) needs to introduce type variables and perform substitutions, but it does not
need to perform backtracking or record any non-syntactic constraints on these type variables.

Technically, the syntax of heap, value, and result types can be enriched with type variables as follows:

null ::= null? | 𝛼null

heaptype ::= . . . | 𝛼heaptype

reftype ::= ref null heaptype
valtype ::= . . . | 𝛼valtype | 𝛼numvectype

resulttype ::= [𝛼?
valtype* valtype*]

where each 𝛼xyz ranges over a set of type variables for syntactic class xyz , respectively. The special class
numvectype is defined as numtype | vectype | bot, and is only needed to handle unannotated select instructions.

A type is closed when it does not contain any type variables, and open otherwise. A type substitution 𝜎 is a finite
mapping from type variables to closed types of the respective syntactic class. When applied to an open type, it
replaces the type variables 𝛼 from its domain with the respective 𝜎(𝛼).

Theorem (Principal Types). If an instruction sequence instr* is valid with some closed instruction type instrtype
(i.e., 𝐶 ⊢ instr* : instrtype), then it is also valid with a possibly open instruction type instrtypemin (i.e., 𝐶 ⊢
instr* : instrtypemin), such that for every closed type instrtype ′ with which instr* is valid (i.e., for all 𝐶 ⊢
instr* : instrtype ′), there exists a substitution 𝜎, such that 𝜎(instrtypemin) is a subtype of instrtype ′ (i.e.,

𝐶 ⊢ 𝜎(instrtypemin) ≤ instrtype ′). Furthermore, instrtypemin is unique up to the choice of type variables.

Theorem (Closed Principal Forward Types). If closed input type [𝑡*1] is given and the instruction sequence instr*
is valid with instruction type [𝑡*1] →𝑥* [𝑡*2] (i.e., 𝐶 ⊢ instr* : [𝑡*1] →𝑥* [𝑡*2]), then it is also valid with instruction
type [𝑡*1] →𝑥* [𝛼valtype* 𝑡*] (i.e., 𝐶 ⊢ instr* : [𝑡*1] →𝑥* [𝛼valtype* 𝑡*]), where all 𝑡* are closed, such that for
every closed result type [𝑡′2

*
] with which instr* is valid (i.e., for all 𝐶 ⊢ instr* : [𝑡*1] →𝑥* [𝑡′2

*
]), there exists a

substitution 𝜎, such that [𝑡′2
*
] = [𝜎(𝛼valtype*) 𝑡*].

7.5.2 Type Lattice
The Principal Types property depends on the existence of a greatest lower bound for any pair of types.

Theorem (Greatest Lower Bounds for Value Types). For any two value types 𝑡1 and 𝑡2 that are valid (i.e.,
𝐶 ⊢ 𝑡1 : ok and 𝐶 ⊢ 𝑡2 : ok), there exists a valid value type 𝑡 that is a subtype of both 𝑡1 and 𝑡2 (i.e., 𝐶 ⊢ 𝑡 : ok
and 𝐶 ⊢ 𝑡 ≤ 𝑡1 and 𝐶 ⊢ 𝑡 ≤ 𝑡2), such that every valid value type 𝑡′ that also is a subtype of both 𝑡1 and 𝑡2 (i.e.,
for all 𝐶 ⊢ 𝑡′ : ok and 𝐶 ⊢ 𝑡′ ≤ 𝑡1 and 𝐶 ⊢ 𝑡′ ≤ 𝑡2), is a subtype of 𝑡 (i.e., 𝐶 ⊢ 𝑡′ ≤ 𝑡).

Note

The greatest lower bound of two types may be bot.

Theorem (Conditional Least Upper Bounds for Value Types). Any two value types 𝑡1 and 𝑡2 that are valid (i.e.,
𝐶 ⊢ 𝑡1 : ok and 𝐶 ⊢ 𝑡2 : ok) either have no common supertype, or there exists a valid value type 𝑡 that is a
supertype of both 𝑡1 and 𝑡2 (i.e., 𝐶 ⊢ 𝑡 : ok and 𝐶 ⊢ 𝑡1 ≤ 𝑡 and 𝐶 ⊢ 𝑡2 ≤ 𝑡), such that every valid value type 𝑡′

that also is a supertype of both 𝑡1 and 𝑡2 (i.e., for all 𝐶 ⊢ 𝑡′ : ok and 𝐶 ⊢ 𝑡1 ≤ 𝑡′ and 𝐶 ⊢ 𝑡2 ≤ 𝑡′), is a supertype
of 𝑡 (i.e., 𝐶 ⊢ 𝑡 ≤ 𝑡′).

Note

If a top type was added to the type system, a least upper bound would exist for any two types.

7.5. Type System Properties 281

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Corollary (Type Lattice). Assuming the addition of a provisional top type, value types form a lattice with respect
to their subtype relation.

Finally, value types can be partitioned into multiple disjoint hierarchies that are not related by subtyping, except
through bot.

Theorem (Disjoint Subtype Hierarchies). The greatest lower bound of two value types is bot or ref bot if and
only if they do not have a least upper bound.

In other words, types that do not have common supertypes, do not have common subtypes either (other than bot
or ref bot), and vice versa.

Note

Types from disjoint hierarchies can safely be represented in mutually incompatible ways in an implementation,
because their values can never flow to the same place.

7.5.3 Compositionality
Valid instruction sequences can be freely composed, as long as their types match up.

Theorem (Composition). If two instruction sequences instr*1 and instr*2 are valid with types [𝑡*1] →𝑥*
1
[𝑡*] and

[𝑡*] →𝑥*
2
[𝑡*2], respectively (i.e., 𝐶 ⊢ instr*1 : [𝑡*1] →𝑥*

1
[𝑡*] and 𝐶 ⊢ instr*1 : [𝑡*] →𝑥*

2
[𝑡*2]), then the concatenated

instruction sequence (instr*1 instr*2) is valid with type [𝑡*1] →𝑥*
1 𝑥*

2
[𝑡*2] (i.e., 𝐶 ⊢ instr*1 instr*2 : [𝑡*1] →𝑥*

1 𝑥*
2
[𝑡*2]).

Note

More generally, instead of a shared type [𝑡*], it suffices if the output type of instr*1 is a subtype of the input
type of instr*1, since the subtype can always be weakened to its supertype by subsumption.

Inversely, valid instruction sequences can also freely be decomposed, that is, splitting them anywhere produces two
instruction sequences that are both valid.

Theorem (Decomposition). If an instruction sequence instr* that is valid with type [𝑡*1] →𝑥* [𝑡*2] (i.e., 𝐶 ⊢
instr* : [𝑡*1] →𝑥* [𝑡*2]) is split into two instruction sequences instr*1 and instr*2 at any point (i.e., instr* =
instr*1 instr*2), then these are separately valid with some types [𝑡*1] →𝑥*

1
[𝑡*] and [𝑡*] →𝑥*

2
[𝑡*2], respectively (i.e.,

𝐶 ⊢ instr*1 : [𝑡*1] →𝑥*
1
[𝑡*] and 𝐶 ⊢ instr*1 : [𝑡*] →𝑥*

2
[𝑡*2]), where 𝑥* = 𝑥*

1 𝑥*
2.

Note

This property holds because validation is required even for unreachable code. Without that, instr*2 might not
be valid in isolation.

7.6 Validation Algorithm
The specification of WebAssembly validation is purely declarative. It describes the constraints that must be met
by a module or instruction sequence to be valid.

This section sketches the skeleton of a sound and complete algorithm for effectively validating code, i.e., sequences
of instructions. (Other aspects of validation are straightforward to implement.)

In fact, the algorithm is expressed over the flat sequence of opcodes as occurring in the binary format, and performs
only a single pass over it. Consequently, it can be integrated directly into a decoder.

The algorithm is expressed in typed pseudo code whose semantics is intended to be self-explanatory.

282 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.6.1 Data Structures
Types

Value types are representable as sets of enumerations:

type num_type = I32 | I64 | F32 | F64
type vec_type = V128
type heap_type =
Any | Eq | I31 | Struct | Array | None |
Func | Nofunc | Exn | Noexn | Extern | Noextern | Bot |
Def(def : def_type)

type ref_type = Ref(heap : heap_type, null : bool)
type val_type = num_type | vec_type | ref_type | Bot

func is_num(t : val_type) : bool =
return t = I32 || t = I64 || t = F32 || t = F64 || t = Bot

func is_vec(t : val_type) : bool =
return t = V128 || t = Bot

func is_ref(t : val_type) : bool =
return not (is_num t || is_vec t) || t = Bot

Similarly, defined types def_type can be represented:

type pack_type = I8 | I16
type field_type = Field(val : val_type | pack_type, mut : bool)

type struct_type = Struct(fields : list(field_type))
type array_type = Array(fields : field_type)
type func_type = Func(params : list(val_type), results : list(val_type))
type comp_type = struct_type | array_type | func_type

type sub_type = Sub(super : list(def_type), body : comp_type, final : bool)
type rec_type = Rec(types : list(sub_type))

type def_type = Def(rec : rec_type, proj : int32)

func unpack_field(t : field_type) : val_type =
if (it = I8 || t = I16) return I32
return t

func expand_def(t : def_type) : comp_type =
return t.rec.types[t.proj].body

These representations assume that all types have been closed by substituting all type indices (in concrete heap types
and in sub types) with their respective defined types. This includes recursive references to enclosing defined types,
such that type representations form graphs and may be cyclic for recursive types.

We assume that all types have been canonicalized, such that equality on two type representations holds if and only
if their closures are syntactically equivalent, making it a constant-time check.

Note

For the purpose of type canonicalization, recursive references from a heap type to an enclosing recursive type
(i.e., forward edges in the graph that form a cycle) need to be distinguished from references to previously
defined types. However, this distinction does not otherwise affect validation, so is ignored here. In the graph
representation, all recursive types are effectively infinitely unrolled.

7.6. Validation Algorithm 283

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

We further assume that validation and subtyping checks are defined on value types, as well as a few auxiliary
functions on composite types:

func validate_val_type(t : val_type)
func validate_ref_type(t : ref_type)

func matches_val(t1 : val_type, t2 : val_type) : bool
func matches_ref(t1 : val_type, t2 : val_type) : bool

func is_func(t : comp_type) : bool
func is_struct(t : comp_type) : bool
func is_array(t : comp_type) : bool

Finally, the following function computes the least precise supertype of a given heap type (its corresponding top
type):

func top_heap_type(t : heap_type) : heap_type =
switch (t)
case (Any | Eq | I31 | Struct | Array | None)
return Any

case (Func | Nofunc)
return Func

case (Extern | Noextern)
return Extern

case (Def(dt))
switch (dt.rec.types[dt.proj].body)
case (Struct(_) | Array(_))
return Any

case (Func(_))
return Func

case (Bot)
raise CannotOccurInSource

Context

Validation requires a context for checking uses of indices. For the purpose of presenting the algorithm, it is main-
tained in a set of global variables:

var return_type : list(val_type)
var types : array(def_type)
var locals : array(val_type)
var locals_init : array(bool)
var globals : array(global_type)
var funcs : array(func_type)
var tables : array(table_type)
var mems : array(mem_type)

This assumes suitable representations for the various types besides val_type, which are omitted here.

For locals, there is an additional array recording the initialization status of each local.

Stacks

The algorithm uses three separate stacks: the value stack, the control stack, and the initialization stack. The value
stack tracks the types of operand values on the stack. The control stack tracks surrounding structured control
instructions and their associated blocks. The initialization stack records all locals that have been initialized since
the beginning of the function.

284 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

type val_stack = stack(val_type)
type init_stack = stack(u32)

type ctrl_stack = stack(ctrl_frame)
type ctrl_frame = {
opcode : opcode
start_types : list(val_type)
end_types : list(val_type)
val_height : nat
init_height : nat
unreachable : bool

}

For each entered block, the control stack records a control frame with the originating opcode, the types on the top
of the operand stack at the start and end of the block (used to check its result as well as branches), the height of the
operand stack at the start of the block (used to check that operands do not underflow the current block), the height
of the initialization stack at the start of the block (used to reset initialization status at the end of the block), and a
flag recording whether the remainder of the block is unreachable (used to handle stack-polymorphic typing after
branches).

For the purpose of presenting the algorithm, these stacks are simply maintained as global variables:

var vals : val_stack
var inits : init_stack
var ctrls : ctrl_stack

However, these variables are not manipulated directly by the main checking function, but through a set of auxiliary
functions:

func push_val(type : val_type) =
vals.push(type)

func pop_val() : val_type =
if (vals.size() = ctrls[0].height && ctrls[0].unreachable) return Bot
error_if(vals.size() = ctrls[0].height)
return vals.pop()

func pop_val(expect : val_type) : val_type =
let actual = pop_val()
error_if(not matches_val(actual, expect))
return actual

func pop_num() : num_type | Bot =
let actual = pop_val()
error_if(not is_num(actual))
return actual

func pop_ref() : ref_type =
let actual = pop_val()
error_if(not is_ref(actual))
if (actual = Bot) return Ref(Bot, false)
return actual

func push_vals(types : list(val_type)) = foreach (t in types) push_val(t)
func pop_vals(types : list(val_type)) : list(val_type) =
var popped := []
foreach (t in reverse(types)) popped.prepend(pop_val(t))
return popped

7.6. Validation Algorithm 285

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Pushing an operand value simply pushes the respective type to the value stack.

Popping an operand value checks that the value stack does not underflow the current block and then removes
one type. But first, a special case is handled where the block contains no known values, but has been marked as
unreachable. That can occur after an unconditional branch, when the stack is typed polymorphically. In that case,
the Bot type is returned, because that is a principal choice trivially satisfying all use constraints.

A second function for popping an operand value takes an expected type, which the actual operand type is checked
against. The types may differ by subtyping, including the case where the actual type is Bot, and thereby matches
unconditionally. The function returns the actual type popped from the stack.

Finally, there are accumulative functions for pushing or popping multiple operand types.

Note

The notation stack[i] is meant to index the stack from the top, so that, e.g., ctrls[0] accesses the element
pushed last.

The initialization stack and the initialization status of locals is manipulated through the following functions:

func get_local(idx : u32) =
error_if(not locals_init[idx])

func set_local(idx : u32) =
if (not locals_init[idx])
inits.push(idx)
locals_init[idx] := true

func reset_locals(height : nat) =
while (inits.size() > height)
locals_init[inits.pop()] := false

Getting a local verifies that it is known to be initialized. When a local is set that was not set already, then its
initialization status is updated and the change is recorded in the initialization stack. Thus, the initialization status
of all locals can be reset to a previous state by denoting a specific height in the initialization stack.

The size of the initialization stack is bounded by the number of (non-defaultable) locals in a function, so can be
preallocated by an algorithm.

The control stack is likewise manipulated through auxiliary functions:

func push_ctrl(opcode : opcode, in : list(val_type), out : list(val_type)) =
let frame = ctrl_frame(opcode, in, out, vals.size(), inits.size(), false)
ctrls.push(frame)
push_vals(in)

func pop_ctrl() : ctrl_frame =
error_if(ctrls.is_empty())
let frame = ctrls[0]
pop_vals(frame.end_types)
error_if(vals.size() =/= frame.val_height)
reset_locals(frame.init_height)
ctrls.pop()
return frame

func label_types(frame : ctrl_frame) : list(val_types) =
return (if (frame.opcode = loop) frame.start_types else frame.end_types)

func unreachable() =
(continues on next page)

286 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(continued from previous page)

vals.resize(ctrls[0].height)
ctrls[0].unreachable := true

Pushing a control frame takes the types of the label and result values. It allocates a new frame record recording
them along with the current height of the operand stack and marks the block as reachable.

Popping a frame first checks that the control stack is not empty. It then verifies that the operand stack contains the
right types of values expected at the end of the exited block and pops them off the operand stack. Afterwards, it
checks that the stack has shrunk back to its initial height. Finally, it undoes all changes to the initialization status
of locals that happend inside the block.

The type of the label associated with a control frame is either that of the stack at the start or the end of the frame,
determined by the opcode that it originates from.

Finally, the current frame can be marked as unreachable. In that case, all existing operand types are purged from the
value stack, in order to allow for the stack-polymorphism logic in pop_val to take effect. Because every function
has an implicit outermost label that corresponds to an implicit block frame, it is an invariant of the validation
algorithm that there always is at least one frame on the control stack when validating an instruction, and hence,
ctrls[0] is always defined.

Note

Even with the unreachable flag set, consecutive operands are still pushed to and popped from the operand stack.
That is necessary to detect invalid examples like (unreachable (i32.const) i64.add). However, a polymorphic
stack cannot underflow, but instead generates Bot types as needed.

7.6.2 Validation of Opcode Sequences
The following function shows the validation of a number of representative instructions that manipulate the stack.
Other instructions are checked in a similar manner.

func validate(opcode) =
switch (opcode)
case (i32.add)
pop_val(I32)
pop_val(I32)
push_val(I32)

case (drop)
pop_val()

case (select)
pop_val(I32)
let t1 = pop_val()
let t2 = pop_val()
error_if(not (is_num(t1) && is_num(t2) || is_vec(t1) && is_vec(t2)))
error_if(t1 =/= t2 && t1 =/= Bot && t2 =/= Bot)
push_val(if (t1 = Bot) t2 else t1)

case (select t)
pop_val(I32)
pop_val(t)
pop_val(t)
push_val(t)

case (ref.is_null)
pop_ref()

(continues on next page)

7.6. Validation Algorithm 287

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(continued from previous page)

push_val(I32)

case (ref.as_non_null)
let rt = pop_ref()
push_val(Ref(rt.heap, false))

case (ref.test rt)
validate_ref_type(rt)
pop_val(Ref(top_heap_type(rt), true))
push_val(I32)

case (local.get x)
get_local(x)
push_val(locals[x])

case (local.set x)
pop_val(locals[x])
set_local(x)

case (unreachable)
unreachable()

case (block t1*->t2*)
pop_vals([t1*])
push_ctrl(block, [t1*], [t2*])

case (loop t1*->t2*)
pop_vals([t1*])
push_ctrl(loop, [t1*], [t2*])

case (if t1*->t2*)
pop_val(I32)
pop_vals([t1*])
push_ctrl(if, [t1*], [t2*])

case (end)
let frame = pop_ctrl()
push_vals(frame.end_types)

case (else)
let frame = pop_ctrl()
error_if(frame.opcode =/= if)
push_ctrl(else, frame.start_types, frame.end_types)

case (br n)
error_if(ctrls.size() < n)
pop_vals(label_types(ctrls[n]))
unreachable()

case (br_if n)
error_if(ctrls.size() < n)
pop_val(I32)
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))

case (br_table n* m)

(continues on next page)

288 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(continued from previous page)

pop_val(I32)
error_if(ctrls.size() < m)
let arity = label_types(ctrls[m]).size()
foreach (n in n*)
error_if(ctrls.size() < n)
error_if(label_types(ctrls[n]).size() =/= arity)
push_vals(pop_vals(label_types(ctrls[n])))

pop_vals(label_types(ctrls[m]))
unreachable()

case (br_on_null n)
error_if(ctrls.size() < n)
let rt = pop_ref()
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))
push_val(Ref(rt.heap, false))

case (br_on_cast n rt1 rt2)
validate_ref_type(rt1)
validate_ref_type(rt2)
pop_val(rt1)
push_val(rt2)
pop_vals(label_types(ctrls[n]))
push_vals(label_types(ctrls[n]))
pop_val(rt2)
push_val(diff_ref_type(rt2, rt1))

case (return)
pop_vals(return_types)
unreachable()

case (call_ref x)
let t = expand_def(types[x])
error_if(not is_func(t))
pop_vals(t.params)
pop_val(Ref(Def(types[x])))
push_vals(t.results)

case (return_call_ref x)
let t = expand_def(types[x])
error_if(not is_func(t))
pop_vals(t.params)
pop_val(Ref(Def(types[x])))
error_if(t.results.len() =/= return_types.len())
push_vals(t.results)
pop_vals(return_types)
unreachable()

case (struct.new x)
let t = expand_def(types[x])
error_if(not is_struct(t))
for (ti in reverse(t.fields))
pop_val(unpack_field(ti))

push_val(Ref(Def(types[x])))

case (struct.set x n)

(continues on next page)

7.6. Validation Algorithm 289

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(continued from previous page)

let t = expand_def(types[x])
error_if(not is_struct(t) || n >= t.fields.len())
pop_val(Ref(Def(types[x])))
pop_val(unpack_field(st.fields[n]))

case (throw x)
pop_vals(tags[x].type.params)
unreachable()

case (try_table t1*->t2* handler*)
pop_vals([t1*])
foreach (handler in handler*)
error_if(ctrls.size() < handler.label)
push_ctrl(catch, [], label_types(ctrls[handler.label]))
switch (handler.clause)
case (catch x)
push_vals(tags[x].type.params)

case (catch_ref x)
push_vals(tags[x].type.params)
push_val(Exnref)

case (catch_all)
skip

case (catch_all_ref)
push_val(Exnref)

pop_ctrl()
push_ctrl(try_table, [t1*], [t2*])

Note

It is an invariant under the current WebAssembly instruction set that an operand of Bot type is never duplicated
on the stack. This would change if the language were extended with stack instructions like dup. Under such an
extension, the above algorithm would need to be refined by replacing the Bot type with proper type variables
to ensure that all uses are consistent.

7.7 Custom Sections and Annotations
This appendix defines dedicated custom sections for WebAssembly’s binary format and annotations for the text
format. Such sections or annotations do not contribute to, or otherwise affect, the WebAssembly semantics, and
may be ignored by an implementation. However, they provide useful meta data that implementations can make use
of to improve user experience or take compilation hints.

7.7.1 Name Section
The name section is a custom section whose name string is itself ‘name’. The name section should appear only
once in a module, and only after the data section.

The purpose of this section is to attach printable names to definitions in a module, which e.g. can be used by a
debugger or when parts of the module are to be rendered in text form.

Note

All names are represented in Unicode56 encoded in UTF-8. Names need not be unique.

56 https://www.unicode.org/versions/latest/

290 Chapter 7. Appendix

https://www.unicode.org/versions/latest/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Subsections

The data of a name section consists of a sequence of subsections. Each subsection consists of a

• a one-byte subsection id,

• the u32 size of the contents, in bytes,

• the actual contents, whose structure is dependent on the subsection id.

namesec ::= section0(namedata)
namedata ::= 𝑛:name (if 𝑛 = ‘name’)

modulenamesubsec?

funcnamesubsec?

localnamesubsec?

typenamesubsec?

fieldnamesubsec?

tagnamesubsec?

namesubsection𝑁 (B) ::= 𝑁 :byte size:u32 B (if size = ||B||)
The following subsection ids are used:

Id Subsection
0 module name
1 function names
2 local names
4 type names
10 field names
11 tag names

Each subsection may occur at most once, and in order of increasing id.

Name Maps

A name map assigns names to indices in a given index space. It consists of a list of index/name pairs in order of
increasing index value. Each index must be unique, but the assigned names need not be.

namemap ::= list(nameassoc)
nameassoc ::= idx name

An indirect name map assigns names to a two-dimensional index space, where secondary indices are grouped by
primary indices. It consists of a list of primary index/name map pairs in order of increasing index value, where
each name map in turn maps secondary indices to names. Each primary index must be unique, and likewise each
secondary index per individual name map.

indirectnamemap ::= list(indirectnameassoc)
indirectnameassoc ::= idx namemap

Module Names

The module name subsection has the id 0. It simply consists of a single name that is assigned to the module itself.

modulenamesubsec ::= namesubsection0(name)

Function Names

The function name subsection has the id 1. It consists of a name map assigning function names to function indices.

funcnamesubsec ::= namesubsection1(namemap)

7.7. Custom Sections and Annotations 291

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Local Names

The local name subsection has the id 2. It consists of an indirect name map assigning local names to local indices
grouped by function indices.

localnamesubsec ::= namesubsection2(indirectnamemap)

Type Names

The type name subsection has the id 4. It consists of a name map assigning type names to type indices.

typenamesubsec ::= namesubsection4(namemap)

Field Names

The field name subsection has the id 10. It consists of an indirect name map assigning field names to field indices
grouped by the type indices of their respective structure types.

fieldnamesubsec ::= namesubsection10(indirectnamemap)

Tag Names

The tag name subsection has the id 11. It consists of a name map assigning tag names to tag indices.

tagnamesubsec ::= namesubsection1(namemap)

7.7.2 Name Annotations
Name annotations are the textual analogue to the name section and provide a textual representation for it. Conse-
quently, their id is @name.

Analogous to the name section, name annotations are allowed on modules, functions, and locals (including pa-
rameters). They can be placed where the text format allows binding occurrences of respective identifiers. If both
an identifier and a name annotation are given, the annotation is expected after the identifier. In that case, the an-
notation takes precedence over the identifier as a textual representation of the binding’s name. At most one name
annotation may be given per binding.

All name annotations have the following format:

nameannot ::= ‘(@name’ string ‘)’

Note

All name annotations can be arbitrary UTF-8 strings. Names need not be unique.

Module Names

A module name annotation must be placed on a module definition, directly after the ‘module’ keyword, or if
present, after the following module identifier.

modulenameannot ::= nameannot

292 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Function Names

A function name annotation must be placed on a function definition or function import, directly after the ‘func’
keyword, or if present, after the following function identifier or.

funcnameannot ::= nameannot

Parameter Names

A parameter name annotation must be placed on a parameter declaration, directly after the ‘param’ keyword, or
if present, after the following parameter identifier. It may only be placed on a declaration that declares exactly one
parameter.

paramnameannot ::= nameannot

Local Names

A local name annotation must be placed on a local declaration, directly after the ‘local’ keyword, or if present,
after the following local identifier. It may only be placed on a declaration that declares exactly one local.

localnameannot ::= nameannot

Type Names

A type name annotation must be placed on a type declaration, directly after the ‘type’ keyword, or if present, after
the following type identifier.

typenameannot ::= nameannot

Field Names

A field name annotation must be placed on the field of a structure type, directly after the ‘field’ keyword, or if
present, after the following field identifier. It may only be placed on a declaration that declares exactly one field.

fieldnameannot ::= nameannot

Tag Names

A tag name annotation must be placed on a tag declaration or tag import, directly after the ‘tag’ keyword, or if
present, after the following tag identifier.

tagnameannot ::= nameannot

7.7.3 Custom Annotations
Custom annotations are a generic textual representation for any custom section. Their id is @custom. By gener-
ating custom annotations, tools converting between binary format and text format can maintain and round-trip the
content of custom sections even when they do not recognize them.

7.7. Custom Sections and Annotations 293

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Custom annotations must be placed inside a module definition. They must occur anywhere after the ‘module’
keyword, or if present, after the following module identifier. They must not be nested into other constructs.

customannot ::= ‘(@custom’ string customplace? datastring ‘)’
customplace ::= ‘(’ ‘before’ ‘first’ ‘)’

| ‘(’ ‘before’ sec ‘)’
| ‘(’ ‘after’ sec ‘)’
| ‘(’ ‘after’ ‘last’ ‘)’

sec ::= ‘type’
| ‘import’
| ‘func’
| ‘table’
| ‘memory’
| ‘global’
| ‘export’
| ‘start’
| ‘elem’
| ‘code’
| ‘data’
| ‘datacount’

The first string in a custom annotation denotes the name of the custom section it represents. The remaining strings
collectively represent the section’s payload data, written as a data string, which can be split up into a possibly empty
sequence of individual string literals (similar to data segments).

An arbitrary number of custom annotations (even of the same name) may occur in a module, each defining a separate
custom section when converting to binary format. Placement of the sections in the binary can be customized via
explicit placement directives, that position them either directly before or directly after a known section. That section
must exist and be non-empty in the binary encoding of the annotated module. The placements (before first)
and (after last) denote virtual sections before the first and after the last known section, respectively. When the
placement directive is omitted, it defaults to (after last).

If multiple placement directives appear for the same position, then the sections are all placed there, in order of
their appearance in the text. For this purpose, the position after a section is considered different from the position
before the consecutive section, and the former occurs before the latter.

Note

Future versions of WebAssembly may introduce additional sections between others or at the beginning or end
of a module. Using first and last guarantees that placement will still go before or after any future section,
respectively.

If a custom section with a specific section id is given as well as annotations representing the same custom section
(e.g., @name annotations as well as a @custom annotation for a name section), then two sections are assumed to
be created. Their relative placement will depend on the placement directive given for the @custom annotation as
well as the implicit placement requirements of the custom section, which are applied to the other annotation.

Note

For example, the following module,
(module
(@custom "A" "aaa")
(type $t (func))
(@custom "B" (after func) "bbb")
(@custom "C" (before func) "ccc")
(@custom "D" (after last) "ddd")
(table 10 funcref)
(func (type $t))

294 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

(@custom "E" (after import) "eee")
(@custom "F" (before type) "fff")
(@custom "G" (after data) "ggg")
(@custom "H" (after code) "hhh")
(@custom "I" (after func) "iii")
(@custom "J" (before func) "jjj")
(@custom "K" (before first) "kkk")

)

will result in the following section ordering:
custom section "K"
custom section "F"
type section
custom section "E"
custom section "C"
custom section "J"
function section
custom section "B"
custom section "I"
table section
code section
custom section "H"
custom section "G"
custom section "A"
custom section "D"

7.8 Change History
Since the original release 1.0 of the WebAssembly specification, a number of proposals for extensions have been
integrated. The following sections provide an overview of what has changed.

All present and future versions of WebAssembly are intended to be backwards-compatible with all previous ver-
sions. Concretely:

1. All syntactically well-formed (in binary or text format) and valid modules remain well-formed and valid with
an equivalent module type (or a subtype).

Note

This allows previously malformed or invalid modules to become legal, e.g., by adding new features
or by relaxing typing rules.

It also allows reclassifying previously malformed modules as well-formed but invalid, or vice versa.

And it allows refining the typing of imports and exports, such that previously unlinkable modules
become linkable.

Historically, minor breaking changes to the text format have been allowed that turned previously
possible valid modules invalid, as long as they were unlikely to occur in practice.

2. All non-trapping executions of a valid program retain their behaviour with an equivalent set of possible
results (or a non-empty subset).

Note

This allows previously malformed or invalid programs to become executable.

7.8. Change History 295

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

It also allows program executions that previously trapped to execute successfully, although the
intention is to only exercise this where the possibility of such an extension has been previously
noted.

And it allows reducing the set of observable behaviours of a program execution, e.g., by reducing
non-determinism.

In a program linking prior modules with modules using new features, a prior module may encounter
new behaviours, e.g., new forms of control flow or side effects when calling into a latter module.

In addition, future versions of WebAssembly will not allocate the opcode 0xFF to represent an instruction or
instruction prefix.

7.8.1 Release 2.0
Sign Extension Instructions

Added new numeric instructions for performing sign extension within integer representations.57

• New numeric instructions:

– inn.extendN _s

Non-trapping Float-to-Int Conversions

Added new conversion instructions that avoid trapping when converting a floating-point number to an integer.58

• New numeric instructions:

– inn.trunc_sat_fmm_sx

Multiple Values

Generalized the result type of blocks and functions to allow for multiple values; in addition, introduced the ability
to have block parameters.59

• Function types allow more than one result

• Block types can be arbitrary function types

Reference Types

Added funcref and externref as new value types and respective instructions.60

• New reference value types:

– funcref

– externref

• New reference instructions:

– ref.null

– ref.func

– ref.is_null

• Extended parametric instruction:

– select with optional type immediate

• New declarative form of element segment
57 https://github.com/WebAssembly/spec/tree/main/proposals/sign-extension-ops/
58 https://github.com/WebAssembly/spec/tree/main/proposals/nontrapping-float-to-int-conversion/
59 https://github.com/WebAssembly/spec/tree/main/proposals/multi-value/
60 https://github.com/WebAssembly/spec/tree/main/proposals/reference-types/

296 Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/sign-extension-ops/
https://github.com/WebAssembly/spec/tree/main/proposals/nontrapping-float-to-int-conversion/
https://github.com/WebAssembly/spec/tree/main/proposals/multi-value/
https://github.com/WebAssembly/spec/tree/main/proposals/reference-types/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table Instructions

Added instructions to directly access and modify tables.Page 296, 60

• Table types allow any reference type as element type

• New table instructions:

– table.get

– table.set

– table.size

– table.grow

Multiple Tables

Added the ability to use multiple tables per module.Page 296, 60

• Modules may

– define multiple tables

– import multiple tables

– export multiple tables

• Table instructions take a table index immediate:

– table.get

– table.set

– table.size

– table.grow

– call_indirect

• Element segments take a table index

Bulk Memory and Table Instructions

Added instructions that modify ranges of memory or table entries.Page 296, 6061

• New memory instructions:

– memory.fill

– memory.init

– memory.copy

– data.drop

• New table instructions:

– table.fill

– table.init

– table.copy

– elem.drop

• New passive form of data segment

• New passive form of element segment

• New data count section in binary format

• Active data and element segments boundaries are no longer checked at compile time but may trap instead
61 https://github.com/WebAssembly/spec/tree/main/proposals/bulk-memory-operations/

7.8. Change History 297

https://github.com/WebAssembly/spec/tree/main/proposals/bulk-memory-operations/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Vector Instructions

Added vector type and instructions that manipulate multiple numeric values in parallel (also known as SIMD, single
instruction multiple data)62

• New value type:

– v128

• New memory instructions:

– v128.load

– v128.load𝑁x𝑀_sx

– v128.load𝑁_zero

– v128.load𝑁_splat

– v128.load𝑁_lane

– v128.store

– v128.store𝑁_lane

• New constant vector instruction:

– v128.const

• New unary vector instructions:

– v128.not

– i𝑁x𝑀.abs

– i𝑁x𝑀.neg

– i8x16.popcnt

– f𝑁x𝑀.abs

– f𝑁x𝑀.neg

– f𝑁x𝑀.sqrt

– f𝑁x𝑀.ceil

– f𝑁x𝑀.floor

– f𝑁x𝑀.trunc

– f𝑁x𝑀.nearest

• New binary vector instructions:

– v128.and

– v128.andnot

– v128.or

– v128.xor

– i𝑁x𝑀.add

– i𝑁x𝑀.sub

– i𝑁x𝑀.mul

– i𝑁x𝑀.add_sat_sx

– i𝑁x𝑀.sub_sat_sx

– i𝑁x𝑀.min_sx
62 https://github.com/WebAssembly/spec/tree/main/proposals/simd/

298 Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/simd/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– i𝑁x𝑀.max_sx

– i𝑁x𝑀.shl

– i𝑁x𝑀.shr_sx

– f𝑁x𝑀.add

– f𝑁x𝑀.sub

– f𝑁x𝑀.mul

– f𝑁x𝑀.div

– i16x8.extadd_pairwise_i8x16_sx

– i32x4.extadd_pairwise_i16x8_sx

– i𝑁x𝑀.extmul_half _i𝑁 ′x𝑀 ′_sx

– i16x8.q15mulr_sat_s

– i32x4.dot_i16x8_s

– i8x16.avgr_u

– i16x8.avgr_u

– f𝑁x𝑀.min

– f𝑁x𝑀.max

– f𝑁x𝑀.pmin

– f𝑁x𝑀.pmax

• New ternary vector instruction:

– v128.bitselect

• New test vector instructions:

– v128.any_true

– i𝑁x𝑀.all_true

• New relational vector instructions:

– i𝑁x𝑀.eq

– i𝑁x𝑀.ne

– i𝑁x𝑀.lt_sx

– i𝑁x𝑀.gt_sx

– i𝑁x𝑀.le_sx

– i𝑁x𝑀.ge_sx

– f𝑁x𝑀.eq

– f𝑁x𝑀.ne

– f𝑁x𝑀.lt

– f𝑁x𝑀.gt

– f𝑁x𝑀.le

– f𝑁x𝑀.ge

• New conversion vector instructions:

– i32x4.trunc_sat_f32x4_sx

– i32x4.trunc_sat_f64x2_sx_zero

7.8. Change History 299

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– f32x4.convert_i32x4_sx

– f32x4.demote_f64x2_zero

– f64x2.convert_low_i32x4_sx

– f64x2.promote_low_f32x4

• New lane access vector instructions:

– i𝑁x𝑀.extract_lane_sx ?

– i𝑁x𝑀.replace_lane

– f𝑁x𝑀.extract_lane

– f𝑁x𝑀.replace_lane

• New lane splitting/combining vector instructions:

– i𝑁x𝑀.extend_half _i𝑁 ′x𝑀 ′_sx

– i8x16.narrow_i16x8_sx

– i16x8.narrow_i32x4_sx

• New byte reordering vector instructions:

– i8x16.shuffle

– i8x16.swizzle

• New injection/projection vector instructions:

– i𝑁x𝑀.splat

– f𝑁x𝑀.splat

– i𝑁x𝑀.bitmask

7.8.2 Release 3.0
Extended Constant Expressions

Allowed basic numeric computations in constant expressions.63

• Extended set of constant instructions with:

– inn.add

– inn.sub

– inn.mul

– global.get for any previously declared immutable global

Note

The garbage collection extension added further constant instructions.

Tail Calls

Added instructions to perform tail calls.64

• New control instructions:

– return_call

– return_call_indirect
63 https://github.com/WebAssembly/spec/tree/main/proposals/extended-const/
64 https://github.com/WebAssembly/spec/tree/main/proposals/tail-call/

300 Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/extended-const/
https://github.com/WebAssembly/spec/tree/main/proposals/tail-call/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Exception Handling

Added tag definitions, imports, and exports, and instructions to throw and catch exceptions65

• Modules may

– define tags

– import tags

– export tags

• New heap types:

– exn

– noexn

• New reference type short-hands:

– exnref

– nullexnref

• New control instructions:

– throw

– throw_ref

– try_table

• New tag section in binary format.

Multiple Memories

Added the ability to use multiple memories per module.66

• Modules may

– define multiple memories

– import multiple memories

– export multiple memories

• Memory instructions take a memory index immediate:

– memory.size

– memory.grow

– memory.fill

– memory.copy

– memory.init

– 𝑡.load

– 𝑡.store

– 𝑡.load𝑁_sx

– 𝑡.store𝑁

– v128.load𝑁x𝑀_sx

– v128.load𝑁_zero

– v128.load𝑁_splat

– v128.load𝑁_lane
65 https://github.com/WebAssembly/spec/tree/main/proposals/exception-handling/
66 https://github.com/WebAssembly/spec/tree/main/proposals/multi-memory/

7.8. Change History 301

https://github.com/WebAssembly/spec/tree/main/proposals/exception-handling/
https://github.com/WebAssembly/spec/tree/main/proposals/multi-memory/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– v128.store𝑁_lane

• Data segments take a memory index

64-bit Address Space

Added the ability to declare an i64 address type for tables and memories.67

• Address types denote a subset of the integral number types

• Table types include an address type

• Memory types include an address type

• Operand types of table and memory instructions now depend on the subject’s declared address type:

– table.get

– table.set

– table.size

– table.grow

– table.fill

– table.copy

– table.init

– memory.size

– memory.grow

– memory.fill

– memory.copy

– memory.init

– 𝑡.load

– 𝑡.store

– 𝑡.load𝑁_sx

– 𝑡.store𝑁

– v128.load𝑁x𝑀_sx

– v128.load𝑁_zero

– v128.load𝑁_splat

– v128.load𝑁_lane

– v128.store𝑁_lane

Typeful References

Added more precise types for references.68

• New generalised form of reference types:

– (ref null? heaptype)

• New class of heap types:

– func

– extern

67 https://github.com/WebAssembly/spec/tree/main/proposals/memory64/
68 https://github.com/WebAssembly/spec/tree/main/proposals/function-references/

302 Chapter 7. Appendix

https://github.com/WebAssembly/spec/tree/main/proposals/memory64/
https://github.com/WebAssembly/spec/tree/main/proposals/function-references/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– typeidx

• Basic subtyping on reference and value types

• New reference instructions:

– ref.as_non_null

– br_on_null

– br_on_non_null

• New control instruction:

– call_ref

• Refined typing of reference instruction:

– ref.func with more precise result type

• Refined typing of local instructions and instruction sequences to track the initialization status of locals with
non-defaultable type

• Refined decoding of active element segments with implicit element type and plain function indices (opcode
0) to produce non-null reference type.

• Extended table definitions with optional initializer expression

Garbage Collection

Added managed reference types.69

• New forms of heap types:

– any

– eq

– i31

– struct

– array

– none

– nofunc

– noextern

• New reference type short-hands:

– anyref

– eqref

– i31ref

– structref

– arrayref

– nullref

– nullfuncref

– nullexternref

• New forms of type definitions:

– structure

– array types
69 https://github.com/WebAssembly/spec/tree/main/proposals/gc/

7.8. Change History 303

https://github.com/WebAssembly/spec/tree/main/proposals/gc/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– sub types

– recursive types

• Enriched subtyping based on explicitly declared sub types and the new heap types

• New generic reference instructions:

– ref.eq

– ref.test

– ref.cast

– br_on_cast

– br_on_cast_fail

• New reference instructions for unboxed scalars:

– ref.i31

– i31.get_sx

• New reference instructions for structure types:

– struct.new

– struct.new_default

– struct.get_sx ?

– struct.set

• New reference instructions for array types:

– array.new

– array.new_default

– array.new_fixed

– array.new_data

– array.new_elem

– array.get_sx ?

– array.set

– array.len

– array.fill

– array.copy

– array.init_data

– array.init_elem

• New reference instructions for converting external types:

– any.convert_extern

– extern.convert_any

• Extended set of constant instructions with:

– ref.i31

– struct.new

– struct.new_default

– array.new

– array.new_default

304 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

– array.new_fixed

– any.convert_extern

– extern.convert_any

Relaxed Vector Instructions

Added new relaxed vector instructions, whose behaviour is non-deterministic and implementation-dependent.70

• New binary vector instruction:

– f𝑁x𝑀.relaxed_min

– f𝑁x𝑀.relaxed_max

– i16x8.relaxed_q15mulr_s

– i16x8.relaxed_dot_i8x16_i7x16_s

• New ternary vector instruction:

– f𝑁x𝑀.relaxed_madd

– f𝑁x𝑀.relaxed_nmadd

– i𝑁x𝑀.relaxed_laneselect

– i32x4.relaxed_dot_i8x16_i7x16_add_s

• New conversion vector instructions:

– i32x4.relaxed_trunc_f32x4_sx

– i32x4.relaxed_trunc_f64x2_sx_zero

• New byte reordering vector instruction:

– i8x16.relaxed_swizzle

Profiles

Introduced the concept of profile for specifying language subsets.

• A new profile defining a deterministic mode of execution.

Custom Annotations

Added generic syntax for custom annotations in the text format, mirroring the role of custom sections in the binary
format.71

• Annotations of the form ‘(@id . . .)’ are allowed anywhere in the text format

• Identifiers can be escaped as ‘@” . . . ”’ with arbitrary names

• Defined name annotations ‘(@name ” . . . ”)’ for:

– module names

– type names

– function names

– local names

– field names

• Defined custom annotation ‘(@custom ” . . . ”)’ to represent arbitrary custom sections in the text format
70 https://github.com/WebAssembly/spec/tree/main/proposals/relaxed-simd/
71 https://github.com/WebAssembly/spec/tree/main/proposals/annotations/

7.8. Change History 305

https://github.com/WebAssembly/spec/tree/main/proposals/relaxed-simd/
https://github.com/WebAssembly/spec/tree/main/proposals/annotations/

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.9 Index of Types

Category Constructor Binary Opcode
Type index 𝑥 (positive number as s32 or u32)
Number type i32 0x7F (-1 as s7)
Number type i64 0x7E (-2 as s7)
Number type f32 0x7D (-3 as s7)
Number type f64 0x7C (-4 as s7)
Vector type v128 0x7B (-5 as s7)
(reserved) 0x7A .. 0x79
Packed type i8 0x78 (-8 as s7)
Packed type i16 0x77 (-9 as s7)
(reserved) 0x78 .. 0x75
Heap type noexn 0x74 (-14 as s7)
Heap type nofunc 0x73 (-13 as s7)
Heap type noextern 0x72 (-14 as s7)
Heap type none 0x71 (-15 as s7)
Heap type func 0x70 (-16 as s7)
Heap type extern 0x6F (-17 as s7)
Heap type any 0x6E (-18 as s7)
Heap type eq 0x6D (-19 as s7)
Heap type i31 0x6C (-20 as s7)
Heap type struct 0x6B (-21 as s7)
Heap type array 0x6A (-22 as s7)
Heap type exn 0x69 (-23 as s7)
(reserved) 0x68 .. 0x65
Reference type ref 0x64 (-28 as s7)
Reference type ref null 0x63 (-29 as s7)
(reserved) 0x62 .. 0x61
Composite type func [valtype*] → [valtype*] 0x60 (-32 as s7)
Composite type struct fieldtype* 0x5F (-33 as s7)
Composite type array fieldtype 0x5E (-34 as s7)
(reserved) 0x5D .. 0x51
Sub type sub typeidx* comptype 0x50 (-48 as s7)
Sub type sub final typeidx* comptype 0x4F (-49 as s7)
Recursive type rec subtype* 0x4E (-50 as s7)
(reserved) 0x4D .. 0x41
Result type [𝜖] 0x40 (-64 as s7)
Tag type typeuse (none)
Global type mut valtype (none)
Memory type addrtype limits (none)
Table type addrtype limits reftype (none)

7.10 Index of Instructions

Instruction Binary Opcode Type Validation Execution
unreachable 0x00 [𝑡*1] → [𝑡*2] validation execution
nop 0x01 [] → [] validation execution
block bt 0x02 [𝑡*1] → [𝑡*2] validation execution
loop bt 0x03 [𝑡*1] → [𝑡*2] validation execution
if bt 0x04 [𝑡*1 i32] → [𝑡*2] validation execution
else 0x05

continues on next page

306 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
(reserved) 0x06

(reserved) 0x07

throw 𝑥 0x08 [𝑡*1 𝑡
*
𝑥] → [𝑡*2] validation execution

(reserved) 0x09

throw_ref 0x0A [𝑡*1 exnref] → [𝑡*2] validation execution
end 0x0B

br 𝑙 0x0C [𝑡*1 𝑡
*] → [𝑡*2] validation execution

br_if 𝑙 0x0D [𝑡* i32] → [𝑡*] validation execution
br_table 𝑙* 𝑙 0x0E [𝑡*1 𝑡

* i32] → [𝑡*2] validation execution
return 0x0F [𝑡*1 𝑡

*] → [𝑡*2] validation execution
call 𝑥 0x10 [𝑡*1] → [𝑡*2] validation execution
call_indirect 𝑥 𝑦 0x11 [𝑡*1 i32] → [𝑡*2] validation execution
return_call 𝑥 0x12 [𝑡*1] → [𝑡*2] validation execution
return_call_indirect 𝑥 𝑦 0x13 [𝑡*1 i32] → [𝑡*2] validation execution
call_ref 𝑥 0x14 [𝑡*1 (ref null 𝑥)] → [𝑡*2] validation execution
return_call_ref 𝑥 0x15 [𝑡*1 (ref null 𝑥)] → [𝑡*2] validation execution
(reserved) 0x16

(reserved) 0x17

(reserved) 0x18

(reserved) 0x19

drop 0x1A [𝑡] → [] validation execution
select 0x1B [𝑡 𝑡 i32] → [𝑡] validation execution
select 𝑡 0x1C [𝑡 𝑡 i32] → [𝑡] validation execution
(reserved) 0x1D

(reserved) 0x1E

try_table bt 0x1F [𝑡*1] → [𝑡*2] validation execution
local.get 𝑥 0x20 [] → [𝑡] validation execution
local.set 𝑥 0x21 [𝑡] → [] validation execution
local.tee 𝑥 0x22 [𝑡] → [𝑡] validation execution
global.get 𝑥 0x23 [] → [𝑡] validation execution
global.set 𝑥 0x24 [𝑡] → [] validation execution
table.get 𝑥 0x25 [i32] → [𝑡] validation execution
table.set 𝑥 0x26 [i32 𝑡] → [] validation execution
(reserved) 0x27

i32.load 𝑥 memarg 0x28 [i32] → [i32] validation execution
i64.load 𝑥 memarg 0x29 [i32] → [i64] validation execution
f32.load 𝑥 memarg 0x2A [i32] → [f32] validation execution
f64.load 𝑥 memarg 0x2B [i32] → [f64] validation execution
i32.load8_s 𝑥 memarg 0x2C [i32] → [i32] validation execution
i32.load8_u 𝑥 memarg 0x2D [i32] → [i32] validation execution
i32.load16_s 𝑥 memarg 0x2E [i32] → [i32] validation execution
i32.load16_u 𝑥 memarg 0x2F [i32] → [i32] validation execution
i64.load8_s 𝑥 memarg 0x30 [i32] → [i64] validation execution
i64.load8_u 𝑥 memarg 0x31 [i32] → [i64] validation execution
i64.load16_s 𝑥 memarg 0x32 [i32] → [i64] validation execution
i64.load16_u 𝑥 memarg 0x33 [i32] → [i64] validation execution
i64.load32_s 𝑥 memarg 0x34 [i32] → [i64] validation execution
i64.load32_u 𝑥 memarg 0x35 [i32] → [i64] validation execution
i32.store 𝑥 memarg 0x36 [i32 i32] → [] validation execution
i64.store 𝑥 memarg 0x37 [i32 i64] → [] validation execution
f32.store 𝑥 memarg 0x38 [i32 f32] → [] validation execution
f64.store 𝑥 memarg 0x39 [i32 f64] → [] validation execution
i32.store8 𝑥 memarg 0x3A [i32 i32] → [] validation execution
i32.store16 𝑥 memarg 0x3B [i32 i32] → [] validation execution
i64.store8 𝑥 memarg 0x3C [i32 i64] → [] validation execution

continues on next page

7.10. Index of Instructions 307

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i64.store16 𝑥 memarg 0x3D [i32 i64] → [] validation execution
i64.store32 𝑥 memarg 0x3E [i32 i64] → [] validation execution
memory.size 𝑥 0x3F [] → [i32] validation execution
memory.grow 𝑥 0x40 [i32] → [i32] validation execution
i32.const i32 0x41 [] → [i32] validation execution
i64.const i64 0x42 [] → [i64] validation execution
f32.const f32 0x43 [] → [f32] validation execution
f64.const f64 0x44 [] → [f64] validation execution
i32.eqz 0x45 [i32] → [i32] validation execution (operator)
i32.eq 0x46 [i32 i32] → [i32] validation execution (operator)
i32.ne 0x47 [i32 i32] → [i32] validation execution (operator)
i32.lt_s 0x48 [i32 i32] → [i32] validation execution (operator)
i32.lt_u 0x49 [i32 i32] → [i32] validation execution (operator)
i32.gt_s 0x4A [i32 i32] → [i32] validation execution (operator)
i32.gt_u 0x4B [i32 i32] → [i32] validation execution (operator)
i32.le_s 0x4C [i32 i32] → [i32] validation execution (operator)
i32.le_u 0x4D [i32 i32] → [i32] validation execution (operator)
i32.ge_s 0x4E [i32 i32] → [i32] validation execution (operator)
i32.ge_u 0x4F [i32 i32] → [i32] validation execution (operator)
i64.eqz 0x50 [i64] → [i32] validation execution (operator)
i64.eq 0x51 [i64 i64] → [i32] validation execution (operator)
i64.ne 0x52 [i64 i64] → [i32] validation execution (operator)
i64.lt_s 0x53 [i64 i64] → [i32] validation execution (operator)
i64.lt_u 0x54 [i64 i64] → [i32] validation execution (operator)
i64.gt_s 0x55 [i64 i64] → [i32] validation execution (operator)
i64.gt_u 0x56 [i64 i64] → [i32] validation execution (operator)
i64.le_s 0x57 [i64 i64] → [i32] validation execution (operator)
i64.le_u 0x58 [i64 i64] → [i32] validation execution (operator)
i64.ge_s 0x59 [i64 i64] → [i32] validation execution (operator)
i64.ge_u 0x5A [i64 i64] → [i32] validation execution (operator)
f32.eq 0x5B [f32 f32] → [i32] validation execution (operator)
f32.ne 0x5C [f32 f32] → [i32] validation execution (operator)
f32.lt 0x5D [f32 f32] → [i32] validation execution (operator)
f32.gt 0x5E [f32 f32] → [i32] validation execution (operator)
f32.le 0x5F [f32 f32] → [i32] validation execution (operator)
f32.ge 0x60 [f32 f32] → [i32] validation execution (operator)
f64.eq 0x61 [f64 f64] → [i32] validation execution (operator)
f64.ne 0x62 [f64 f64] → [i32] validation execution (operator)
f64.lt 0x63 [f64 f64] → [i32] validation execution (operator)
f64.gt 0x64 [f64 f64] → [i32] validation execution (operator)
f64.le 0x65 [f64 f64] → [i32] validation execution (operator)
f64.ge 0x66 [f64 f64] → [i32] validation execution (operator)
i32.clz 0x67 [i32] → [i32] validation execution (operator)
i32.ctz 0x68 [i32] → [i32] validation execution (operator)
i32.popcnt 0x69 [i32] → [i32] validation execution (operator)
i32.add 0x6A [i32 i32] → [i32] validation execution (operator)
i32.sub 0x6B [i32 i32] → [i32] validation execution (operator)
i32.mul 0x6C [i32 i32] → [i32] validation execution (operator)
i32.div_s 0x6D [i32 i32] → [i32] validation execution (operator)
i32.div_u 0x6E [i32 i32] → [i32] validation execution (operator)
i32.rem_s 0x6F [i32 i32] → [i32] validation execution (operator)
i32.rem_u 0x70 [i32 i32] → [i32] validation execution (operator)
i32.and 0x71 [i32 i32] → [i32] validation execution (operator)
i32.or 0x72 [i32 i32] → [i32] validation execution (operator)
i32.xor 0x73 [i32 i32] → [i32] validation execution (operator)

continues on next page

308 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i32.shl 0x74 [i32 i32] → [i32] validation execution (operator)
i32.shr_s 0x75 [i32 i32] → [i32] validation execution (operator)
i32.shr_u 0x76 [i32 i32] → [i32] validation execution (operator)
i32.rotl 0x77 [i32 i32] → [i32] validation execution (operator)
i32.rotr 0x78 [i32 i32] → [i32] validation execution (operator)
i64.clz 0x79 [i64] → [i64] validation execution (operator)
i64.ctz 0x7A [i64] → [i64] validation execution (operator)
i64.popcnt 0x7B [i64] → [i64] validation execution (operator)
i64.add 0x7C [i64 i64] → [i64] validation execution (operator)
i64.sub 0x7D [i64 i64] → [i64] validation execution (operator)
i64.mul 0x7E [i64 i64] → [i64] validation execution (operator)
i64.div_s 0x7F [i64 i64] → [i64] validation execution (operator)
i64.div_u 0x80 [i64 i64] → [i64] validation execution (operator)
i64.rem_s 0x81 [i64 i64] → [i64] validation execution (operator)
i64.rem_u 0x82 [i64 i64] → [i64] validation execution (operator)
i64.and 0x83 [i64 i64] → [i64] validation execution (operator)
i64.or 0x84 [i64 i64] → [i64] validation execution (operator)
i64.xor 0x85 [i64 i64] → [i64] validation execution (operator)
i64.shl 0x86 [i64 i64] → [i64] validation execution (operator)
i64.shr_s 0x87 [i64 i64] → [i64] validation execution (operator)
i64.shr_u 0x88 [i64 i64] → [i64] validation execution (operator)
i64.rotl 0x89 [i64 i64] → [i64] validation execution (operator)
i64.rotr 0x8A [i64 i64] → [i64] validation execution (operator)
f32.abs 0x8B [f32] → [f32] validation execution (operator)
f32.neg 0x8C [f32] → [f32] validation execution (operator)
f32.ceil 0x8D [f32] → [f32] validation execution (operator)
f32.floor 0x8E [f32] → [f32] validation execution (operator)
f32.trunc 0x8F [f32] → [f32] validation execution (operator)
f32.nearest 0x90 [f32] → [f32] validation execution (operator)
f32.sqrt 0x91 [f32] → [f32] validation execution (operator)
f32.add 0x92 [f32 f32] → [f32] validation execution (operator)
f32.sub 0x93 [f32 f32] → [f32] validation execution (operator)
f32.mul 0x94 [f32 f32] → [f32] validation execution (operator)
f32.div 0x95 [f32 f32] → [f32] validation execution (operator)
f32.min 0x96 [f32 f32] → [f32] validation execution (operator)
f32.max 0x97 [f32 f32] → [f32] validation execution (operator)
f32.copysign 0x98 [f32 f32] → [f32] validation execution (operator)
f64.abs 0x99 [f64] → [f64] validation execution (operator)
f64.neg 0x9A [f64] → [f64] validation execution (operator)
f64.ceil 0x9B [f64] → [f64] validation execution (operator)
f64.floor 0x9C [f64] → [f64] validation execution (operator)
f64.trunc 0x9D [f64] → [f64] validation execution (operator)
f64.nearest 0x9E [f64] → [f64] validation execution (operator)
f64.sqrt 0x9F [f64] → [f64] validation execution (operator)
f64.add 0xA0 [f64 f64] → [f64] validation execution (operator)
f64.sub 0xA1 [f64 f64] → [f64] validation execution (operator)
f64.mul 0xA2 [f64 f64] → [f64] validation execution (operator)
f64.div 0xA3 [f64 f64] → [f64] validation execution (operator)
f64.min 0xA4 [f64 f64] → [f64] validation execution (operator)
f64.max 0xA5 [f64 f64] → [f64] validation execution (operator)
f64.copysign 0xA6 [f64 f64] → [f64] validation execution (operator)
i32.wrap_i64 0xA7 [i64] → [i32] validation execution (operator)
i32.trunc_f32_s 0xA8 [f32] → [i32] validation execution (operator)
i32.trunc_f32_u 0xA9 [f32] → [i32] validation execution (operator)
i32.trunc_f64_s 0xAA [f64] → [i32] validation execution (operator)

continues on next page

7.10. Index of Instructions 309

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i32.trunc_f64_u 0xAB [f64] → [i32] validation execution (operator)
i64.extend_i32_s 0xAC [i32] → [i64] validation execution (operator)
i64.extend_i32_u 0xAD [i32] → [i64] validation execution (operator)
i64.trunc_f32_s 0xAE [f32] → [i64] validation execution (operator)
i64.trunc_f32_u 0xAF [f32] → [i64] validation execution (operator)
i64.trunc_f64_s 0xB0 [f64] → [i64] validation execution (operator)
i64.trunc_f64_u 0xB1 [f64] → [i64] validation execution (operator)
f32.convert_i32_s 0xB2 [i32] → [f32] validation execution (operator)
f32.convert_i32_u 0xB3 [i32] → [f32] validation execution (operator)
f32.convert_i64_s 0xB4 [i64] → [f32] validation execution (operator)
f32.convert_i64_u 0xB5 [i64] → [f32] validation execution (operator)
f32.demote_f64 0xB6 [f64] → [f32] validation execution (operator)
f64.convert_i32_s 0xB7 [i32] → [f64] validation execution (operator)
f64.convert_i32_u 0xB8 [i32] → [f64] validation execution (operator)
f64.convert_i64_s 0xB9 [i64] → [f64] validation execution (operator)
f64.convert_i64_u 0xBA [i64] → [f64] validation execution (operator)
f64.promote_f32 0xBB [f32] → [f64] validation execution (operator)
i32.reinterpret_f32 0xBC [f32] → [i32] validation execution (operator)
i64.reinterpret_f64 0xBD [f64] → [i64] validation execution (operator)
f32.reinterpret_i32 0xBE [i32] → [f32] validation execution (operator)
f64.reinterpret_i64 0xBF [i64] → [f64] validation execution (operator)
i32.extend8_s 0xC0 [i32] → [i32] validation execution (operator)
i32.extend16_s 0xC1 [i32] → [i32] validation execution (operator)
i64.extend8_s 0xC2 [i64] → [i64] validation execution (operator)
i64.extend16_s 0xC3 [i64] → [i64] validation execution (operator)
i64.extend32_s 0xC4 [i64] → [i64] validation execution (operator)
(reserved) 0xC5

(reserved) 0xC6

(reserved) 0xC7

(reserved) 0xC8

(reserved) 0xC9

(reserved) 0xCA

(reserved) 0xCB

(reserved) 0xCC

(reserved) 0xCD

(reserved) 0xCE

(reserved) 0xCF

ref.null ht 0xD0 [] → [(ref null ht)] validation execution
ref.is_null 0xD1 [(ref null ht)] → [i32] validation execution
ref.func 𝑥 0xD2 [] → [ref ht] validation execution
ref.eq 0xD3 [eqref eqref] → [i32] validation execution
ref.as_non_null 0xD4 [(ref null ht)] → [(ref ht)] validation execution
br_on_null 𝑙 0xD5 [𝑡* (ref null ht)] → [𝑡* (ref ht)] validation execution
br_on_non_null 𝑙 0xD6 [𝑡* (ref null ht)] → [𝑡*] validation execution
(reserved) 0xD7

(reserved) 0xD8

(reserved) 0xD9

(reserved) 0xDA

(reserved) 0xDB

(reserved) 0xDC

(reserved) 0xDD

(reserved) 0xDE

(reserved) 0xDF

(reserved) 0xE0

(reserved) 0xE1

continues on next page

310 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
(reserved) 0xE2

(reserved) 0xE3

(reserved) 0xE4

(reserved) 0xE5

(reserved) 0xE6

(reserved) 0xE7

(reserved) 0xE8

(reserved) 0xE9

(reserved) 0xEA

(reserved) 0xEB

(reserved) 0xEC

(reserved) 0xED

(reserved) 0xEE

(reserved) 0xEF

(reserved) 0xF0

(reserved) 0xF1

(reserved) 0xF2

(reserved) 0xF3

(reserved) 0xF4

(reserved) 0xF5

(reserved) 0xF6

(reserved) 0xF7

(reserved) 0xF8

(reserved) 0xF9

(reserved) 0xFA

struct.new 𝑥 0xFB 0x00 [𝑡*] → [(ref 𝑥)] validation execution
struct.new_default 𝑥 0xFB 0x01 [] → [(ref 𝑥)] validation execution
struct.get 𝑥 𝑦 0xFB 0x02 [(ref null 𝑥)] → [𝑡] validation execution
struct.get_s 𝑥 𝑦 0xFB 0x03 [(ref null 𝑥)] → [i32] validation execution
struct.get_u 𝑥 𝑦 0xFB 0x04 [(ref null 𝑥)] → [i32] validation execution
struct.set 𝑥 𝑦 0xFB 0x05 [(ref null 𝑥) 𝑡] → [] validation execution
array.new 𝑥 0xFB 0x06 [𝑡 i32] → [(ref 𝑥)] validation execution
array.new_default 𝑥 0xFB 0x07 [i32] → [(ref 𝑥)] validation execution
array.new_fixed 𝑥 𝑛 0xFB 0x08 [𝑡𝑛] → [(ref 𝑥)] validation execution
array.new_data 𝑥 𝑦 0xFB 0x09 [i32 i32] → [(ref 𝑥)] validation execution
array.new_elem 𝑥 𝑦 0xFB 0x0A [i32 i32] → [(ref 𝑥)] validation execution
array.get 𝑥 0xFB 0x0B [(ref null 𝑥) i32] → [𝑡] validation execution
array.get_s 𝑥 0xFB 0x0C [(ref null 𝑥) i32] → [i32] validation execution
array.get_u 𝑥 0xFB 0x0D [(ref null 𝑥) i32] → [i32] validation execution
array.set 𝑥 0xFB 0x0E [(ref null 𝑥) i32 𝑡] → [] validation execution
array.len 0xFB 0x0F [(ref null array)] → [i32] validation execution
array.fill 𝑥 0xFB 0x10 [(ref null 𝑥) i32 𝑡 i32] → [] validation execution
array.copy 𝑥 𝑦 0xFB 0x11 [(ref null 𝑥) i32 (ref null 𝑦) i32 i32] → [] validation execution
array.init_data 𝑥 𝑦 0xFB 0x12 [(ref null 𝑥) i32 i32 i32] → [] validation execution
array.init_elem 𝑥 𝑦 0xFB 0x13 [(ref null 𝑥) i32 i32 i32] → [] validation execution
ref.test (ref 𝑡) 0xFB 0x14 [(ref 𝑡′)] → [i32] validation execution
ref.test (ref null 𝑡) 0xFB 0x15 [(ref null 𝑡′)] → [i32] validation execution
ref.cast (ref 𝑡) 0xFB 0x16 [(ref 𝑡′)] → [(ref 𝑡)] validation execution
ref.cast (ref null 𝑡) 0xFB 0x17 [(ref null 𝑡′)] → [(ref null 𝑡)] validation execution
br_on_cast 𝑡1 𝑡2 0xFB 0x18 [𝑡1] → [𝑡1 ∖ 𝑡2] validation execution
br_on_cast_fail 𝑡1 𝑡2 0xFB 0x19 [𝑡1] → [𝑡2] validation execution
any.convert_extern 0xFB 0x1A [(ref null extern)] → [(ref null any)] validation execution
extern.convert_any 0xFB 0x1B [(ref null any)] → [(ref null extern)] validation execution
ref.i31 0xFB 0x1C [i32] → [(ref i31)] validation execution
i31.get_s 0xFB 0x1D [i31ref] → [i32] validation execution

continues on next page

7.10. Index of Instructions 311

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i31.get_u 0xFB 0x1E [i31ref] → [i32] validation execution
(reserved) 0xFB 0x1E . . .
i32.trunc_sat_f32_s 0xFC 0x00 [f32] → [i32] validation execution (operator)
i32.trunc_sat_f32_u 0xFC 0x01 [f32] → [i32] validation execution (operator)
i32.trunc_sat_f64_s 0xFC 0x02 [f64] → [i32] validation execution (operator)
i32.trunc_sat_f64_u 0xFC 0x03 [f64] → [i32] validation execution (operator)
i64.trunc_sat_f32_s 0xFC 0x04 [f32] → [i64] validation execution (operator)
i64.trunc_sat_f32_u 0xFC 0x05 [f32] → [i64] validation execution (operator)
i64.trunc_sat_f64_s 0xFC 0x06 [f64] → [i64] validation execution (operator)
i64.trunc_sat_f64_u 0xFC 0x07 [f64] → [i64] validation execution (operator)
memory.init 𝑥 𝑦 0xFC 0x08 [i32 i32 i32] → [] validation execution
data.drop 𝑥 0xFC 0x09 [] → [] validation execution
memory.copy 𝑥 𝑦 0xFC 0x0A [i32 i32 i32] → [] validation execution
memory.fill 𝑦 0xFC 0x0B [i32 i32 i32] → [] validation execution
table.init 𝑥 𝑦 0xFC 0x0C [i32 i32 i32] → [] validation execution
elem.drop 𝑥 0xFC 0x0D [] → [] validation execution
table.copy 𝑥 𝑦 0xFC 0x0E [i32 i32 i32] → [] validation execution
table.grow 𝑥 0xFC 0x0F [𝑡 i32] → [i32] validation execution
table.size 𝑥 0xFC 0x10 [] → [i32] validation execution
table.fill 𝑥 0xFC 0x11 [i32 𝑡 i32] → [] validation execution
(reserved) 0xFC 0x1E . . .
v128.load 𝑥 memarg 0xFD 0x00 [i32] → [v128] validation execution
v128.load8x8_s 𝑥 memarg 0xFD 0x01 [i32] → [v128] validation execution
v128.load8x8_u 𝑥 memarg 0xFD 0x02 [i32] → [v128] validation execution
v128.load16x4_s 𝑥 memarg 0xFD 0x03 [i32] → [v128] validation execution
v128.load16x4_u 𝑥 memarg 0xFD 0x04 [i32] → [v128] validation execution
v128.load32x2_s 𝑥 memarg 0xFD 0x05 [i32] → [v128] validation execution
v128.load32x2_u 𝑥 memarg 0xFD 0x06 [i32] → [v128] validation execution
v128.load8_splat 𝑥 memarg 0xFD 0x07 [i32] → [v128] validation execution
v128.load16_splat 𝑥 memarg 0xFD 0x08 [i32] → [v128] validation execution
v128.load32_splat 𝑥 memarg 0xFD 0x09 [i32] → [v128] validation execution
v128.load64_splat 𝑥 memarg 0xFD 0x0A [i32] → [v128] validation execution
v128.store 𝑥 memarg 0xFD 0x0B [i32 v128] → [] validation execution
v128.const i128 0xFD 0x0C [] → [v128] validation execution
i8x16.shuffle laneidx 16 0xFD 0x0D [v128 v128] → [v128] validation execution (operator)
i8x16.swizzle 0xFD 0x0E [v128 v128] → [v128] validation execution (operator)
i8x16.splat 0xFD 0x0F [i32] → [v128] validation execution
i16x8.splat 0xFD 0x10 [i32] → [v128] validation execution
i32x4.splat 0xFD 0x11 [i32] → [v128] validation execution
i64x2.splat 0xFD 0x12 [i64] → [v128] validation execution
f32x4.splat 0xFD 0x13 [f32] → [v128] validation execution
f64x2.splat 0xFD 0x14 [f64] → [v128] validation execution
i8x16.extract_lane_s laneidx 0xFD 0x15 [v128] → [i32] validation execution
i8x16.extract_lane_u laneidx 0xFD 0x16 [v128] → [i32] validation execution
i8x16.replace_lane laneidx 0xFD 0x17 [v128 i32] → [v128] validation execution
i16x8.extract_lane_s laneidx 0xFD 0x18 [v128] → [i32] validation execution
i16x8.extract_lane_u laneidx 0xFD 0x19 [v128] → [i32] validation execution
i16x8.replace_lane laneidx 0xFD 0x1A [v128 i32] → [v128] validation execution
i32x4.extract_lane laneidx 0xFD 0x1B [v128] → [i32] validation execution
i32x4.replace_lane laneidx 0xFD 0x1C [v128 i32] → [v128] validation execution
i64x2.extract_lane laneidx 0xFD 0x1D [v128] → [i64] validation execution
i64x2.replace_lane laneidx 0xFD 0x1E [v128 i64] → [v128] validation execution
f32x4.extract_lane laneidx 0xFD 0x1F [v128] → [f32] validation execution
f32x4.replace_lane laneidx 0xFD 0x20 [v128 f32] → [v128] validation execution
f64x2.extract_lane laneidx 0xFD 0x21 [v128] → [f64] validation execution

continues on next page

312 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
f64x2.replace_lane laneidx 0xFD 0x22 [v128 f64] → [v128] validation execution
i8x16.eq 0xFD 0x23 [v128 v128] → [v128] validation execution (operator)
i8x16.ne 0xFD 0x24 [v128 v128] → [v128] validation execution (operator)
i8x16.lt_s 0xFD 0x25 [v128 v128] → [v128] validation execution (operator)
i8x16.lt_u 0xFD 0x26 [v128 v128] → [v128] validation execution (operator)
i8x16.gt_s 0xFD 0x27 [v128 v128] → [v128] validation execution (operator)
i8x16.gt_u 0xFD 0x28 [v128 v128] → [v128] validation execution (operator)
i8x16.le_s 0xFD 0x29 [v128 v128] → [v128] validation execution (operator)
i8x16.le_u 0xFD 0x2A [v128 v128] → [v128] validation execution (operator)
i8x16.ge_s 0xFD 0x2B [v128 v128] → [v128] validation execution (operator)
i8x16.ge_u 0xFD 0x2C [v128 v128] → [v128] validation execution (operator)
i16x8.eq 0xFD 0x2D [v128 v128] → [v128] validation execution (operator)
i16x8.ne 0xFD 0x2E [v128 v128] → [v128] validation execution (operator)
i16x8.lt_s 0xFD 0x2F [v128 v128] → [v128] validation execution (operator)
i16x8.lt_u 0xFD 0x30 [v128 v128] → [v128] validation execution (operator)
i16x8.gt_s 0xFD 0x31 [v128 v128] → [v128] validation execution (operator)
i16x8.gt_u 0xFD 0x32 [v128 v128] → [v128] validation execution (operator)
i16x8.le_s 0xFD 0x33 [v128 v128] → [v128] validation execution (operator)
i16x8.le_u 0xFD 0x34 [v128 v128] → [v128] validation execution (operator)
i16x8.ge_s 0xFD 0x35 [v128 v128] → [v128] validation execution (operator)
i16x8.ge_u 0xFD 0x36 [v128 v128] → [v128] validation execution (operator)
i32x4.eq 0xFD 0x37 [v128 v128] → [v128] validation execution (operator)
i32x4.ne 0xFD 0x38 [v128 v128] → [v128] validation execution (operator)
i32x4.lt_s 0xFD 0x39 [v128 v128] → [v128] validation execution (operator)
i32x4.lt_u 0xFD 0x3A [v128 v128] → [v128] validation execution (operator)
i32x4.gt_s 0xFD 0x3B [v128 v128] → [v128] validation execution (operator)
i32x4.gt_u 0xFD 0x3C [v128 v128] → [v128] validation execution (operator)
i32x4.le_s 0xFD 0x3D [v128 v128] → [v128] validation execution (operator)
i32x4.le_u 0xFD 0x3E [v128 v128] → [v128] validation execution (operator)
i32x4.ge_s 0xFD 0x3F [v128 v128] → [v128] validation execution (operator)
i32x4.ge_u 0xFD 0x40 [v128 v128] → [v128] validation execution (operator)
f32x4.eq 0xFD 0x41 [v128 v128] → [v128] validation execution (operator)
f32x4.ne 0xFD 0x42 [v128 v128] → [v128] validation execution (operator)
f32x4.lt 0xFD 0x43 [v128 v128] → [v128] validation execution (operator)
f32x4.gt 0xFD 0x44 [v128 v128] → [v128] validation execution (operator)
f32x4.le 0xFD 0x45 [v128 v128] → [v128] validation execution (operator)
f32x4.ge 0xFD 0x46 [v128 v128] → [v128] validation execution (operator)
f64x2.eq 0xFD 0x47 [v128 v128] → [v128] validation execution (operator)
f64x2.ne 0xFD 0x48 [v128 v128] → [v128] validation execution (operator)
f64x2.lt 0xFD 0x49 [v128 v128] → [v128] validation execution (operator)
f64x2.gt 0xFD 0x4A [v128 v128] → [v128] validation execution (operator)
f64x2.le 0xFD 0x4B [v128 v128] → [v128] validation execution (operator)
f64x2.ge 0xFD 0x4C [v128 v128] → [v128] validation execution (operator)
v128.not 0xFD 0x4D [v128] → [v128] validation execution (operator)
v128.and 0xFD 0x4E [v128 v128] → [v128] validation execution (operator)
v128.andnot 0xFD 0x4F [v128 v128] → [v128] validation execution (operator)
v128.or 0xFD 0x50 [v128 v128] → [v128] validation execution (operator)
v128.xor 0xFD 0x51 [v128 v128] → [v128] validation execution (operator)
v128.bitselect 0xFD 0x52 [v128 v128 v128] → [v128] validation execution (operator)
v128.any_true 0xFD 0x53 [v128] → [i32] validation execution
v128.load8_lane memarg laneidx 0xFD 0x54 [i32 v128] → [v128] validation execution
v128.load16_lane memarg laneidx 0xFD 0x55 [i32 v128] → [v128] validation execution
v128.load32_lane memarg laneidx 0xFD 0x56 [i32 v128] → [v128] validation execution
v128.load64_lane memarg laneidx 0xFD 0x57 [i32 v128] → [v128] validation execution
v128.store8_lane memarg laneidx 0xFD 0x58 [i32 v128] → [] validation execution

continues on next page

7.10. Index of Instructions 313

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
v128.store16_lane memarg laneidx 0xFD 0x59 [i32 v128] → [] validation execution
v128.store32_lane memarg laneidx 0xFD 0x5A [i32 v128] → [] validation execution
v128.store64_lane memarg laneidx 0xFD 0x5B [i32 v128] → [] validation execution
v128.load32_zero memarg 0xFD 0x5C [i32] → [v128] validation execution
v128.load64_zero memarg 0xFD 0x5D [i32] → [v128] validation execution
f32x4.demote_f64x2_zero 0xFD 0x5E [v128] → [v128] validation execution (operator)
f64x2.promote_low_f32x4 0xFD 0x5F [v128] → [v128] validation execution (operator)
i8x16.abs 0xFD 0x60 [v128] → [v128] validation execution (operator)
i8x16.neg 0xFD 0x61 [v128] → [v128] validation execution (operator)
i8x16.popcnt 0xFD 0x62 [v128] → [v128] validation execution (operator)
i8x16.all_true 0xFD 0x63 [v128] → [i32] validation execution (operator)
i8x16.bitmask 0xFD 0x64 [v128] → [i32] validation execution (operator)
i8x16.narrow_i16x8_s 0xFD 0x65 [v128 v128] → [v128] validation execution (operator)
i8x16.narrow_i16x8_u 0xFD 0x66 [v128 v128] → [v128] validation execution (operator)
f32x4.ceil 0xFD 0x67 [v128] → [v128] validation execution (operator)
f32x4.floor 0xFD 0x68 [v128] → [v128] validation execution (operator)
f32x4.trunc 0xFD 0x69 [v128] → [v128] validation execution (operator)
f32x4.nearest 0xFD 0x6A [v128] → [v128] validation execution (operator)
i8x16.shl 0xFD 0x6B [v128 i32] → [v128] validation execution (operator)
i8x16.shr_s 0xFD 0x6C [v128 i32] → [v128] validation execution (operator)
i8x16.shr_u 0xFD 0x6D [v128 i32] → [v128] validation execution (operator)
i8x16.add 0xFD 0x6E [v128 v128] → [v128] validation execution (operator)
i8x16.add_sat_s 0xFD 0x6F [v128 v128] → [v128] validation execution (operator)
i8x16.add_sat_u 0xFD 0x70 [v128 v128] → [v128] validation execution (operator)
i8x16.sub 0xFD 0x71 [v128 v128] → [v128] validation execution (operator)
i8x16.sub_sat_s 0xFD 0x72 [v128 v128] → [v128] validation execution (operator)
i8x16.sub_sat_u 0xFD 0x73 [v128 v128] → [v128] validation execution (operator)
f64x2.ceil 0xFD 0x74 [v128] → [v128] validation execution (operator)
f64x2.floor 0xFD 0x75 [v128] → [v128] validation execution (operator)
i8x16.min_s 0xFD 0x76 [v128 v128] → [v128] validation execution (operator)
i8x16.min_u 0xFD 0x77 [v128 v128] → [v128] validation execution (operator)
i8x16.max_s 0xFD 0x78 [v128 v128] → [v128] validation execution (operator)
i8x16.max_u 0xFD 0x79 [v128 v128] → [v128] validation execution (operator)
f64x2.trunc 0xFD 0x7A [v128] → [v128] validation execution (operator)
i8x16.avgr_u 0xFD 0x7B [v128 v128] → [v128] validation execution (operator)
i16x8.extadd_pairwise_i8x16_s 0xFD 0x7C [v128] → [v128] validation execution (operator)
i16x8.extadd_pairwise_i8x16_u 0xFD 0x7D [v128] → [v128] validation execution (operator)
i32x4.extadd_pairwise_i16x8_s 0xFD 0x7E [v128] → [v128] validation execution (operator)
i32x4.extadd_pairwise_i16x8_u 0xFD 0x7F [v128] → [v128] validation execution (operator)
i16x8.abs 0xFD 0x80 0x01 [v128] → [v128] validation execution (operator)
i16x8.neg 0xFD 0x81 0x01 [v128] → [v128] validation execution (operator)
i16x8.q15mulr_sat_s 0xFD 0x82 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.all_true 0xFD 0x83 0x01 [v128] → [i32] validation execution
i16x8.bitmask 0xFD 0x84 0x01 [v128] → [i32] validation execution (operator)
i16x8.narrow_i32x4_s 0xFD 0x85 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.narrow_i32x4_u 0xFD 0x86 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.extend_low_i8x16_s 0xFD 0x87 0x01 [v128] → [v128] validation execution
i16x8.extend_high_i8x16_s 0xFD 0x88 0x01 [v128] → [v128] validation execution
i16x8.extend_low_i8x16_u 0xFD 0x89 0x01 [v128] → [v128] validation execution
i16x8.extend_high_i8x16_u 0xFD 0x8A 0x01 [v128] → [v128] validation execution
i16x8.shl 0xFD 0x8B 0x01 [v128 i32] → [v128] validation execution (operator)
i16x8.shr_s 0xFD 0x8C 0x01 [v128 i32] → [v128] validation execution (operator)
i16x8.shr_u 0xFD 0x8D 0x01 [v128 i32] → [v128] validation execution (operator)
i16x8.add 0xFD 0x8E 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.add_sat_s 0xFD 0x8F 0x01 [v128 v128] → [v128] validation execution (operator)

continues on next page

314 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i16x8.add_sat_u 0xFD 0x90 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.sub 0xFD 0x91 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.sub_sat_s 0xFD 0x92 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.sub_sat_u 0xFD 0x93 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.nearest 0xFD 0x94 0x01 [v128] → [v128] validation execution (operator)
i16x8.mul 0xFD 0x95 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.min_s 0xFD 0x96 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.min_u 0xFD 0x97 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.max_s 0xFD 0x98 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.max_u 0xFD 0x99 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0x9A 0x01

i16x8.avgr_u 0xFD 0x9B 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.extmul_low_i8x16_s 0xFD 0x9C 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.extmul_high_i8x16_s 0xFD 0x9D 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.extmul_low_i8x16_u 0xFD 0x9E 0x01 [v128 v128] → [v128] validation execution (operator)
i16x8.extmul_high_i8x16_u 0xFD 0x9F 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.abs 0xFD 0xA0 0x01 [v128] → [v128] validation execution (operator)
i32x4.neg 0xFD 0xA1 0x01 [v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xA2 0x01

i32x4.all_true 0xFD 0xA3 0x01 [v128] → [i32] validation execution
i32x4.bitmask 0xFD 0xA4 0x01 [v128] → [i32] validation execution (operator)
(reserved) 0xFD 0xA5 0x01

(reserved) 0xFD 0xA6 0x01

i32x4.extend_low_i16x8_s 0xFD 0xA7 0x01 [v128] → [v128] validation execution
i32x4.extend_high_i16x8_s 0xFD 0xA8 0x01 [v128] → [v128] validation execution
i32x4.extend_low_i16x8_u 0xFD 0xA9 0x01 [v128] → [v128] validation execution
i32x4.extend_high_i16x8_u 0xFD 0xAA 0x01 [v128] → [v128] validation execution
i32x4.shl 0xFD 0xAB 0x01 [v128 i32] → [v128] validation execution (operator)
i32x4.shr_s 0xFD 0xAC 0x01 [v128 i32] → [v128] validation execution (operator)
i32x4.shr_u 0xFD 0xAD 0x01 [v128 i32] → [v128] validation execution (operator)
i32x4.add 0xFD 0xAE 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xAF 0x01

(reserved) 0xFD 0xB0 0x01

i32x4.sub 0xFD 0xB1 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xB2 0x01

(reserved) 0xFD 0xB3 0x01

(reserved) 0xFD 0xB4 0x01

i32x4.mul 0xFD 0xB5 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.min_s 0xFD 0xB6 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.min_u 0xFD 0xB7 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.max_s 0xFD 0xB8 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.max_u 0xFD 0xB9 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.dot_i16x8_s 0xFD 0xBA 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.extmul_low_i16x8_s 0xFD 0xBC 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.extmul_high_i16x8_s 0xFD 0xBD 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.extmul_low_i16x8_u 0xFD 0xBE 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.extmul_high_i16x8_u 0xFD 0xBF 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.abs 0xFD 0xC0 0x01 [v128] → [v128] validation execution (operator)
i64x2.neg 0xFD 0xC1 0x01 [v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xC2 0x01

i64x2.all_true 0xFD 0xC3 0x01 [v128] → [i32] validation execution
i64x2.bitmask 0xFD 0xC4 0x01 [v128] → [i32] validation execution (operator)
(reserved) 0xFD 0xC5 0x01

(reserved) 0xFD 0xC6 0x01

i64x2.extend_low_i32x4_s 0xFD 0xC7 0x01 [v128] → [v128] validation execution
continues on next page

7.10. Index of Instructions 315

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i64x2.extend_high_i32x4_s 0xFD 0xC8 0x01 [v128] → [v128] validation execution
i64x2.extend_low_i32x4_u 0xFD 0xC9 0x01 [v128] → [v128] validation execution
i64x2.extend_high_i32x4_u 0xFD 0xCA 0x01 [v128] → [v128] validation execution
i64x2.shl 0xFD 0xCB 0x01 [v128 i32] → [v128] validation execution (operator)
i64x2.shr_s 0xFD 0xCC 0x01 [v128 i32] → [v128] validation execution (operator)
i64x2.shr_u 0xFD 0xCD 0x01 [v128 i32] → [v128] validation execution (operator)
i64x2.add 0xFD 0xCE 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xCF 0x01

(reserved) 0xFD 0xD0 0x01

i64x2.sub 0xFD 0xD1 0x01 [v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xD2 0x01

(reserved) 0xFD 0xD3 0x01

(reserved) 0xFD 0xD4 0x01

i64x2.mul 0xFD 0xD5 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.eq 0xFD 0xD6 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.ne 0xFD 0xD7 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.lt_s 0xFD 0xD8 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.gt_s 0xFD 0xD9 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.le_s 0xFD 0xDA 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.ge_s 0xFD 0xDB 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.extmul_low_i32x4_s 0xFD 0xDC 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.extmul_high_i32x4_s 0xFD 0xDD 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.extmul_low_i32x4_u 0xFD 0xDE 0x01 [v128 v128] → [v128] validation execution (operator)
i64x2.extmul_high_i32x4_u 0xFD 0xDF 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.abs 0xFD 0xE0 0x01 [v128] → [v128] validation execution (operator)
f32x4.neg 0xFD 0xE1 0x01 [v128] → [v128] validation execution (operator)
(reserved) 0xFD 0xE2 0x01

f32x4.sqrt 0xFD 0xE3 0x01 [v128] → [v128] validation execution (operator)
f32x4.add 0xFD 0xE4 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.sub 0xFD 0xE5 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.mul 0xFD 0xE6 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.div 0xFD 0xE7 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.min 0xFD 0xE8 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.max 0xFD 0xE9 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.pmin 0xFD 0xEA 0x01 [v128 v128] → [v128] validation execution (operator)
f32x4.pmax 0xFD 0xEB 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.abs 0xFD 0xEC 0x01 [v128] → [v128] validation execution (operator)
f64x2.neg 0xFD 0xED 0x01 [v128] → [v128] validation execution (operator)
f64x2.sqrt 0xFD 0xEF 0x01 [v128] → [v128] validation execution (operator)
f64x2.add 0xFD 0xF0 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.sub 0xFD 0xF1 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.mul 0xFD 0xF2 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.div 0xFD 0xF3 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.min 0xFD 0xF4 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.max 0xFD 0xF5 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.pmin 0xFD 0xF6 0x01 [v128 v128] → [v128] validation execution (operator)
f64x2.pmax 0xFD 0xF7 0x01 [v128 v128] → [v128] validation execution (operator)
i32x4.trunc_sat_f32x4_s 0xFD 0xF8 0x01 [v128] → [v128] validation execution (operator)
i32x4.trunc_sat_f32x4_u 0xFD 0xF9 0x01 [v128] → [v128] validation execution (operator)
f32x4.convert_i32x4_s 0xFD 0xFA 0x01 [v128] → [v128] validation execution (operator)
f32x4.convert_i32x4_u 0xFD 0xFB 0x01 [v128] → [v128] validation execution (operator)
i32x4.trunc_sat_f64x2_s_zero 0xFD 0xFC 0x01 [v128] → [v128] validation execution (operator)
i32x4.trunc_sat_f64x2_u_zero 0xFD 0xFD 0x01 [v128] → [v128] validation execution (operator)
f64x2.convert_low_i32x4_s 0xFD 0xFE 0x01 [v128] → [v128] validation execution (operator)
f64x2.convert_low_i32x4_u 0xFD 0xFF 0x01 [v128] → [v128] validation execution (operator)

continues on next page

316 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

Table 2 – continued from previous page
Instruction Binary Opcode Type Validation Execution
i8x16.relaxed_swizzle 0xFD 0x80 0x02 [v128 v128] → [v128] validation execution (operator)
i32x4.relaxed_trunc_f32x4_s 0xFD 0x81 0x02 [v128] → [v128] validation execution (operator)
i32x4.relaxed_trunc_f32x4_u 0xFD 0x82 0x02 [v128] → [v128] validation execution (operator)
i32x4.relaxed_trunc_f64x2_s 0xFD 0x83 0x02 [v128] → [v128] validation execution (operator)
i32x4.relaxed_trunc_f64x2_u 0xFD 0x84 0x02 [v128] → [v128] validation execution (operator)
f32x4.relaxed_madd 0xFD 0x85 0x02 [v128 v128 v128] → [v128] validation execution (operator)
f32x4.relaxed_nmadd 0xFD 0x86 0x02 [v128 v128 v128] → [v128] validation execution (operator)
f64x2.relaxed_madd 0xFD 0x87 0x02 [v128 v128 v128] → [v128] validation execution (operator)
f64x2.relaxed_nmadd 0xFD 0x88 0x02 [v128 v128 v128] → [v128] validation execution (operator)
i8x16.relaxed_laneselect 0xFD 0x89 0x02 [v128 v128 v128] → [v128] validation execution (operator)
i16x8.relaxed_laneselect 0xFD 0x8A 0x02 [v128 v128 v128] → [v128] validation execution (operator)
i32x4.relaxed_laneselect 0xFD 0x8B 0x02 [v128 v128 v128] → [v128] validation execution (operator)
i64x2.relaxed_laneselect 0xFD 0x8C 0x02 [v128 v128 v128] → [v128] validation execution (operator)
f32x4.relaxed_min 0xFD 0x8D 0x02 [v128 v128] → [v128] validation execution (operator)
f32x4.relaxed_max 0xFD 0x8E 0x02 [v128 v128] → [v128] validation execution (operator)
f64x2.relaxed_min 0xFD 0x8F 0x02 [v128 v128] → [v128] validation execution (operator)
f64x2.relaxed_max 0xFD 0x90 0x02 [v128 v128] → [v128] validation execution (operator)
i16x8.relaxed_q15mulr_s 0xFD 0x91 0x02 [v128 v128] → [v128] validation execution (operator)
i16x8.relaxed_dot_i8x16_i7x16_s 0xFD 0x92 0x02 [v128 v128] → [v128] validation execution (operator)
i32x4.relaxed_dot_i8x16_i7x16_add_s 0xFD 0x93 0x02 [v128 v128 v128] → [v128] validation execution (operator)
(reserved) 0xFD 0x94 0x02 . . .
(reserved) 0xFE

(reserved) 0xFF

Note

Multi-byte opcodes are given with the shortest possible encoding in the table. However, what is following the
first byte is actually a u32 with variable-length encoding and consequently has multiple possible representations.

7.10. Index of Instructions 317

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.11 Index of Semantic Rules

7.11.1 Well-formedness of Types

Construct Judgement
Numeric type 𝐶 ⊢ numtype : ok
Vector type 𝐶 ⊢ vectype : ok
Heap type 𝐶 ⊢ heaptype : ok
Reference type 𝐶 ⊢ reftype : ok
Value type 𝐶 ⊢ valtype : ok
Packed type 𝐶 ⊢ packtype : ok
Storage type 𝐶 ⊢ storagetype : ok
Field type 𝐶 ⊢ fieldtype : ok
Result type 𝐶 ⊢ resulttype : ok
Instruction type 𝐶 ⊢ instrtype : ok
Composite type 𝐶 ⊢ comptype : ok
Sub type 𝐶 ⊢ subtype : ok
Recursive type 𝐶 ⊢ rectype : ok
Defined type 𝐶 ⊢ deftype : ok
Block type 𝐶 ⊢ blocktype : instrtype
Tag type 𝐶 ⊢ tagtype : ok
Global type 𝐶 ⊢ globaltype : ok
Memory type 𝐶 ⊢ memtype : ok
Table type 𝐶 ⊢ tabletype : ok
External type 𝐶 ⊢ externtype : ok
Type definitions 𝐶 ⊢ type* : ok

7.11.2 Typing of Static Constructs

Construct Judgement
Instruction 𝑆;𝐶 ⊢ instr : instrtype
Instruction sequence 𝑆;𝐶 ⊢ instr* : instrtype
Catch clause 𝐶 ⊢ catch : ok
Expression 𝐶 ⊢ expr : resulttype
Limits 𝐶 ⊢ limits : 𝑘
Tag 𝐶 ⊢ tag : tagtype
Global 𝐶 ⊢ global : globaltype
Memory 𝐶 ⊢ mem : memtype
Table 𝐶 ⊢ table : tabletype
Function 𝐶 ⊢ func : deftype
Local 𝐶 ⊢ local : localtype
Element segment 𝐶 ⊢ elem : reftype
Element mode 𝐶 ⊢ elemmode : reftype
Data segment 𝐶 ⊢ data : ok
Data mode 𝐶 ⊢ datamode : ok
Start function 𝐶 ⊢ start : ok
Import 𝐶 ⊢ import : externtype
Export 𝐶 ⊢ export : externtype
Module ⊢ module : externtype* → externtype*

318 Chapter 7. Appendix

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.11.3 Typing of Runtime Constructs

Construct Judgement
Value 𝑆 ⊢ val : valtype
Result 𝑆 ⊢ result : resulttype
Packed value 𝑆 ⊢ packval : packtype
Field value 𝑆 ⊢ fieldval : storagetype
External address 𝑆 ⊢ externaddr : externtype
Tag instance 𝑆 ⊢ taginst : tagtype
Global instance 𝑆 ⊢ globalinst : globaltype
Memory instance 𝑆 ⊢ meminst : memtype
Table instance 𝑆 ⊢ tableinst : tabletype
Function instance 𝑆 ⊢ funcinst : deftype
Data instance 𝑆 ⊢ datainst : ok
Element instance 𝑆 ⊢ eleminst : 𝑡
Structure instance 𝑆 ⊢ structinst : ok
Array instance 𝑆 ⊢ arrayinst : ok
Export instance 𝑆 ⊢ exportinst : ok
Module instance 𝑆 ⊢ moduleinst : 𝐶
Store ⊢ store : ok
Configuration ⊢ config : [𝑡*]
Thread 𝑆; resulttype? ⊢ thread : resulttype
Frame 𝑆 ⊢ frame : 𝐶

7.11.4 Constantness

Construct Judgement
Constant expression 𝐶 ⊢ exprconst
Constant instruction 𝐶 ⊢ instrconst

7.11.5 Matching

Construct Judgement
Number type 𝐶 ⊢ numtype1 ≤ numtype2
Vector type 𝐶 ⊢ vectype1 ≤ vectype2
Heap type 𝐶 ⊢ heaptype1 ≤ heaptype2
Reference type 𝐶 ⊢ reftype1 ≤ reftype2
Value type 𝐶 ⊢ valtype1 ≤ valtype2
Packed type 𝐶 ⊢ packtype1 ≤ packtype2
Storage type 𝐶 ⊢ storagetype1 ≤ storagetype2
Field type 𝐶 ⊢ fieldtype1 ≤ fieldtype2
Result type 𝐶 ⊢ resulttype1 ≤ resulttype2
Instruction type 𝐶 ⊢ instrtype1 ≤ instrtype2
Composite type 𝐶 ⊢ comptype1 ≤ comptype2
Defined type 𝐶 ⊢ deftype1 ≤ deftype2
Limits 𝐶 ⊢ limits1 ≤ limits2
Tag type 𝐶 ⊢ tagtype1 ≤ tagtype2
Global type 𝐶 ⊢ globaltype1 ≤ globaltype2
Memory type 𝐶 ⊢ memtype1 ≤ memtype2
Table type 𝐶 ⊢ tabletype1 ≤ tabletype2
External type 𝐶 ⊢ externtype1 ≤ externtype2

7.11. Index of Semantic Rules 319

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

7.11.6 Store Extension

Construct Judgement
Tag instance ⊢ taginst1 ⪯ taginst2
Global instance ⊢ globalinst1 ⪯ globalinst2
Memory instance ⊢ meminst1 ⪯ meminst2
Table instance ⊢ tableinst1 ⪯ tableinst2
Function instance ⊢ funcinst1 ⪯ funcinst2
Data instance ⊢ datainst1 ⪯ datainst2
Element instance ⊢ eleminst1 ⪯ eleminst2
Structure instance ⊢ structinst1 ⪯ structinst2
Array instance ⊢ arrayinst1 ⪯ arrayinst2
Store ⊢ store1 ⪯ store2

7.11.7 Execution

Construct Judgement
Instruction 𝑆;𝐹 ; instr* →˓ 𝑆′;𝐹 ′; instr ′

*

Expression 𝑆;𝐹 ; expr →˓ 𝑆′;𝐹 ′; expr ′

320 Chapter 7. Appendix

Index

Symbols
: abstract syntax

administrative instruction, 92

A
abbreviations, 222
abstract syntax, 5, 193, 221, 261, 263

array address, 87
array instance, 90
array type, 12, 36
block type, 11, 15, 36
byte, 7
composite type, 12, 36
continuation instance, 90
data, 25, 77
data address, 87
data index, 23
data instance, 89
data type, 13
defined type, 30, 44
element, 25, 77
element address, 87
element index, 23
element instance, 89
element mode, 25
element type, 13
exception address, 87
exception instance, 90
export, 26, 78
export instance, 89
expression, 23, 72, 179
external address, 87
external index, 26
external type, 13, 39
field index, 23
field type, 12, 36
field value, 90
floating-point number, 7
frame, 91
function, 25, 76
function address, 87
function index, 23
function instance, 88

function type, 12, 36
global, 24, 75
global address, 87
global index, 23
global instance, 89
global type, 13, 38
grammar, 5
handler, 91
heap type, 9, 29, 35
host address, 87
import, 26, 78
instruction, 14–21, 48, 57–59, 63, 68, 69, 125,

126, 147, 148, 152, 159, 172, 173
instruction type, 31, 36
integer, 7
label, 91
label index, 23
limits, 12, 38
list, 6
local, 25, 76
local index, 23
local type, 32
memory, 24, 75
memory address, 87
memory index, 23
memory instance, 88
memory type, 13, 38
module, 23, 79
module instance, 87
mutability, 13
name, 8
notation, 5
number type, 9, 34
packed type, 12, 36
packed value, 90
prompt, 91
recursive type, 12, 37
recursive type index, 29
reference type, 10, 35
result, 86
result type, 11, 35
signed integer, 7
start function, 26, 78
storage type, 12, 36

321

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

store, 86
structure address, 87
structure instance, 90
structure type, 12, 36
sub type, 12, 29, 37
table, 25, 76
table address, 87
table index, 23
table instance, 88
table type, 13, 38
tag, 24, 75
tag address, 87
tag index, 23
tag instance, 89
tag type, 13, 38
type, 9, 74
type definition, 24
type index, 23
type use, 9, 35
uninterpreted integer, 7
unsigned integer, 7
value, 7, 85
value type, 11, 29, 35, 36
vector, 8
vector type, 35

abstract type, 9, 29
activation, 91
active, 25, 25
address, 87, 126, 147, 148, 152, 180

array, 87
continuation, 87
data, 87
element, 87
exception, 87
external, 87
function, 87
global, 87
host, 87
memory, 87
structure, 87
table, 87
tag, 87

address type, 229, 302
text format, 229

administrative instruction, 274, 275
: abstract syntax, 92

administrative instructions, 92
aggregate reference, 64
aggregate type, 12, 24, 36, 43, 198, 228

binary format, 198
text format, 228
validation, 36

algorithm, 282
allocation, 86, 180, 254, 265
annotation, 224, 290, 305
arithmetic NaN, 7
array, 12, 85, 122

address, 87

instance, 90
type, 12

array address
abstract syntax, 87

array instance, 86, 87, 90, 122, 269, 272, 279
abstract syntax, 90

array type, 12, 36, 40, 43, 90, 122, 198, 228, 269,
282, 303

abstract syntax, 12
binary format, 198
text format, 228
validation, 36

ASCII, 223, 224, 226

B
binary format, 8, 193, 254, 261, 264, 282, 290
aggregate type, 198
array type, 198
block type, 199
byte, 195
composite type, 198
custom section, 216
data, 219
data count, 219
data index, 214
element, 217
element index, 214
export, 217
expression, 214
external type, 199
field index, 214
field type, 198
floating-point number, 195
function, 216, 218
function index, 214
function type, 198
global, 217
global index, 214
global type, 198
grammar, 193
heap type, 196
import, 216
instruction, 199–203, 207
integer, 195
label index, 214
limits, 198
list, 194
local, 218
local index, 214
memory, 217
memory index, 214
memory type, 198
module, 219
mutability, 198
name, 195
notation, 193
number type, 196
packed type, 198

322 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

recursive type, 198
reference type, 197
result type, 197
section, 215
signed integer, 195
start function, 217
storage type, 198
structure type, 198
sub type, 198
table, 217
table index, 214
table type, 199
tag, 219
tag index, 214
tag type, 198
type, 196
type index, 214
type section, 216
uninterpreted integer, 195
unsigned integer, 195
value, 194
value type, 197
vector type, 196

bit, 95
bit width, 7, 9, 12, 94, 152
block, 11, 15, 48, 126, 140, 199, 232, 296

type, 11, 15
block type, 11, 15, 36, 48, 199

abstract syntax, 11, 15
binary format, 199
validation, 36

Boolean, 3, 95, 96
bottom type, 29, 266
branch, 15, 48, 126, 199, 232
byte, 7, 8, 25, 77, 88, 89, 96, 180, 193, 195, 219, 226,

247, 249, 258, 270, 272
abstract syntax, 7
binary format, 195
text format, 226

C
call, 91, 92, 146, 300
call frame, 91
canonical NaN, 7
cast, 18
caught, 92
caught exception, 92
changes, 295
character, 2, 8, 223, 223, 224, 226, 263, 265

text format, 223
closed type, 29
closure, 88
code, 14, 264

section, 218
code section, 218
comment, 223, 224
composite type, 12, 12, 36, 37, 198, 228, 229, 282,

303

abstract syntax, 12
binary format, 198
text format, 228
validation, 36

composite types, 43
compositionality, 282
concepts, 3
concrete type, 9, 29
configuration, 84, 93, 274, 280
constant, 23–25, 72, 75–77, 85, 300
context, 32, 47, 48, 57–59, 79, 219, 266, 273, 275
continuation
address, 87
instance, 90

continuation instance, 90
abstract syntax, 90

control frame, 91
control instruction, 15
control instructions, 48, 126, 199, 232
custom annotation, 293
custom section, 216, 290, 293, 305
binary format, 216

D
data, 23, 24, 25, 77, 92, 181, 219, 247, 249, 263
abstract syntax, 25
address, 87
binary format, 219
index, 23
instance, 89
section, 219
segment, 25, 77, 219, 247, 249
text format, 247, 249
type, 13
validation, 77

data address, 87, 181, 182
abstract syntax, 87

data count, 219
binary format, 219
section, 219

data count section, 219
data index, 23, 25, 214, 246
abstract syntax, 23
binary format, 214
text format, 246

data instance, 87, 89, 181, 182, 269, 272, 278
abstract syntax, 89

data section, 219
data segment, 79, 88, 89, 182, 219, 251, 297, 301
data type, 13
abstract syntax, 13

declarative, 25
decoding, 4
default value, 85
defaultable, 76
defined type, 13, 30, 31, 40, 44, 74, 90, 121, 268,

269, 271, 272, 282
abstract syntax, 30, 44

Index 323

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

design goals, 1
determinism, 94, 104, 149, 156, 172, 263, 305
deterministic profile, 263
dynamic type, 121

E
element, 13, 23, 25, 25, 77, 92, 181, 217, 219, 248,

249, 257, 263
abstract syntax, 25
address, 87
binary format, 217
index, 23
instance, 89
mode, 25
section, 217
segment, 25, 77, 217, 248, 249
text format, 248, 249
type, 13
validation, 77

element address, 87, 148, 181, 182
abstract syntax, 87

element expression, 89
element index, 23, 25, 214, 246

abstract syntax, 23
binary format, 214
text format, 246

element instance, 87, 89, 148, 181, 182, 269, 272,
279

abstract syntax, 89
element mode, 25

abstract syntax, 25
element section, 217
element segment, 79, 88, 89, 182, 251, 296, 297
element type, 13, 46

abstract syntax, 13
embedder, 2, 3, 87–89, 253
embedding, 253
evaluation context, 84
exception, 15, 86, 91, 92, 140, 141, 186, 190, 259,

268, 300
address, 87
instance, 90

exception address, 86, 259
abstract syntax, 87

exception handling, 199
exception instance, 86, 87, 90, 259, 273, 279

abstract syntax, 90
exception tag, 13, 38, 75, 89, 124, 141, 142, 198,

219, 246
exception type, 259
execution, 4, 9, 11, 83, 261, 265

expression, 179
instruction, 125, 126, 147, 148, 152, 159, 172,

173
expand, 268
expansion, 31
exponent, 7, 95

export, 23, 26, 78, 79, 89, 182, 190, 217, 219, 246–
251, 255, 256, 263, 297, 301

abstract syntax, 26
binary format, 217
instance, 89
section, 217
text format, 246–250
validation, 78

export instance, 87, 89, 182, 256, 273
abstract syntax, 89

export section, 217
expression, 23, 24, 25, 72, 75–77, 179, 214, 217, 219,

245, 247–249, 300
abstract syntax, 23
binary format, 214
constant, 23, 72, 214, 245
execution, 179
text format, 245
validation, 72

extern type, 276
extern value, 276
external
address, 87
type, 13

external address, 13, 87, 89, 124, 182, 273
abstract syntax, 87

external index, 26, 250
abstract syntax, 26

external reference, 68, 85
external type, 13, 39, 46, 124, 182, 199, 230, 261,

273
abstract syntax, 13
binary format, 199
text format, 230
validation, 39

F
field, 23, 292, 293
index, 23

field index, 23, 214, 292
abstract syntax, 23
binary format, 214

field type, 12, 36, 43, 44, 198, 228, 272, 279, 282,
303

abstract syntax, 12
binary format, 198
text format, 228
validation, 36

field value, 90, 272, 279
abstract syntax, 90

file extension, 193, 221
final, 12, 37
floating point, 2
floating-point, 3, 7, 8, 9, 20, 85, 94, 95, 102, 296
floating-point number, 195, 225
abstract syntax, 7
binary format, 195
text format, 225

324 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

folded instruction, 245
frame, 91, 92, 93, 126, 146–148, 152, 265, 274–276,

282
abstract syntax, 91

full profile, 263
funciton type, 43
function, 2, 3, 10–12, 15, 23, 25, 26, 32, 76, 79, 87,

88, 91, 92, 122, 146, 181, 182, 190, 216, 218,
219, 248, 251, 256, 263–265, 291–293, 296,
300, 302, 305

abstract syntax, 25, 76
address, 87
binary format, 216, 218
export, 26
import, 26
index, 23
instance, 88
section, 216
text format, 248
type, 12

function address, 87, 88, 92, 124, 181, 182, 190,
256, 257, 270, 276

abstract syntax, 87
function index, 15, 23, 25, 26, 48, 76–78, 126, 182,

199, 214, 217, 232, 246, 248–250, 291
abstract syntax, 23
binary format, 214
text format, 246

function instance, 86, 87, 88, 92, 122, 146, 181,
182, 190, 256, 265, 269, 271, 277, 278

abstract syntax, 88
function section, 216
function type, 10, 11, 12, 13, 15, 24, 26, 29, 32, 36,

38–40, 46, 75, 76, 78, 87, 122, 124, 125, 181,
190, 198, 216, 218, 219, 228, 230, 246, 248,
250, 256, 259, 269, 271, 276, 282, 302

abstract syntax, 12
binary format, 198
text format, 228
validation, 36

function type index, 219

G
global, 13, 16, 23, 24, 26, 32, 75, 79, 87, 89, 180, 182,

217, 219, 247, 251, 259, 263
abstract syntax, 24
address, 87
binary format, 217
export, 26
import, 26
index, 23
instance, 89
mutability, 13
section, 217
text format, 247
type, 13
validation, 75

global address, 87, 124, 147, 180, 182, 259

abstract syntax, 87
global index, 16, 23, 24, 26, 57, 78, 147, 182, 200,

214, 217, 233, 246, 247, 250
abstract syntax, 23
binary format, 214
text format, 246

global instance, 86, 87, 89, 147, 180, 182, 259, 265,
269, 270, 277, 278

abstract syntax, 89
global section, 217
global type, 13, 13, 24, 26, 29, 32, 38, 39, 45, 46, 75,

78, 124, 180, 198, 216, 217, 230, 247, 250,
259, 269, 270

abstract syntax, 13
binary format, 198
text format, 230
validation, 38

grammar notation, 5, 193, 221
greatest lower bound, 281
grow, 181, 182

H
handler, 91, 92, 141, 276, 300
abstract syntax, 91

heap type, 9, 10, 18, 19, 29, 35, 40, 196, 227, 248,
266, 268, 302, 303

abstract syntax, 9, 29
binary format, 196
text format, 227
validation, 35

host, 2, 87, 253
address, 87

host address, 85
abstract syntax, 87

host function, 88, 147, 256, 271

I
identifier, 221, 222, 246–248, 251, 265, 305
identifier context, 222, 251
identifiers, 227
text format, 227

IEEE 754, 2, 3, 7, 9, 95, 102
implementation, 253, 263
implementation limitations, 263
import, 2, 13, 23–25, 26, 76, 78, 79, 124, 182, 216,

219, 246–251, 255, 263, 297, 301
abstract syntax, 26
binary format, 216
section, 216
text format, 246–250
validation, 78

import section, 216
index, 23, 26, 78, 87, 214, 217, 222, 231, 246–250, 291
data, 23
element, 23
field, 23
function, 23
global, 23

Index 325

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

label, 23
local, 23
memory, 23
table, 23
tag, 23
type, 23

index space, 23, 26, 29, 32, 222, 291
instance, 87, 186

array, 90
continuation, 90
data, 89
element, 89
exception, 90
export, 89
function, 88
global, 89
memory, 88
module, 87
structure, 90
table, 88
tag, 89

instantiation, 4, 9, 26, 186, 255, 280
instantiation. module, 29
instruction, 3, 11, 14, 23, 31, 47, 71, 88, 89, 91–93,

125, 140, 199, 231, 263, 275, 276, 280, 282,
296, 297, 300–302, 305, 306

abstract syntax, 14–21
binary format, 199–203, 207
execution, 125, 126, 147, 148, 152, 159, 172,

173
text format, 232–234, 236, 239
type, 31
validation, 48, 57–59, 63, 68, 69

instruction sequence, 71, 140
instruction type, 31, 36, 43, 47, 87, 280–282, 302

abstract syntax, 31
validation, 36

instructions, 297
integer, 3, 7, 8, 9, 20, 85, 94–96, 148, 152, 195, 225,

296
abstract syntax, 7
binary format, 195
signed, 7
text format, 225
uninterpreted, 7
unsigned, 7

invocation, 4, 88, 190, 256, 280

K
keyword, 223

L
label, 15, 48, 91, 92, 126, 146, 199, 232, 265, 276, 282

abstract syntax, 91
index, 23

label index, 15, 23, 48, 126, 199, 214, 231, 232, 246
abstract syntax, 23
binary format, 214

text format, 231, 246
lane, 8, 95
least upper bound, 281
LEB128, 195, 199
lexical format, 223
limits, 12, 13, 24, 25, 38, 45, 46, 148, 152, 180–182,

198, 199, 230, 270
abstract syntax, 12
binary format, 198
memory, 13
table, 13
text format, 230
validation, 38

linear memory, 3
list, 6, 11, 12, 15, 25, 48, 126, 194, 199, 223, 232
abstract syntax, 6
binary format, 194
text format, 223

little endian, 17, 96, 195
local, 16, 23, 25, 31, 32, 76, 91, 218, 248, 263, 275,

291, 293, 302, 305
abstract syntax, 25
binary format, 218
index, 23
text format, 248
type, 32
validation, 76

local index, 16, 23, 25, 31, 32, 57, 76, 147, 200, 214,
233, 246, 291

abstract syntax, 23
binary format, 214
text format, 246

local type, 32, 32, 71, 76, 302
abstract syntax, 32

M
magnitude, 7
mantissa, 225
matching, 39, 182, 302
memory, 3, 9, 13, 17, 23, 24, 25, 26, 32, 75, 77, 79, 87,

88, 92, 96, 180–182, 217, 219, 247, 249, 251,
258, 263, 297, 301, 302

abstract syntax, 24
address, 87
binary format, 217
data, 25, 77, 219, 247, 249
export, 26
import, 26
index, 23
instance, 88
limits, 12, 13
section, 217
text format, 247
type, 13
validation, 75

memory address, 87, 124, 152, 180–182, 258
abstract syntax, 87

326 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

memory index, 17, 23, 24–26, 59, 77, 78, 152, 182,
201, 214, 217, 219, 234, 246, 247, 249, 250,
301

abstract syntax, 23
binary format, 214
text format, 246

memory instance, 86, 87, 88, 92, 152, 180–182, 258,
265, 269, 270, 277, 278

abstract syntax, 88
memory instruction, 17, 59, 152, 201, 234
memory section, 217
memory type, 12, 13, 13, 24, 26, 29, 32, 38, 39, 46,

75, 78, 88, 124, 180, 198, 216, 217, 230, 247,
250, 258, 269, 270

abstract syntax, 13
binary format, 198
text format, 230
validation, 38

module, 2, 3, 23, 32, 79, 86, 88, 182, 186, 190, 193,
219, 251, 254, 256, 263, 264, 280, 282, 291,
292, 305

abstract syntax, 23
binary format, 219
instance, 87
text format, 251
validation, 79

module instance, 88, 91, 121, 181, 182, 190, 255,
256, 265, 273, 275

abstract syntax, 87
module instruction, 93
mutability, 13, 13, 24, 36, 38, 44, 45, 89, 124, 180,

198, 228, 230, 270, 278
abstract syntax, 13
binary format, 198
global, 13
text format, 230

N
name, 2, 8, 26, 78, 87, 89, 195, 216, 217, 226, 246–250,

263, 273, 290, 292
abstract syntax, 8
binary format, 195
text format, 226

name annotation, 292
name map, 291
name section, 251, 290
NaN, 7, 94, 104, 172

arithmetic, 7
canonical, 7
payload, 7

non-determinism, 94, 104, 149, 156, 172, 263, 305
notation, 5, 193, 221

abstract syntax, 5
binary format, 193
text format, 221

null, 10, 18, 19
null reference, 122
number, 21, 85

type, 9
number type, 9, 11, 34, 35, 39, 42, 85, 196, 197, 227,

228, 282, 302
abstract syntax, 9
binary format, 196
text format, 227
validation, 34

numeric instruction, 20, 68, 172, 203, 236
numeric vector, 8, 21, 95

O
offset, 23
opcode, 199, 282, 287
operand, 14
operand stack, 14, 47

P
packed type, 12, 36, 44, 95, 198, 228, 272, 282
abstract syntax, 12
binary format, 198
text format, 228
validation, 36

packed value, 90, 272
abstract syntax, 90

page size, 13, 17, 24, 88, 198, 230, 247
parameter, 12, 23, 263, 293
parametric instruction, 14, 125, 199, 232
parametric instructions, 48
passive, 25, 25
payload, 7
phases, 4
polymorphism, 47, 48, 199, 232, 280
portability, 1
preservation, 280
principal types, 280
profile, 261
deterministic, 263
full, 263

profiles, 305
progress, 280
prompt
abstract syntax, 91

R
reachability, 270
recursive type, 12, 30, 31, 37, 44, 74, 79, 198, 216,

229, 251, 266, 268, 282, 303
abstract syntax, 12, 37
binary format, 198
text format, 229

recursive type index, 12, 29, 266, 268
abstract syntax, 29

reduction rules, 84
reference, 10, 18, 19, 85, 148, 159, 232, 260, 272,

296, 302, 303
type, 10

reference instruction, 18, 19, 202, 236
reference instructions, 63, 159

Index 327

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

reference type, 10, 11, 13, 18, 19, 35, 38, 42, 63, 76,
85, 148, 197, 199, 228, 230, 248, 260, 266,
282, 296, 300, 302, 303

abstract syntax, 10
binary format, 197
text format, 228
validation, 35

reftype, 92
result, 12, 86, 256, 263, 268

abstract syntax, 86
type, 11

result type, 11, 12, 29, 31, 32, 35, 43, 48, 72, 126,
197–199, 228, 232, 268, 275, 276, 296

abstract syntax, 11
binary format, 197
validation, 35

rewrite rule, 222
roll, 12
rolling, 29, 31
rounding, 103
runtime, 85, 318

S
S-expression, 221, 245
scalar reference, 67, 122
section, 215, 219, 264, 290

binary format, 215
code, 218
custom, 216
data, 219
data count, 219
element, 217
export, 217
function, 216
global, 217
import, 216
memory, 217
name, 251
start, 217
table, 217
tag, 219
type, 216

security, 2
segment, 92
shape, 95
sign, 96
signed integer, 7, 96, 195, 225

abstract syntax, 7
binary format, 195
text format, 225

significand, 7, 95
SIMD, 8, 9, 21, 297, 305
soundness, 266, 280
source text, 223, 223, 265
stack, 83, 91, 190, 282
stack machine, 14
stack type, 15
start function, 23, 26, 78, 79, 217, 219, 250, 251

abstract syntax, 26
binary format, 217
section, 217
text format, 250
validation, 78

start section, 217
state, 93
storage type, 12, 36, 44, 198, 228, 272, 303
abstract syntax, 12
binary format, 198
text format, 228
validation, 36

store, 9, 83, 86, 87, 91, 93, 122, 124–126, 147, 148,
152, 180, 186, 190, 254, 256–259, 269, 272,
274–277

abstract syntax, 86
store extension, 276
string, 226
text format, 226

structure, 12, 85, 122
address, 87
instance, 90
type, 12

structure address
abstract syntax, 87

structure field, 305
structure instance, 86, 87, 90, 122, 269, 272, 279
abstract syntax, 90

structure type, 12, 36, 40, 43, 90, 122, 198, 228,
269, 282, 293, 303

abstract syntax, 12
binary format, 198
text format, 228
validation, 36

structured control, 15, 48, 126, 199, 232
structured control instruction, 263
sub type, 12, 29, 31, 37, 198, 229, 266, 282, 303
abstract syntax, 12, 29, 37
binary format, 198
text format, 229

substitution, 30
subtyping, 12, 29, 37, 39, 261, 280–282, 302
syntax, 280

T
table, 3, 10, 13, 15, 17, 23, 25, 25, 26, 32, 76, 77, 79,

87, 88, 92, 180, 182, 217, 219, 248, 251, 257,
263, 296, 297, 302

abstract syntax, 25
address, 87
binary format, 217
element, 25, 77, 217, 248, 249
export, 26
import, 26
index, 23
instance, 88
limits, 12, 13
section, 217

328 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

text format, 248
type, 13
validation, 76

table address, 87, 124, 126, 148, 180, 182, 257
abstract syntax, 87

table index, 17, 23, 25, 26, 58, 77, 78, 148, 182, 201,
214, 217, 233, 246, 248–250, 297

abstract syntax, 23
binary format, 214
text format, 246

table instance, 86, 87, 88, 92, 126, 148, 180, 182,
257, 265, 269, 270, 277, 278

abstract syntax, 88
table instruction, 17, 58, 148, 201, 233
table section, 217
table type, 12, 13, 13, 25, 26, 29, 32, 38, 39, 46,

76, 78, 88, 124, 180, 199, 216, 217, 230, 248,
250, 257, 269, 270, 296

abstract syntax, 13
binary format, 199
text format, 230
validation, 38

tag, 13, 15, 23, 24, 26, 32, 75, 79, 87, 89, 90, 92, 141,
142, 180, 182, 219, 246, 251, 259, 263, 273,
292, 293, 300

abstract syntax, 24
address, 87
binary format, 219
export, 26
import, 26
index, 23
instance, 89
section, 219
text format, 246
type, 13
validation, 75

tag address, 87, 90, 92, 124, 180, 182, 259, 273
abstract syntax, 87

tag index, 23, 26, 48, 78, 182, 199, 214, 217, 232,
246, 250, 292

abstract syntax, 23
binary format, 214
text format, 246

tag instance, 86, 87, 89, 92, 180, 182, 259, 269, 270,
278

abstract syntax, 89
tag section, 219
tag type, 13, 13, 15, 24, 26, 29, 32, 38, 45, 46, 75, 78,

89, 124, 180, 198, 216, 219, 230, 246, 250,
259, 269, 270, 300

abstract syntax, 13
binary format, 198
text format, 230
validation, 38

terminal configuration, 280
text format, 2, 221, 254, 261, 265, 290, 305

address type, 229
aggregate type, 228

annotation, 224
array type, 228
byte, 226
character, 223
comment, 224
composite type, 228
data, 247, 249
data index, 246
element, 248, 249
element index, 246
export, 246–250
expression, 245
external type, 230
field type, 228
floating-point number, 225
function, 248
function index, 246
function type, 228
global, 247
global index, 246
global type, 230
grammar, 221
heap type, 227
identifiers, 227
import, 246–250
instruction, 232–234, 236, 239
integer, 225
label index, 231, 246
limits, 230
list, 223
local, 248
local index, 246
memory, 247
memory index, 246
memory type, 230
module, 251
mutability, 230
name, 226
notation, 221
number type, 227
packed type, 228
recursive type, 229
reference type, 228
signed integer, 225
start function, 250
storage type, 228
string, 226
structure type, 228
sub type, 229
table, 248
table index, 246
table type, 230
tag, 246
tag index, 246
tag type, 230
token, 223
type, 227
type index, 246

Index 329

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

type use, 230
uninterpreted integer, 225
unsigned integer, 225
value, 225
value type, 228
vector type, 227
white space, 224

thread, 93, 275, 280
throw, 268
throw context, 141, 276
token, 223, 265
trap, 3, 15, 17, 86, 92, 140, 172, 186, 190, 268, 275,

296
try block, 15
two's complement, 3, 7, 20, 96, 195
type, 9, 74, 121, 182, 196, 227, 263, 292, 293, 305, 318

abstract syntax, 9, 74
array, 12
binary format, 196
block, 11, 15
data, 13
element, 13
external, 13
function, 12
global, 13
index, 23
instruction, 31
local, 32
memory, 13
number, 9
reference, 10
result, 11
section, 216
structure, 12
table, 13
tag, 13
text format, 227
value, 11

type closure, 33
type definition, 23, 24, 79, 216, 219, 251

abstract syntax, 24
type equivalence, 31, 44
type index, 9, 11, 15, 23, 24–26, 29, 35, 48, 74, 76,

121, 126, 199, 214, 216, 218, 232, 246, 248,
292

abstract syntax, 23
binary format, 214
text format, 246

type instance, 86, 87
type instantiation, 121
type lattice, 281
type section, 216

binary format, 216
type system, 29, 266, 280
type use, 9, 9, 13, 35, 230

abstract syntax, 9
text format, 230
validation, 35

typing rules, 33

U
unboxed scalar, 9, 85
unboxed scalar type, 40
Unicode, 2, 8, 195, 221, 223, 226, 263
unicode, 265
Unicode UTF-8, 290, 292
uninterpreted integer, 7, 96, 195, 225
abstract syntax, 7
binary format, 195
text format, 225

unroll, 12, 44, 268
unrolling, 29, 31
unsigned integer, 7, 96, 195, 225
abstract syntax, 7
binary format, 195
text format, 225

unwinding, 15
UTF-8, 2, 8, 195, 221, 226

V
validation, 4, 9, 29, 122, 124, 125, 254, 261, 265,

272, 282, 318
aggregate type, 36
array type, 36
block type, 36
composite type, 36
data, 77
element, 77
export, 78
expression, 72
external type, 39
field type, 36
function type, 36
global, 75
global type, 38
heap type, 35
import, 78
instruction, 48, 57–59, 63, 68, 69
instruction type, 36
limits, 38
local, 76
memory, 75
memory type, 38
module, 79
number type, 34
packed type, 36
reference type, 35
result type, 35
start function, 78
storage type, 36
structure type, 36
table, 76
table type, 38
tag, 75
tag type, 38
type use, 35

330 Index

WebAssembly Specification, Release 3.0 + stack-switching (Draft 2025-08-11)

value type, 35
vector type, 35

validity, 280
value, 3, 7, 20, 21, 24, 47, 85, 86, 89, 90, 94, 122, 125,

147, 148, 152, 172, 180, 190, 194, 225, 256,
259, 260, 265, 268, 270, 275, 278

abstract syntax, 7, 85
binary format, 194
text format, 225
type, 11

value type, 11, 11, 13–15, 20, 21, 25, 29, 31, 32, 35,
36, 38, 42–45, 48, 76, 85, 95, 122, 124, 152,
172, 180, 197–199, 228, 230, 232, 260, 261,
266, 268, 275, 282, 296, 297, 302

abstract syntax, 11, 29
binary format, 197
text format, 228
validation, 35

variable instruction, 16
variable instructions, 57, 147, 200, 233
vector

abstract syntax, 8
vector instruction, 21, 69, 173, 207, 239, 305
vector number, 85
vector type, 9, 11, 35, 39, 85, 196, 227, 228, 282,

297
binary format, 196
text format, 227
validation, 35

version, 219

W
white space, 223, 224

Index 331

	Introduction
	Introduction
	Design Goals
	Scope
	Security Considerations
	Dependencies

	Overview
	Concepts
	Semantic Phases

	Structure
	Conventions
	Grammar Notation
	Auxiliary Notation
	Lists

	Values
	Bytes
	Conventions

	Integers
	Conventions

	Floating-Point
	Conventions

	Vectors
	Names
	Convention

	Types
	Number Types
	Conventions

	Vector Types
	Conventions

	Type Uses
	Heap Types
	Reference Types
	Conventions

	Value Types
	Conventions

	Result Types
	Block Types
	Composite Types
	Conventions

	Recursive Types
	Address Types
	Conventions

	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	Data Types
	Element Types
	External Types
	Conventions

	Instructions
	Parametric Instructions
	Control Instructions
	Variable Instructions
	Table Instructions
	Memory Instructions
	Reference Instructions
	Aggregate Instructions
	Numeric Instructions
	Vector Instructions
	Conventions

	Expressions

	Modules
	Indices
	Conventions

	Types
	Tags
	Globals
	Memories
	Tables
	Functions
	Data Segments
	Element Segments
	Start Function
	Imports
	Exports
	Conventions

	Validation
	Conventions
	Types
	Convention

	Defined Types
	Conventions

	Rolling and Unrolling
	Instruction Types
	Local Types
	Contexts
	Convention

	Prose Notation
	Formal Notation

	Types
	Number Types
	Vector Types
	Type Uses
	Heap Types
	Reference Types
	Value Types
	Result Types
	Block Types
	Instruction Types
	Composite Types
	Recursive Types
	[syntax/types:syntax-rectype]rec [syntax/types:syntax-subtype]subtype
	[syntax/types:syntax-subtype]sub [syntax/types:syntax-subtype]final? y [syntax/types:syntax-comptype]comptype

	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	External Types

	Matching
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Value Types
	Result Types
	Instruction Types
	Composite Types
	Field Types
	Defined Types
	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	External Types

	Instructions
	Parametric Instructions
	[syntax/instructions:syntax-instr-control]nop
	[syntax/instructions:syntax-instr-control]unreachable
	[syntax/instructions:syntax-instr-parametric]drop
	[syntax/instructions:syntax-instr-parametric]select (t)?

	Control Instructions
	[syntax/instructions:syntax-instr-control]block [syntax/types:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]loop [syntax/types:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]if [syntax/types:syntax-blocktype]blocktype [syntax/instructions:syntax-instr]instr1 [syntax/instructions:syntax-instr-control]else [syntax/instructions:syntax-instr]instr2
	[syntax/instructions:syntax-instr-control]br l
	[syntax/instructions:syntax-instr-control]br_if l
	[syntax/instructions:syntax-instr-control]br_table l lN
	[syntax/instructions:syntax-instr-control]br_on_null l
	[syntax/instructions:syntax-instr-control]br_on_non_null l
	[syntax/instructions:syntax-instr-control]br_on_cast l rt1 rt2
	[syntax/instructions:syntax-instr-control]br_on_cast_fail l rt1 rt2
	[syntax/instructions:syntax-instr-control]call x
	[syntax/instructions:syntax-instr-control]call_ref x
	[syntax/instructions:syntax-instr-control]call_indirect x y
	[syntax/instructions:syntax-instr-control]return
	[syntax/instructions:syntax-instr-control]return_call x
	[syntax/instructions:syntax-instr-control]return_call_ref x
	[syntax/instructions:syntax-instr-control]return_call_indirect x y
	[syntax/instructions:syntax-instr-control]throw x
	[syntax/instructions:syntax-instr-control]throw_ref
	[syntax/instructions:syntax-instr-control]try_table [syntax/types:syntax-blocktype]blocktype [syntax/instructions:syntax-catch]catch [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]catch x l
	[syntax/instructions:syntax-instr-control]catch_ref x l
	[syntax/instructions:syntax-instr-control]catch_all l
	[syntax/instructions:syntax-instr-control]catch_all_ref l
	[syntax/instructions:syntax-instr-control]cont.new x
	[syntax/instructions:syntax-instr-control]cont.bind x x'
	[syntax/instructions:syntax-instr-control]resume x [syntax/instructions:syntax-hdl]hdl
	[syntax/instructions:syntax-instr-control]resume_throw x xe [syntax/instructions:syntax-hdl]hdl
	[syntax/instructions:syntax-hdl]on x l
	[syntax/instructions:syntax-hdl]on x [syntax/instructions:syntax-hdl]switch
	[syntax/instructions:syntax-instr-control]suspend x
	[syntax/instructions:syntax-instr-control]switch x xe

	Variable Instructions
	[syntax/instructions:syntax-instr-variable]local.get x
	[syntax/instructions:syntax-instr-variable]local.set x
	[syntax/instructions:syntax-instr-variable]local.tee x
	[syntax/instructions:syntax-instr-variable]global.get x
	[syntax/instructions:syntax-instr-variable]global.set x

	Table Instructions
	[syntax/instructions:syntax-instr-table]table.get x
	[syntax/instructions:syntax-instr-table]table.set x
	[syntax/instructions:syntax-instr-table]table.size x
	[syntax/instructions:syntax-instr-table]table.grow x
	[syntax/instructions:syntax-instr-table]table.fill x
	[syntax/instructions:syntax-instr-table]table.copy x y
	[syntax/instructions:syntax-instr-table]table.init x y
	[syntax/instructions:syntax-instr-table]elem.drop x

	Memory Instructions
	t.[syntax/instructions:syntax-instr-memory]load x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-sx]sx x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]store x [syntax/instructions:syntax-memarg]memarg
	t.[syntax/instructions:syntax-instr-memory]storeN x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]load x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadNxM_[syntax/instructions:syntax-sx]sx x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_splat x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_zero x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]loadN_lane x [syntax/instructions:syntax-memarg]memarg [syntax/instructions:syntax-laneidx]laneidx
	v128.[syntax/instructions:syntax-instr-memory]store x [syntax/instructions:syntax-memarg]memarg
	v128.[syntax/instructions:syntax-instr-memory]storeN_lane x [syntax/instructions:syntax-memarg]memarg [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-instr-memory]memory.size x
	[syntax/instructions:syntax-instr-memory]memory.grow x
	[syntax/instructions:syntax-instr-memory]memory.fill x
	[syntax/instructions:syntax-instr-memory]memory.copy x y
	[syntax/instructions:syntax-instr-memory]memory.init x y
	[syntax/instructions:syntax-instr-memory]data.drop x

	Reference Instructions
	[syntax/instructions:syntax-instr-ref]ref.null ht
	[syntax/instructions:syntax-instr-ref]ref.func x
	[syntax/instructions:syntax-instr-ref]ref.is_null
	[syntax/instructions:syntax-instr-ref]ref.as_non_null
	[syntax/instructions:syntax-instr-ref]ref.eq
	[syntax/instructions:syntax-instr-ref]ref.test rt
	[syntax/instructions:syntax-instr-ref]ref.cast rt

	Aggregate Reference Instructions
	[syntax/instructions:syntax-instr-struct]struct.new x
	[syntax/instructions:syntax-instr-struct]struct.new_default x
	[syntax/instructions:syntax-instr-struct]struct.get_[syntax/instructions:syntax-sx]sx? x y
	[syntax/instructions:syntax-instr-struct]struct.set x y
	[syntax/instructions:syntax-instr-array]array.new x
	[syntax/instructions:syntax-instr-array]array.new_default x
	[syntax/instructions:syntax-instr-array]array.new_fixed x n
	[syntax/instructions:syntax-instr-array]array.new_elem x y
	[syntax/instructions:syntax-instr-array]array.new_data x y
	[syntax/instructions:syntax-instr-array]array.get_[syntax/instructions:syntax-sx]sx? x
	[syntax/instructions:syntax-instr-array]array.set x
	[syntax/instructions:syntax-instr-array]array.len
	[syntax/instructions:syntax-instr-array]array.fill x
	[syntax/instructions:syntax-instr-array]array.copy x y
	[syntax/instructions:syntax-instr-array]array.init_elem x y
	[syntax/instructions:syntax-instr-array]array.init_data x y

	Scalar Reference Instructions
	[syntax/instructions:syntax-instr-i31]ref.i31
	[syntax/instructions:syntax-instr-i31]i31.get_[syntax/instructions:syntax-sx]sx

	External Reference Instructions
	[syntax/instructions:syntax-instr-extern]any.convert_extern
	[syntax/instructions:syntax-instr-extern]extern.convert_any

	Numeric Instructions
	t.[syntax/instructions:syntax-instr-numeric]const c
	t.[syntax/instructions:syntax-unop]unop
	t.[syntax/instructions:syntax-binop]binop
	t.[syntax/instructions:syntax-testop]testop
	t.[syntax/instructions:syntax-relop]relop
	t1.[syntax/instructions:syntax-cvtop]cvtop_t2_[syntax/instructions:syntax-sx]sx?

	Vector Instructions
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-vec]const c
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-vvunop]vvunop
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-vvbinop]vvbinop
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-vvternop]vvternop
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-vvtestop]vvtestop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vunop]vunop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vbinop]vbinop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vternop]vternop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vrelop]vtestop
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vrelop]vrelop
	[syntax/instructions:syntax-shape]ishape.[syntax/instructions:syntax-vshiftop]vishiftop
	[syntax/instructions:syntax-shape]ishape.[syntax/instructions:syntax-instr-vec]bitmask
	i8x16.[syntax/instructions:syntax-vswizzlop]vswizzlop
	i8x16.[syntax/instructions:syntax-instr-vec]shuffle [syntax/instructions:syntax-laneidx]laneidx16
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]splat
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]extract_lane_[syntax/instructions:syntax-sx]sx? [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-instr-vec]replace_lane [syntax/instructions:syntax-laneidx]laneidx
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-vextunop]vextunop_[syntax/instructions:syntax-shape]ishape2
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-vextbinop]vextbinop_[syntax/instructions:syntax-shape]ishape2
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-vextternop]vextternop_[syntax/instructions:syntax-shape]ishape2
	[syntax/instructions:syntax-shape]ishape1.[syntax/instructions:syntax-instr-vec]narrow_[syntax/instructions:syntax-shape]ishape2_[syntax/instructions:syntax-sx]sx
	[syntax/instructions:syntax-shape]shape.[syntax/instructions:syntax-vcvtop]vcvtop_[syntax/instructions:syntax-half]half?_[syntax/instructions:syntax-shape]shape_[syntax/instructions:syntax-sx]sx?_zero?

	Instruction Sequences
	Empty Instruction Sequence:

	Expressions
	Constant Expressions

	Modules
	Types
	Tags
	Globals
	Memories
	Tables
	Functions
	Locals
	Data Segments
	Element Segments
	Start Function
	Imports
	Exports
	[syntax/modules:syntax-externidx]tag x
	[syntax/modules:syntax-externidx]global x
	[syntax/modules:syntax-externidx]memory x
	[syntax/modules:syntax-externidx]table x
	[syntax/modules:syntax-externidx]func x

	Modules

	Execution
	Conventions
	Prose Notation
	Formal Notation

	Runtime Structure
	Values
	Convention

	Results
	Store
	Convention

	Addresses
	Conventions

	External Addresses
	Module Instances
	Function Instances
	Table Instances
	Memory Instances
	Global Instances
	Tag Instances
	Element Instances
	Data Instances
	Export Instances
	Conventions

	Aggregate Instances
	Conventions

	Exception Instances
	Continuation Instances
	Conventions

	Stack
	Values
	Labels
	Call Frames
	Exception Handlers
	Effect Handlers
	Conventions

	Administrative Instructions
	Configurations

	Numerics
	Representations
	Integers
	Floating-Point
	Vectors
	Storage

	Integer Operations
	Sign Interpretation
	Boolean Interpretation
	[exec/numerics:op-iadd]iaddN(i1, i2)
	[exec/numerics:op-isub]isubN(i1, i2)
	[exec/numerics:op-imul]imulN(i1, i2)
	[exec/numerics:op-idiv]idiv_uN(i1, i2)
	[exec/numerics:op-idiv]idiv_sN(i1, i2)
	[exec/numerics:op-irem]irem_uN(i1, i2)
	[exec/numerics:op-irem]irem_sN(i1, i2)
	[exec/numerics:op-inot]inotN(i)
	[exec/numerics:op-irev]irevN(i)
	[exec/numerics:op-iand]iandN(i1, i2)
	[exec/numerics:op-iandnot]iandnotN(i1, i2)
	[exec/numerics:op-ior]iorN(i1, i2)
	[exec/numerics:op-ixor]ixorN(i1, i2)
	[exec/numerics:op-ishl]ishlN(i1, i2)
	[exec/numerics:op-ishr]ishr_uN(i1, i2)
	[exec/numerics:op-ishr]ishr_sN(i1, i2)
	[exec/numerics:op-irotl]irotlN(i1, i2)
	[exec/numerics:op-irotr]irotrN(i1, i2)
	[exec/numerics:op-iclz]iclzN(i)
	[exec/numerics:op-ictz]ictzN(i)
	[exec/numerics:op-ipopcnt]ipopcntN(i)
	[exec/numerics:op-ieqz]ieqzN(i)
	[exec/numerics:op-inez]inezN(i)
	[exec/numerics:op-ieq]ieqN(i1, i2)
	[exec/numerics:op-ine]ineN(i1, i2)
	[exec/numerics:op-ilt]ilt_uN(i1, i2)
	[exec/numerics:op-ilt]ilt_sN(i1, i2)
	[exec/numerics:op-igt]igt_uN(i1, i2)
	[exec/numerics:op-igt]igt_sN(i1, i2)
	[exec/numerics:op-ile]ile_uN(i1, i2)
	[exec/numerics:op-ile]ile_sN(i1, i2)
	[exec/numerics:op-ige]ige_uN(i1, i2)
	[exec/numerics:op-ige]ige_sN(i1, i2)
	[exec/numerics:op-iextendn]iextendM_sN(i)
	[exec/numerics:op-ibitselect]ibitselectN(i1, i2, i3)
	[exec/numerics:op-iabs]iabsN(i)
	[exec/numerics:op-ineg]inegN(i)
	[exec/numerics:op-imin]imin_uN(i1, i2)
	[exec/numerics:op-imin]imin_sN(i1, i2)
	[exec/numerics:op-imax]imax_uN(i1, i2)
	[exec/numerics:op-imax]imax_sN(i1, i2)
	[exec/numerics:op-iadd-sat]iadd_sat_uN(i1, i2)
	[exec/numerics:op-iadd-sat]iadd_sat_sN(i1, i2)
	[exec/numerics:op-isub-sat]isub_sat_uN(i1, i2)
	[exec/numerics:op-isub-sat]isub_sat_sN(i1, i2)
	[exec/numerics:op-iavgr]iavgr_uN(i1, i2)
	[exec/numerics:op-iq15mulrsat]iq15mulrsat_sN(i1, i2)

	Floating-Point Operations
	Rounding
	NaN Propagation
	[exec/numerics:op-fadd]faddN(z1, z2)
	[exec/numerics:op-fsub]fsubN(z1, z2)
	[exec/numerics:op-fmul]fmulN(z1, z2)
	[exec/numerics:op-fdiv]fdivN(z1, z2)
	[exec/numerics:op-fma]fmaN(z1, z2, z3)
	[exec/numerics:op-fmin]fminN(z1, z2)
	[exec/numerics:op-fmax]fmaxN(z1, z2)
	[exec/numerics:op-fcopysign]fcopysignN(z1, z2)
	[exec/numerics:op-fabs]fabsN(z)
	[exec/numerics:op-fneg]fnegN(z)
	[exec/numerics:op-fsqrt]fsqrtN(z)
	[exec/numerics:op-fceil]fceilN(z)
	[exec/numerics:op-ffloor]ffloorN(z)
	[exec/numerics:op-ftrunc]ftruncN(z)
	[exec/numerics:op-fnearest]fnearestN(z)
	[exec/numerics:op-feq]feqN(z1, z2)
	[exec/numerics:op-fne]fneN(z1, z2)
	[exec/numerics:op-flt]fltN(z1, z2)
	[exec/numerics:op-fgt]fgtN(z1, z2)
	[exec/numerics:op-fle]fleN(z1, z2)
	[exec/numerics:op-fge]fgeN(z1, z2)
	[exec/numerics:op-fpmin]fpminN(z1, z2)
	[exec/numerics:op-fpmax]fpmaxN(z1, z2)

	Conversions
	[exec/numerics:op-extend]extenduM,N(i)
	[exec/numerics:op-extend]extendsM,N(i)
	[exec/numerics:op-wrap]wrapM,N(i)
	[exec/numerics:op-trunc]truncuM,N(z)
	[exec/numerics:op-trunc]truncsM,N(z)
	[exec/numerics:op-trunc-sat]trunc_sat_uM,N(z)
	[exec/numerics:op-trunc-sat]trunc_sat_sM,N(z)
	[exec/numerics:op-promote]promoteM,N(z)
	[exec/numerics:op-demote]demoteM,N(z)
	[exec/numerics:op-convert]convertuM,N(i)
	[exec/numerics:op-convert]convertsM,N(i)
	[exec/numerics:op-reinterpret]reinterprett1,t2(c)
	[exec/numerics:op-narrow]narrowsM,N(i)
	[exec/numerics:op-narrow]narrowuM,N(i)

	Vector Operations
	[exec/numerics:op-ivbitmask]ivbitmaskN(im)
	[exec/numerics:op-ivswizzle]ivswizzle(in, jn)
	[exec/numerics:op-ivshuffle]ivshuffle(jn, i1n, i2n)
	[exec/numerics:op-ivadd-pairwise]ivadd_pairwiseN(i2m)
	[exec/numerics:op-ivmul]ivmulN(i1m, i2m)
	[exec/numerics:op-ivdot]ivdotN(i12m, i22m)
	[exec/numerics:op-ivdot-sat]ivdotsatN(i1m, i2m)
	[syntax/instructions:syntax-vextunop]vextunopsh1, sh2(c)
	[syntax/instructions:syntax-vextbinop]vextbinopsh1, sh2(c1, c2)
	[syntax/instructions:syntax-vextternop]vextternopsh1, sh2(c1, c2, c3)
	[syntax/instructions:syntax-instr-vec]narrow_[syntax/instructions:syntax-sx]sxsh1, sh2(c1, c2)
	[syntax/instructions:syntax-vcvtop]vcvtop_[syntax/instructions:syntax-half]half?_[syntax/instructions:syntax-zero]zero?sh1, sh2(i)

	Relaxed Operations
	[exec/numerics:op-frelaxed-madd]frelaxed_maddN(z1, z2, z3)
	[exec/numerics:op-frelaxed-nmadd]frelaxed_nmaddN(z1, z2, z3)
	[exec/numerics:op-frelaxed-min]frelaxed_minN(z1, z2)
	[exec/numerics:op-frelaxed-max]frelaxed_maxN(z1, z2)
	[exec/numerics:op-irelaxed-q15mulr-s]irelaxed_q15mulr_sN(i1, i2)
	[exec/numerics:op-relaxed-trunc]relaxed_truncuM,N(z)
	[exec/numerics:op-relaxed-trunc]relaxed_truncsM,N(z)
	[exec/numerics:op-ivrelaxed-swizzle]ivrelaxed_swizzle(in, jn)
	[syntax/instructions:syntax-instr-vec]relaxed_dot(i1, i2)
	[exec/numerics:op-irelaxed-laneselect]irelaxed_laneselectN(i1, i2, i3)

	Types
	Instantiation

	Values
	Value Typing
	Numeric Values
	Vector Values
	Null References
	Scalar References
	Structure References
	Array References
	Exception References
	Continuation References
	Function References
	Host References
	External References
	Subsumption

	External Typing
	Functions
	Tables
	Memories
	Globals
	Tags
	Subsumption

	Instructions
	Parametric Instructions
	[syntax/instructions:syntax-instr-control]nop
	[syntax/instructions:syntax-instr-control]unreachable
	[syntax/instructions:syntax-instr-parametric]drop
	[syntax/instructions:syntax-instr-parametric]select (t)?

	Control Instructions
	[syntax/instructions:syntax-instr-control]block bt [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]loop bt [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]if bt [syntax/instructions:syntax-instr]instr1 [syntax/instructions:syntax-instr]instr2
	[syntax/instructions:syntax-instr-control]br l
	[syntax/instructions:syntax-instr-control]br_if l
	[syntax/instructions:syntax-instr-control]br_table l l'
	[syntax/instructions:syntax-instr-control]br_on_null l
	[syntax/instructions:syntax-instr-control]br_on_non_null l
	[syntax/instructions:syntax-instr-control]br_on_cast l rt1 rt2
	[syntax/instructions:syntax-instr-control]br_on_cast_fail l rt1 rt2
	[syntax/instructions:syntax-instr-control]return
	[syntax/instructions:syntax-instr-control]call x
	[syntax/instructions:syntax-instr-control]call_ref x
	[syntax/instructions:syntax-instr-control]call_indirect x y
	[syntax/instructions:syntax-instr-control]return_call x
	[syntax/instructions:syntax-instr-control]return_call_ref y
	[syntax/instructions:syntax-instr-control]return_call_indirect x y
	[syntax/instructions:syntax-instr-control]throw x
	[syntax/instructions:syntax-instr-control]throw_ref
	[syntax/instructions:syntax-instr-control]try_table bt [syntax/instructions:syntax-catch]catch [syntax/instructions:syntax-instr]instr
	[syntax/instructions:syntax-instr-control]cont.new x
	[syntax/instructions:syntax-instr-control]cont.bind x y
	[syntax/instructions:syntax-instr-control]resume kx [syntax/instructions:syntax-hdl]hdl
	[syntax/instructions:syntax-instr-control]resume_throw kx ax [syntax/instructions:syntax-hdl]hdl
	[syntax/instructions:syntax-instr-control]suspend x
	[syntax/instructions:syntax-instr-control]switch x xe

	Blocks
	Entering [syntax/instructions:syntax-instr]instr with label L and values [exec/runtime:syntax-val]val
	Exiting [syntax/instructions:syntax-instr]instr with label L

	Exception Handling
	Entering [syntax/instructions:syntax-instr]instr with label L and exception handler H
	Exiting an exception handler

	Effect Handling
	[exec/runtime:syntax-prompt]prompt
	[exec/runtime:syntax-suspending]suspending [exec/runtime:syntax-tagaddr]tagaddr [exec/runtime:syntax-resumption]resumption cont
	[exec/runtime:syntax-resuming]resuming [exec/runtime:syntax-continst]continst

	Function Calls
	Invocation of function reference ([exec/runtime:syntax-ref]ref.func a)
	Returning from a function
	Host Functions

	Variable Instructions
	[syntax/instructions:syntax-instr-variable]local.get x
	[syntax/instructions:syntax-instr-variable]local.set x
	[syntax/instructions:syntax-instr-variable]local.tee x
	[syntax/instructions:syntax-instr-variable]global.get x
	[syntax/instructions:syntax-instr-variable]global.set x

	Table Instructions
	[syntax/instructions:syntax-instr-table]table.get x
	[syntax/instructions:syntax-instr-table]table.set x
	[syntax/instructions:syntax-instr-table]table.size x
	[syntax/instructions:syntax-instr-table]table.grow x
	[syntax/instructions:syntax-instr-table]table.fill x
	[syntax/instructions:syntax-instr-table]table.copy x1 x2
	[syntax/instructions:syntax-instr-table]table.init x y
	[syntax/instructions:syntax-instr-table]elem.drop x

	Memory Instructions
	nt.[syntax/instructions:syntax-instr-memory]load[syntax/instructions:syntax-loadop]loadop? x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]loadM[syntax/instructions:syntax-shape]xK_[syntax/instructions:syntax-sx]sx x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-instr-memory]splat x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-instr-memory]zero x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]loadN_[syntax/instructions:syntax-instr-memory]lane x ao j
	nt.[syntax/instructions:syntax-instr-memory]store[syntax/instructions:syntax-storeop]storeop? x ao
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-memory]storeN_[syntax/instructions:syntax-instr-memory]lane x ao j
	[syntax/instructions:syntax-instr-memory]memory.size x
	[syntax/instructions:syntax-instr-memory]memory.grow x
	[syntax/instructions:syntax-instr-memory]memory.fill x
	[syntax/instructions:syntax-instr-memory]memory.copy x1 x2
	[syntax/instructions:syntax-instr-memory]memory.init x y
	[syntax/instructions:syntax-instr-memory]data.drop x

	Reference Instructions
	[syntax/instructions:syntax-instr-ref]ref.null x
	[syntax/instructions:syntax-instr-ref]ref.func x
	[syntax/instructions:syntax-instr-ref]ref.is_null
	[syntax/instructions:syntax-instr-ref]ref.as_non_null
	[syntax/instructions:syntax-instr-ref]ref.eq
	[syntax/instructions:syntax-instr-ref]ref.test rt
	[syntax/instructions:syntax-instr-ref]ref.cast rt
	[syntax/instructions:syntax-instr-i31]ref.i31
	[syntax/instructions:syntax-instr-i31]i31.get_[syntax/instructions:syntax-sx]sx
	[syntax/instructions:syntax-instr-struct]struct.new x
	[syntax/instructions:syntax-instr-struct]struct.new_default x
	[syntax/instructions:syntax-instr-struct]struct.get_[syntax/instructions:syntax-sx]sx? x i
	[syntax/instructions:syntax-instr-struct]struct.set x i
	[syntax/instructions:syntax-instr-array]array.new x
	[syntax/instructions:syntax-instr-array]array.new_default x
	[syntax/instructions:syntax-instr-array]array.new_fixed x n
	[syntax/instructions:syntax-instr-array]array.new_data x y
	[syntax/instructions:syntax-instr-array]array.new_elem x y
	[syntax/instructions:syntax-instr-array]array.get_[syntax/instructions:syntax-sx]sx? x
	[syntax/instructions:syntax-instr-array]array.set x
	[syntax/instructions:syntax-instr-array]array.len
	[syntax/instructions:syntax-instr-array]array.fill x
	[syntax/instructions:syntax-instr-array]array.copy x1 x2
	[syntax/instructions:syntax-instr-array]array.init_data x y
	[syntax/instructions:syntax-instr-array]array.init_elem x y
	[syntax/instructions:syntax-instr-extern]any.convert_extern
	[syntax/instructions:syntax-instr-extern]extern.convert_any

	Numeric Instructions
	nt.[syntax/instructions:syntax-instr-numeric]const c
	nt . [syntax/instructions:syntax-unop]unop
	nt . [syntax/instructions:syntax-binop]binop
	nt . [syntax/instructions:syntax-testop]testop
	nt . [syntax/instructions:syntax-relop]relop
	nt2 . [syntax/instructions:syntax-cvtop]cvtop_nt1

	Vector Instructions
	[syntax/types:syntax-vectype]v128.[syntax/instructions:syntax-instr-vec]const c
	[syntax/types:syntax-vectype]v128 . [syntax/instructions:syntax-vvunop]vvunop
	[syntax/types:syntax-vectype]v128 . [syntax/instructions:syntax-vvbinop]vvbinop
	[syntax/types:syntax-vectype]v128 . [syntax/instructions:syntax-vvternop]vvternop
	[syntax/types:syntax-vectype]v128 . [syntax/instructions:syntax-instr-vec]any_true
	sh . [syntax/instructions:syntax-vunop]vunop
	sh . [syntax/instructions:syntax-vbinop]vbinop
	sh . [syntax/instructions:syntax-vternop]vternop
	sh . [syntax/instructions:syntax-vrelop]vtestop
	sh . [syntax/instructions:syntax-vrelop]vrelop
	sh . [syntax/instructions:syntax-vshiftop]vshiftop
	sh.[syntax/instructions:syntax-instr-vec]bitmask
	sh . swizzlop
	sh.[syntax/instructions:syntax-instr-vec]shuffle i
	[syntax/types:syntax-numtype]i[syntax/types:syntax-numtype]N[syntax/instructions:syntax-shape]xM.[syntax/instructions:syntax-instr-vec]splat
	[syntax/instructions:syntax-lanetype]lanetype[syntax/instructions:syntax-shape]xM.[syntax/instructions:syntax-instr-vec]extract_lane_[syntax/instructions:syntax-sx]sx'? i
	[syntax/types:syntax-numtype]i[syntax/types:syntax-numtype]N[syntax/instructions:syntax-shape]xM.[syntax/instructions:syntax-instr-vec]replace_lane i
	sh2 . [syntax/instructions:syntax-vextunop]vextunop_sh1
	sh2 . [syntax/instructions:syntax-vextbinop]vextbinop_sh1
	sh2 . [syntax/instructions:syntax-vextternop]vextternop_sh1
	sh2.[syntax/instructions:syntax-instr-vec]narrow_sh1_[syntax/instructions:syntax-sx]sx
	sh2 . [syntax/instructions:syntax-vcvtop]vcvtop_sh1

	Expressions
	eval_expr [syntax/instructions:syntax-instr]instr

	Modules
	Allocation
	Tags
	[exec/modules:alloc-tag]alloctag(s, [syntax/types:syntax-tagtype]tagtype)
	Globals
	[exec/modules:alloc-global]allocglobal(s, [syntax/types:syntax-globaltype]globaltype, [exec/runtime:syntax-val]val)
	Memories
	[exec/modules:alloc-mem]allocmem(s, at [i [syntax/types:syntax-limits].. j] [syntax/types:syntax-memtype]page)
	Tables
	[exec/modules:alloc-table]alloctable(s, at [i [syntax/types:syntax-limits].. j] rt, [exec/runtime:syntax-ref]ref)
	Functions
	[exec/modules:alloc-func]allocfunc(s, [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-funcinst]code, [exec/runtime:syntax-moduleinst]moduleinst)
	Data segments
	[exec/modules:alloc-data]allocdata(s, [valid/modules:valid-data]ok, [syntax/values:syntax-byte]byte)
	Element segments
	[exec/modules:alloc-elem]allocelem(s, [syntax/types:syntax-elemtype]elemtype, [exec/runtime:syntax-ref]ref)
	Growing memories
	[exec/modules:grow-mem]growmem([exec/runtime:syntax-meminst]meminst, n)
	Growing tables
	[exec/modules:grow-table]growtable([exec/runtime:syntax-tableinst]tableinst, n, r)
	Modules
	[exec/modules:alloc-module]allocmodule(s, [syntax/modules:syntax-module]module, [exec/runtime:syntax-externaddr]externaddr, [exec/runtime:syntax-val]valg, [exec/runtime:syntax-ref]reft, [exec/runtime:syntax-ref]refe)
	[exec/modules:alloc-type]alloctype([syntax/types:syntax-rectype]type'')
	[exec/modules:alloc-export]allocexport([exec/runtime:syntax-moduleinst]moduleinst, [syntax/modules:syntax-export]export [syntax/values:syntax-name]name [syntax/modules:syntax-externidx]externidx)

	Instantiation
	[exec/modules:exec-instantiation]instantiate(s, [syntax/modules:syntax-module]module, [exec/runtime:syntax-externaddr]externaddr)
	[exec/modules:eval-globals]evalglobal(z, [syntax/types:syntax-globaltype]globaltype, [syntax/instructions:syntax-expr]expr'')
	[exec/modules:aux-rundata]rundatax([syntax/modules:syntax-data]data bn [syntax/modules:syntax-datamode]datamode)
	[exec/modules:aux-runelem]runelemx([syntax/modules:syntax-elem]elem rt en [syntax/modules:syntax-elemmode]elemmode)

	Invocation
	[exec/modules:exec-invocation]invoke(s, [exec/runtime:syntax-funcaddr]funcaddr, [exec/runtime:syntax-val]val)

	Binary Format
	Conventions
	Grammar
	Auxiliary Notation
	Lists

	Values
	Bytes
	Integers
	Floating-Point
	Names

	Types
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Value Types
	Result Types
	Composite Types
	Recursive Types
	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	External Types

	Instructions
	Parametric Instructions
	Control Instructions
	Variable Instructions
	Table Instructions
	Memory Instructions
	Reference Instructions
	Numeric Instructions
	Vector Instructions
	Expressions

	Modules
	Indices
	Sections
	Custom Section
	Type Section
	Import Section
	Function Section
	Table Section
	Memory Section
	Global Section
	Export Section
	Start Section
	Element Section
	Code Section
	Data Section
	Data Count Section
	Tag Section
	Modules

	Text Format
	Conventions
	Grammar
	Abbreviations
	Contexts
	Conventions

	Lists

	Lexical Format
	Characters
	Tokens
	White Space
	Comments
	Annotations

	Values
	Integers
	Floating-Point
	Strings
	Names
	Identifiers
	Conventions

	Types
	Number Types
	Vector Types
	Heap Types
	Reference Types
	Abbreviations

	Value Types
	Composite Types
	Abbreviations

	Recursive Types
	Abbreviations

	Address Types
	Abbreviations

	Limits
	Tag Types
	Global Types
	Memory Types
	Table Types
	External Types
	Type Uses
	Abbreviations

	Instructions
	Labels
	Parametric Instructions
	Control Instructions
	Abbreviations

	Variable Instructions
	Table Instructions
	Abbreviations

	Memory Instructions
	Abbreviations

	Reference Instructions
	Numeric Instructions
	Vector Instructions
	Folded Instructions
	Expressions

	Modules
	Indices
	Tags
	Abbreviations

	Globals
	Abbreviations

	Memories
	Abbreviations

	Tables
	Abbreviations

	Functions
	Abbreviations

	Data Segments
	Abbreviations

	Element Segments
	Abbreviations

	Start Function
	Imports
	Abbreviations

	Exports
	Abbreviations

	Modules
	Abbreviations

	Appendix
	Embedding
	Types
	Booleans
	Exceptions and Errors
	Pre- and Post-Conditions
	Store
	store_init() : [exec/runtime:syntax-store]store

	Modules
	module_decode([syntax/values:syntax-byte]byte) : [syntax/modules:syntax-module]module | [appendix/embedding:embed-error]error
	module_parse([syntax/values:syntax-name]char) : [syntax/modules:syntax-module]module | [appendix/embedding:embed-error]error
	module_validate([syntax/modules:syntax-module]module) : [appendix/embedding:embed-error]error?
	module_instantiate([exec/runtime:syntax-store]store, [syntax/modules:syntax-module]module, [exec/runtime:syntax-externaddr]externaddr) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-moduleinst]moduleinst | [appendix/embedding:embed-error]exception | [appendix/embedding:embed-error]error)
	module_imports([syntax/modules:syntax-module]module) : ([syntax/values:syntax-name]name, [syntax/values:syntax-name]name, [syntax/types:syntax-externtype]externtype)
	module_exports([syntax/modules:syntax-module]module) : ([syntax/values:syntax-name]name, [syntax/types:syntax-externtype]externtype)

	Module Instances
	instance_export([exec/runtime:syntax-moduleinst]moduleinst, [syntax/values:syntax-name]name) : [exec/runtime:syntax-externaddr]externaddr | [appendix/embedding:embed-error]error

	Functions
	func_alloc([exec/runtime:syntax-store]store, [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-hostfunc]hostfunc) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr)
	func_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr) : [valid/conventions:syntax-deftype]deftype
	func_invoke([exec/runtime:syntax-store]store, [exec/runtime:syntax-funcaddr]funcaddr, [exec/runtime:syntax-val]val) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-val]val | [appendix/embedding:embed-error]exception | [appendix/embedding:embed-error]error)

	Tables
	table_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-tabletype]tabletype, [exec/runtime:syntax-ref]ref) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr)
	table_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr) : [syntax/types:syntax-tabletype]tabletype
	table_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, i:[syntax/values:syntax-int]u64) : [exec/runtime:syntax-ref]ref | [appendix/embedding:embed-error]error
	table_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, i:[syntax/values:syntax-int]u64, [exec/runtime:syntax-ref]ref) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error
	table_size([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr) : [syntax/values:syntax-int]u64
	table_grow([exec/runtime:syntax-store]store, [exec/runtime:syntax-tableaddr]tableaddr, n:[syntax/values:syntax-int]u64, [exec/runtime:syntax-ref]ref) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	Memories
	mem_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-memtype]memtype) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr)
	mem_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr) : [syntax/types:syntax-memtype]memtype
	mem_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, i:[syntax/values:syntax-int]u64) : [syntax/values:syntax-byte]byte | [appendix/embedding:embed-error]error
	mem_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, i:[syntax/values:syntax-int]u64, [syntax/values:syntax-byte]byte) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error
	mem_size([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr) : [syntax/values:syntax-int]u64
	mem_grow([exec/runtime:syntax-store]store, [exec/runtime:syntax-memaddr]memaddr, n:[syntax/values:syntax-int]u64) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	Tags
	tag_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-tagtype]tagtype) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-tagaddr]tagaddr)
	tag_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-tagaddr]tagaddr) : [syntax/types:syntax-tagtype]tagtype

	Exceptions
	exn_alloc([exec/runtime:syntax-store]store, [exec/runtime:syntax-tagaddr]tagaddr, [exec/runtime:syntax-val]val) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-exnaddr]exnaddr)
	exn_tag([exec/runtime:syntax-store]store, [exec/runtime:syntax-exnaddr]exnaddr) : [exec/runtime:syntax-tagaddr]tagaddr
	exn_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-exnaddr]exnaddr) : [exec/runtime:syntax-val]val

	Globals
	global_alloc([exec/runtime:syntax-store]store, [syntax/types:syntax-globaltype]globaltype, [exec/runtime:syntax-val]val) : ([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr)
	global_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr) : [syntax/types:syntax-globaltype]globaltype
	global_read([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr) : [exec/runtime:syntax-val]val
	global_write([exec/runtime:syntax-store]store, [exec/runtime:syntax-globaladdr]globaladdr, [exec/runtime:syntax-val]val) : [exec/runtime:syntax-store]store | [appendix/embedding:embed-error]error

	Values
	ref_type([exec/runtime:syntax-store]store, [exec/runtime:syntax-ref]ref) : [syntax/types:syntax-reftype]reftype
	val_default([syntax/types:syntax-valtype]valtype) : [exec/runtime:syntax-val]val

	Matching
	match_valtype([syntax/types:syntax-valtype]valtype1, [syntax/types:syntax-valtype]valtype2) : [appendix/embedding:embed-bool]bool
	match_externtype([syntax/types:syntax-externtype]externtype1, [syntax/types:syntax-externtype]externtype2) : [appendix/embedding:embed-bool]bool

	Profiles
	Conventions
	Syntax Annotations
	Semantics Annotations
	Properties

	Defined Profiles
	Full Profile (FUL)
	Deterministic Profile (DET)

	Implementation Limitations
	Syntactic Limits
	Structure
	Binary Format
	Text Format

	Validation
	Execution

	Type Soundness
	Contexts
	Types
	Heap Type [valid/conventions:syntax-heaptype-ext]bot
	Heap Type [syntax/types:syntax-heaptype]rec i
	Value Type [valid/conventions:syntax-valtype-ext]bot
	Recursive Types [syntax/types:syntax-rectype]rec [syntax/types:syntax-subtype]subtype
	Sub types [syntax/types:syntax-subtype]sub [syntax/types:syntax-subtype]final? ht [syntax/types:syntax-comptype]comptype
	Defined types [syntax/types:syntax-rectype]rectype.i

	Subtyping
	Results
	Results [exec/runtime:syntax-val]val
	Results ([exec/runtime:syntax-ref]ref.exn a) [syntax/instructions:syntax-instr-control]throw_ref
	Results [exec/runtime:syntax-trap]trap

	Store Validity
	Store S
	Tag Instances { [exec/runtime:syntax-taginst]type [syntax/types:syntax-tagtype]tagtype }
	Global Instances { [exec/runtime:syntax-globalinst]type [syntax/types:syntax-mut]mut t, [exec/runtime:syntax-globalinst]value [exec/runtime:syntax-val]val }
	Memory Instances { [exec/runtime:syntax-meminst]type ([syntax/types:syntax-addrtype]addrtype [syntax/types:syntax-limits]limits), [exec/runtime:syntax-meminst]bytes b}
	Table Instances { [exec/runtime:syntax-tableinst]type ([syntax/types:syntax-addrtype]addrtype [syntax/types:syntax-limits]limits t), [exec/runtime:syntax-tableinst]elem [exec/runtime:syntax-ref]ref}
	Function Instances {[exec/runtime:syntax-funcinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-funcinst]module [exec/runtime:syntax-moduleinst]moduleinst, [exec/runtime:syntax-funcinst]code [syntax/modules:syntax-func]func}
	Host Function Instances {[exec/runtime:syntax-funcinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-funcinst]hostfunc hf}
	Data Instances { [exec/runtime:syntax-datainst]bytes b}
	Element Instances { [exec/runtime:syntax-eleminst]type t, [exec/runtime:syntax-eleminst]elem [exec/runtime:syntax-ref]ref}
	Structure Instances { [exec/runtime:syntax-structinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-structinst]fields [exec/runtime:syntax-fieldval]fieldval}
	Array Instances { [exec/runtime:syntax-arrayinst]type [valid/conventions:syntax-deftype]deftype, [exec/runtime:syntax-arrayinst]fields [exec/runtime:syntax-fieldval]fieldval}
	Field Values [exec/runtime:syntax-fieldval]fieldval
	Exception Instances { [exec/runtime:syntax-exninst]tag a, [exec/runtime:syntax-exninst]fields [exec/runtime:syntax-val]val}
	Export Instances { [exec/runtime:syntax-exportinst]name [syntax/values:syntax-name]name, [exec/runtime:syntax-exportinst]addr [exec/runtime:syntax-externaddr]externaddr }
	Module Instances [exec/runtime:syntax-moduleinst]moduleinst

	Configuration Validity
	Configurations S;T
	Threads F;[syntax/instructions:syntax-instr]instr
	Frames {[exec/runtime:syntax-frame]locals [exec/runtime:syntax-val]val, [exec/runtime:syntax-frame]module [exec/runtime:syntax-moduleinst]moduleinst}

	Administrative Instructions
	[exec/runtime:syntax-trap]trap
	[exec/runtime:syntax-val]val
	[exec/instructions:exec-invoke]invoke [exec/runtime:syntax-funcaddr]funcaddr
	[exec/runtime:syntax-label]labeln{[syntax/instructions:syntax-instr]instr0} [syntax/instructions:syntax-instr]instr
	[exec/runtime:syntax-frame]framen{F} [syntax/instructions:syntax-instr]instr
	[exec/runtime:syntax-handler]handlern{[syntax/instructions:syntax-catch]catch} [syntax/instructions:syntax-instr]instr

	Store Extension
	Store S
	Tag Instance [exec/runtime:syntax-taginst]taginst
	Global Instance [exec/runtime:syntax-globalinst]globalinst
	Memory Instance [exec/runtime:syntax-meminst]meminst
	Table Instance [exec/runtime:syntax-tableinst]tableinst
	Function Instance [exec/runtime:syntax-funcinst]funcinst
	Data Instance [exec/runtime:syntax-datainst]datainst
	Element Instance [exec/runtime:syntax-eleminst]eleminst
	Structure Instance [exec/runtime:syntax-structinst]structinst
	Array Instance [exec/runtime:syntax-arrayinst]arrayinst
	Exception Instance [exec/runtime:syntax-exninst]exninst

	Theorems

	Type System Properties
	Principal Types
	Type Lattice
	Compositionality

	Validation Algorithm
	Data Structures
	Types
	Context
	Stacks

	Validation of Opcode Sequences

	Custom Sections and Annotations
	Name Section
	Subsections
	Name Maps
	Module Names
	Function Names
	Local Names
	Type Names
	Field Names
	Tag Names

	Name Annotations
	Module Names
	Function Names
	Parameter Names
	Local Names
	Type Names
	Field Names
	Tag Names

	Custom Annotations

	Change History
	Release 2.0
	Sign Extension Instructions
	Non-trapping Float-to-Int Conversions
	Multiple Values
	Reference Types
	Table Instructions
	Multiple Tables
	Bulk Memory and Table Instructions
	Vector Instructions

	Release 3.0
	Extended Constant Expressions
	Tail Calls
	Exception Handling
	Multiple Memories
	64-bit Address Space
	Typeful References
	Garbage Collection
	Relaxed Vector Instructions
	Profiles
	Custom Annotations

	Index of Types
	Index of Instructions
	Index of Semantic Rules
	Well-formedness of Types
	Typing of Static Constructs
	Typing of Runtime Constructs
	Constantness
	Matching
	Store Extension
	Execution

	Index

